Skip to main content

Interaction Between Genetics and Epigenetics in Obesity and Their Clinical Significance

  • Chapter
  • First Online:
Cellular and Biochemical Mechanisms of Obesity

Part of the book series: Advances in Biochemistry in Health and Disease ((ABHD,volume 23))

  • 636 Accesses

Abstract

Complex interplay of genetics and environmental factors in developing obesity has attracted a lot of attention in recent years. Different approaches in genetic analysis has illustrated numerous genetic loci that contribute in adiposity traits as monogenic obesity, syndromic obesity, and polygenic obesity. However, current studies are mostly on coding genes. Studies propose that epigenetic modifications such as DNA methylation plays a substantial role in the regulation of genes, involved in obesity-related processes. Also, miRNAs determine the adipocyte fate. Mechanistically they have impact on adipogenesis, adipocyte differentiation, lipid metabolism, glucose homeostasis, and insulin resistance. On the other hand, long non-coding RNAs play a protective role in metabolic dysfunction during obesity. Even though there are huge amount of evidence regarding genetic and epigenetic factors involved in development of obesity, there are lots of questions yet to be answered.

Zahra Sepehri and Mahsa Motavaf have been equally contributed as the first author.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ATP:

Adenosine triphosphate

α-MSH:

Alpha-melanocyte stimulating hormone

AlkB:

Alpha-ketoglutarate-dependent dioxygenase

ADINR:

Adipogenic differentiation-induced noncoding RNA

ASMER-1:

Adipocyte-specific metabolic related-1

BMI:

Body mass index

BAT:

Brown adipose

BMP:

Bone morphogenetic protein

BMSCs:

Bone marrow–derived stromal cells

CpGs:

Cytosine guanine site

CEBPs:

CCAAT/enhancer binding proteins

DNA:

Deoxyribonucleic acid

DMRs:

Differentially methylated regions

DZ:

Dizygotic

EBF2:

Early B-cell factor 2

EBPs:

Enhancer-binding proteins

FABP4:

Fatty acid-binding protein 4

GWAS:

Genome-wide association study

GRS:

Genetic risk score

GSK3β:

Glycogen synthase kinase 3 beta

HIF:

Hypoxia inducible transcription factor

HbA1c:

Hemoglobin A1c

HDL:

High-density lipoprotein

HOTAIR:

HOX Transcript Antisense RNA

HOXD:

Homeobox D Cluster

IL:

Interleukin

IGF1:

Insulin-like growth factor 1

Kb:

Kilobase pair

Kg:

Kilogram

LncRNA:

Long noncoding RNA

LPL:

Lipoprotein lipase

MSH:

Melanocyte stimulating hormone

MZ:

Monozygotic

miRNAs:

MicroRNAs

MSC:

Mesenchymal stem cell

MAPK1:

Mitogen-activated protein kinase 1

miR-30:

MicroRNA-30

ncRNA:

Non-coding RNA

PC1:

Prohormone convertase 1

POMC:

Pro-opiomelanocortin

PPARγ:

Peroxisome proliferator-activated receptor gamma

PGC1α:

Peroxisome proliferator-activated receptor gamma coactivator 1 alpha

PRDM16:

PR-domain containing protein 16

PRC2:

Polycomb repressive complex 2

RNA:

Ribonucleic acid

Runx2:

Runtrelated transcription factor 2

SNPs:

Single nucleotide polymorphisms

SREBPs:

Sterol regulatory element-binding protein

SAT:

Subcutaneous adipose tissue

SRA:

Steroid receptor RNA activator

TNF:

Tumor necrosis factor

TRIM3:

Tripartite motif-containing 3

T1D:

Type 1 diabetes

T2D:

Type 2 diabetes

UBASH3A:

Ubiquitin-associated and SH3 domain-containing A

UTR:

Untranslated region

UCP1:

Uncoupling protein 1

VMRs:

Variably methylated regions

WHR:

Waist to hip ratio

WAT:

White adipose

Wnt:

Wingless-related integration site

References

  1. Haththotuwa RN, Wijeyaratne CN, Senarath U (2020) Chapter 1—worldwide epidemic of obesity. In: Mahmood TA, Arulkumaran S, Chervenak FA (eds) Obesity and obstetrics, 2nd edn. Elsevier, pp 3–8

    Google Scholar 

  2. Herrera BM, Lindgren CM (2010) The genetics of obesity. Curr DiabRep 10(6):498–505

    CAS  Google Scholar 

  3. Herrera BM, Keildson S, Lindgren CM (2011) Genetics and epigenetics of obesity. Maturitas 69(1):41–49

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Tam V, Turcotte M, Meyre D (2019) Established and emerging strategies to crack the genetic code of obesity. Obes Rev Off J Int Assoc Study Obes 20(2):212–240

    Article  CAS  Google Scholar 

  5. Speliotes EK, Willer CJ, Berndt SI, Monda KL, Thorleifsson G, Jackson AU et al (2010) Association analyses of 249,796 individuals reveal 18 new loci associated with body mass index. Nat Genet 42(11):937–948

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Frayling TM, Timpson NJ, Weedon MN, Zeggini E, Freathy RM, Lindgren CM et al (2007) A common variant in the FTO gene is associated with body mass index and predisposes to childhood and adult obesity. Science (New York, NY) 316(5826):889–894

    Article  CAS  Google Scholar 

  7. Popkin BM (2001) The nutrition transition and obesity in the developing world. J Nutr 131(3):871S-S873

    Article  CAS  PubMed  Google Scholar 

  8. Hinney A, Vogel CI, Hebebrand J (2010) From monogenic to polygenic obesity: recent advances. Eur Child Adolesc Psychiatr 19(3):297–310

    Article  Google Scholar 

  9. Kaur Y, De Souza R, Gibson W, Meyre D (2017) A systematic review of genetic syndromes with obesity. Obes Rev 18(6):603–634

    Article  CAS  PubMed  Google Scholar 

  10. Pischon T, Boeing H, Hoffmann K, Bergmann M, Schulze MB, Overvad K et al (2008) General and abdominal adiposity and risk of death in Europe. N Engl J Med 359(20):2105–2120

    Article  CAS  PubMed  Google Scholar 

  11. Hinney A, Hebebrand J (2008) Polygenic obesity in humans. Obes Facts 1(1):35–42

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Hebebrand J, Hinney A (2009) Environmental and genetic risk factors in obesity. Child Adolesc Psychiatr Clin N Am 18(1):83–94

    Article  PubMed  Google Scholar 

  13. Willer CJ, Speliotes EK, Loos RJ, Li S, Lindgren CM, Heid IM et al (2009) Six new loci associated with body mass index highlight a neuronal influence on body weight regulation. Nat Genet 41(1):25

    Article  CAS  PubMed  Google Scholar 

  14. Sabatti C, Service SK, Hartikainen A-L, Pouta A, Ripatti S, Brodsky J et al (2009) Genome-wide association analysis of metabolic traits in a birth cohort from a founder population. Nat Genet 41(1):35

    Google Scholar 

  15. Farooqi IS, Jebb SA, Langmack G, Lawrence E, Cheetham CH, Prentice AM et al (1999) Effects of recombinant leptin therapy in a child with congenital leptin deficiency. N Engl J Med 341(12):879–884

    Article  CAS  PubMed  Google Scholar 

  16. Farooqi IS, O’Rahilly S (2005) Monogenic obesity in humans. Annu Rev Med 56:443–458

    Article  CAS  PubMed  Google Scholar 

  17. Rankinen T, Zuberi A, Chagnon YC, Weisnagel SJ, Argyropoulos G, Walts B et al (2006) The human obesity gene map: the 2005 update. Obesity 14(4):529–644

    Article  PubMed  Google Scholar 

  18. Yang W, Kelly T, He J (2007) Genetic epidemiology of obesity. Epidemiol Rev 29(1):49–61

    Article  PubMed  Google Scholar 

  19. Belsky DW, Moffitt TE, Sugden K, Williams B, Houts R, McCarthy J et al (2013) Development and evaluation of a genetic risk score for obesity. Biodemography Soc Biol 59(1):85–100

    Article  PubMed  Google Scholar 

  20. Heid IM, Jackson AU, Randall JC, Winkler TW, Qi L, Steinthorsdottir V et al (2010) Meta-analysis identifies 13 new loci associated with waist-hip ratio and reveals sexual dimorphism in the genetic basis of fat distribution. Nat Genet 42(11):949–960

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Eaton SB, Konner M, Shostak M (1988) Stone agers in the fast lane: chronic degenerative diseases in evolutionary perspective. Am J Med 84(4):739–749

    Article  CAS  PubMed  Google Scholar 

  22. Farooqi IS, Keogh JM, Yeo GS, Lank EJ, Cheetham T, O’Rahilly S (2003) Clinical spectrum of obesity and mutations in the melanocortin 4 receptor gene. N Engl J Med 348(12):1085–1095

    Article  CAS  PubMed  Google Scholar 

  23. Rhee KE, Phelan S, McCaffery J (2012) Early determinants of obesity: genetic, epigenetic, and in utero influences. Int J Pediatr 2012

    Google Scholar 

  24. Wardle J, Carnell S, Haworth CM, Farooqi IS, O’Rahilly S, Plomin R (2008) Obesity associated genetic variation in FTO is associated with diminished satiety. J Clin Endocrinol Metab 93(9):3640–3643

    Article  CAS  PubMed  Google Scholar 

  25. Dina C, Meyre D, Gallina S, Durand E, Körner A, Jacobson P et al (2007) Variation in FTO contributes to childhood obesity and severe adult obesity. Nat Genet 39(6):724–726

    Article  CAS  PubMed  Google Scholar 

  26. Wåhlén K, Sjölin E, Hoffstedt J (2008) The common rs9939609 gene variant of the fat mass-and obesity-associated gene FTO is related to fat cell lipolysis. J Lipid Res 49(3):607–611

    Article  PubMed  CAS  Google Scholar 

  27. Jia G, Yang C-G, Yang S, Jian X, Yi C, Zhou Z et al (2008) Oxidative demethylation of 3-methylthymine and 3-methyluracil in single-stranded DNA and RNA by mouse and human FTO. FEBS Lett 582(23–24):3313–3319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gerken T, Girard CA, Tung Y-CL, Webby CJ, Saudek V, Hewitson KS et al (2007) The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318(5855):1469–1472

    Google Scholar 

  29. Fischer J, Koch L, Emmerling C, Vierkotten J, Peters T, Brüning JC et al (2009) Inactivation of the Fto gene protects from obesity. Nature 458(7240):894–898

    Article  CAS  PubMed  Google Scholar 

  30. Hall DH, Rahman T, Avery PJ, Keavney B (2006) INSIG-2 promoter polymorphism and obesity related phenotypes: association study in 1428 members of 248 families. BMC Med Genet 7(1):83

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Geets E, Meuwissen ME, Van Hul W (2019) Clinical, molecular genetics and therapeutic aspects of syndromic obesity. Clin Genet 95(1):23–40

    Article  CAS  PubMed  Google Scholar 

  32. van der Valk ES, van den Akker EL, Savas M, Kleinendorst L, Visser JA, Van Haelst MM et al (2019) A comprehensive diagnostic approach to detect underlying causes of obesity in adults. Obes Rev 20(6):795–804

    Article  PubMed  PubMed Central  Google Scholar 

  33. Abidi FE, Cardoso C, Lossi A-M, Lowry RB, Depetris D, Mattéi M-G et al (2005) Mutation in the 5′ alternatively spliced region of the XNP/ATR-X gene causes Chudley-Lowry syndrome. Eur J Hum Genet 13(2):176–183

    Article  CAS  PubMed  Google Scholar 

  34. Chudley AE, Lowry RB, Hoar DI, Opitz JM, Reynolds JF (1988) Mental retardation, distinct facial changes, short stature, obesity, and hypogonadism: a new X-linked mental retardation syndrome. Am J Med Genet 31(4):741–751

    Article  CAS  PubMed  Google Scholar 

  35. Delaunoy JP, Abidi F, Zeniou M, Jacquot S, Merienne K, Pannetier S et al (2001) Mutations in the X-linked RSK2 gene (RPS6KA3) in patients with Coffin-Lowry syndrome. Hum Mutat 17(2):103–116

    Article  CAS  PubMed  Google Scholar 

  36. Musio A, Selicorni A, Focarelli ML, Gervasini C, Milani D, Russo S et al (2006) X-linked Cornelia de Lange syndrome owing to SMC1L1 mutations. Nat Genet 38(5):528–530

    Article  CAS  PubMed  Google Scholar 

  37. Deardorff MA, Kaur M, Yaeger D, Rampuria A, Korolev S, Pie J et al (2007) Mutations in cohesin complex members SMC3 and SMC1A cause a mild variant of cornelia de Lange syndrome with predominant mental retardation. Am J Human Genet 80(3):485–494

    Article  CAS  PubMed  Google Scholar 

  38. Hampshire DJ, Ayub M, Springell K, Roberts E, Jafri H, Rashid Y et al (2006) MORM syndrome (m ental retardation, truncal o besity, r etinal dystrophy and m icropenis), a new autosomal recessive disorder, links to 9q34. Eur J Hum Genet 14(5):543–548

    Article  CAS  PubMed  Google Scholar 

  39. Hardelin J-P, Levilliers J, del Castillo I, Cohen-Salmon M, Legouis R, Blanchard S et al (1992) X chromosome-linked Kallmann syndrome: stop mutations validate the candidate gene. Proc Natl Acad Sci 89(17):8190–8194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Lederer D, Grisart B, Digilio MC, Benoit V, Crespin M, Ghariani SC et al (2012) Deletion of KDM6A, a histone demethylase interacting with MLL2, in three patients with Kabuki syndrome. Am J Human Genet 90(1):119–124

    Article  CAS  Google Scholar 

  41. Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI et al (2010) Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet 42(9):790–793

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Gillis LA, McCallum J, Kaur M, DeScipio C, Yaeger D, Mariani A et al (2004) NIPBL mutational analysis in 120 individuals with Cornelia de Lange syndrome and evaluation of genotype-phenotype correlations. Am J Human Genet 75(4):610–623

    Article  CAS  Google Scholar 

  43. Deardorff MA, Bando M, Nakato R, Watrin E, Itoh T, Minamino M et al (2012) HDAC8 mutations in Cornelia de Lange syndrome affect the cohesin acetylation cycle. Nature 489(7415):313–317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Cormier-Daire V, Molinari F, Rio M, Raoul O, De Blois M, Romana S et al (2003) Cryptic terminal deletion of chromosome 9q34: a novel cause of syndromic obesity in childhood? J Med Genet 40(4):300–303

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Thiele S, Werner R, Grötzinger J, Brix B, Staedt P, Struve D et al (2015) A positive genotype–phenotype correlation in a large cohort of patients with Pseudohypoparathyroidism Type Ia and Pseudo-pseudohypoparathyroidism and 33 newly identified mutations in the GNAS gene. Mol Genet Genomic Med 3(2):111–120

    Article  CAS  PubMed  Google Scholar 

  46. Hearn T, Renforth GL, Spalluto C, Hanley NA, Piper K, Brickwood S et al (2002) Mutation of ALMS1, a large gene with a tandem repeat encoding 47 amino acids, causes Alström syndrome. Nat Genet 31(1):79–83

    Article  CAS  PubMed  Google Scholar 

  47. Chiang AP, Nishimura D, Searby C, Elbedour K, Carmi R, Ferguson AL et al (2004) Comparative genomic analysis identifies an ADP-ribosylation factor–like gene as the cause of Bardet-Biedl syndrome (BBS3). Am J Human Genet 75(3):475–484

    Article  CAS  Google Scholar 

  48. Mykytyn K, Nishimura DY, Searby CC, Shastri M, Yen H-j, Beck JS et al (2002) Identification of the gene (BBS1) most commonly involved in Bardet-Biedl syndrome, a complex human obesity syndrome. Nat Genet 31(4):435–438

    Google Scholar 

  49. M’hamdi O, Redin C, Stoetzel C, Ouertani I, Chaabouni M, Maazoul F et al (2014) Clinical and genetic characterization of Bardet–Biedl syndrome in Tunisia: defining a strategy for molecular diagnosis. Clin Genet85(2):172–177

    Google Scholar 

  50. Kolehmainen J, Black GC, Saarinen A, Chandler K, Clayton-Smith J, Träskelin A-L et al (2003) Cohen syndrome is caused by mutations in a novel gene, COH1, encoding a transmembrane protein with a presumed role in vesicle-mediated sorting and intracellular protein transport. Am J Human Genet 72(6):1359–1369

    Article  CAS  Google Scholar 

  51. Dodé C, Teixeira L, Levilliers J, Fouveaut C, Bouchard P, Kottler M-L et al (2006) Kallmann syndrome: mutations in the genes encoding prokineticin-2 and prokineticin receptor-2. PLoS Genet 2(10):e175

    Google Scholar 

  52. Egger G, Liang G, Aparicio A, Jones PA (2004) Epigenetics in human disease and prospects for epigenetic therapy. Nature 429(6990):457–463

    Article  CAS  PubMed  Google Scholar 

  53. van Otterdijk SD, Michels KB (2016) Transgenerational epigenetic inheritance in mammals: how good is the evidence? FASEB J Offic Publ Fed Am Soc Exp Biol. 30(7):2457–2465

    Google Scholar 

  54. Zhang B, Gu X, Han X, Gao Q, Liu J, Guo T et al (2020) Crosstalk between DNA methylation and histone acetylation triggers GDNF high transcription in glioblastoma cells. Clin Epigenetics 12(1):47

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Okano M, Bell DW, Haber DA, Li E (1999) DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99(3):247–257

    Article  CAS  PubMed  Google Scholar 

  56. Berger SL (2007) The complex language of chromatin regulation during transcription. Nature 447(7143):407–412

    Article  CAS  PubMed  Google Scholar 

  57. Goldberg AD, Allis CD, Bernstein E (2007) Epigenetics: a landscape takes shape. Cell 128(4):635–638

    Article  CAS  PubMed  Google Scholar 

  58. Cacabelos R, Tellado I, Cacabelos P (2019) Chapter 1—the epigenetic machinery in the life cycle and pharmacoepigenetics. In: Cacabelos R (ed) Pharmacoepigenetics, vol 10. Academic Press, pp 1–100

    Google Scholar 

  59. Larijani L, Rancourt DE (2018) Chapter 29—stem cell epigenetics and human disease. In: Tollefsbol TO (ed) Epigenetics in human disease, vol 6, 2nd edn. Academic Press, pp 877–902

    Google Scholar 

  60. Dolinoy D, Das R, Weidman J, Jirtle R (2007) Metastable epialleles, imprinting, and the fetal origins of adult diseases. Pediatr Res 61:30R-R37

    Article  PubMed  Google Scholar 

  61. Kim M, Costello J (2017) DNA methylation: an epigenetic mark of cellular memory. Exp Mol Med 49(4):e322–e

    Google Scholar 

  62. Cheng Z, Zheng L, Almeida FA (2018) Epigenetic reprogramming in metabolic disorders: nutritional factors and beyond. J Nutr Biochem 54:1–10

    Article  CAS  PubMed  Google Scholar 

  63. Xu X, Su S, Barnes VA, De Miguel C, Pollock J, Ownby D et al (2013) A genome-wide methylation study on obesity: differential variability and differential methylation. Epigenetics 8(5):522–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Wang X, Zhu H, Snieder H, Su S, Munn D, Harshfield G et al (2010) Obesity related methylation changes in DNA of peripheral blood leukocytes. BMC Med 8:87

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Almén MS, Jacobsson JA, Moschonis G, Benedict C, Chrousos GP, Fredriksson R et al (2012) Genome wide analysis reveals association of a FTO gene variant with epigenetic changes. Genomics 99(3):132–137

    Article  PubMed  CAS  Google Scholar 

  66. Bjornsson HT, Sigurdsson MI, Fallin MD, Irizarry RA, Aspelund T, Cui H et al (2008) Intra-individual change over time in DNA methylation with familial clustering. JAMA 299(24):2877–2883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Feinberg AP, Irizarry RA, Fradin D, Aryee MJ, Murakami P, Aspelund T et al (2010) Personalized epigenomic signatures that are stable over time and covary with body mass index. Sci Transl Med 2(49):49ra67

    Google Scholar 

  68. O’Hara A, Lim FL, Mazzatti DJ, Trayhurn P (2009) Microarray analysis identifies matrix metalloproteinases (MMPs) as key genes whose expression is up-regulated in human adipocytes by macrophage-conditioned medium. Pflugers Arch 458(6):1103–1114

    Article  CAS  PubMed  Google Scholar 

  69. Chavey C, Mari B, Monthouel MN, Bonnafous S, Anglard P, Van Obberghen E et al (2003) Matrix metalloproteinases are differentially expressed in adipose tissue during obesity and modulate adipocyte differentiation. J Biol Chem 278(14):11888–11896

    Article  CAS  PubMed  Google Scholar 

  70. Derosa G, Ferrari I, D’Angelo A, Tinelli C, Salvadeo SAT, Ciccarelli L et al (2008) Matrix Metalloproteinase-2 and -9 Levels in Obese Patients. Endothelium 15(4):219–224

    Article  CAS  PubMed  Google Scholar 

  71. Benson KK, Hu W, Weller AH, Bennett AH, Chen ER, Khetarpal SA et al (2019) Natural human genetic variation determines basal and inducible expression of PM20D1, an obesity-associated gene. Proc Natl Acad Sci USA 116(46):23232–23242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Kaun KR, Sokolowski MB (2009) cGMP-dependent protein kinase: linking foraging to energy homeostasis. Genome 52(1):1–7

    Article  CAS  PubMed  Google Scholar 

  73. WÅ‚odarczyk M, Nowicka G (2019) Obesity, DNA damage, and development of obesity-related diseases. Int J Mol Sci 20(5):1146

    Article  PubMed Central  CAS  Google Scholar 

  74. Ge Y, Paisie TK, Newman JRB, McIntyre LM, Concannon P (2017) UBASH3A mediates risk for type 1 diabetes through inhibition of T-cell receptor-induced NF-κB signaling. Diabetes 66(7):2033–2043

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Ge Y, Paisie TK, Chen S, Concannon P (2019) UBASH3A regulates the synthesis and dynamics of TCR-CD3 complexes. J Immunol (Baltimore, Md: 1950) 203(11):2827–2836

    Google Scholar 

  76. Barrett JC, Clayton DG, Concannon P, Akolkar B, Cooper JD, Erlich HA et al (2009) Genome-wide association study and meta-analysis find that over 40 loci affect risk of type 1 diabetes. Nat Genet 41(6):703–707

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Chen Y-G, Ciecko AE, Khaja S, Grzybowski M, Geurts AM, Lieberman SM (2020) UBASH3A deficiency accelerates type 1 diabetes development and enhances salivary gland inflammation in NOD mice. Sci Rep 10(1):12019

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Ozato K, Shin DM, Chang TH, Morse HC 3rd (2008) TRIM family proteins and their emerging roles in innate immunity. Nat Rev Immunol 8(11):849–860

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Dick KJ, Nelson CP, Tsaprouni L, Sandling JK, Aïssi D, Wahl S et al (2014) DNA methylation and body-mass index: a genome-wide analysis. Lancet (London, England) 383(9933):1990–1998

    Article  CAS  Google Scholar 

  80. Park YS, David AE, Huang Y, Park J-B, He H, Byun Y et al (2012) In vivo delivery of cell-permeable antisense hypoxia-inducible factor 1α oligonucleotide to adipose tissue reduces adiposity in obese mice. J Control Release 161(1):1–9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Zhang H, Zhang G, Gonzalez FJ, Park S-M, Cai D (2011) Hypoxia-inducible factor directs POMC gene to mediate hypothalamic glucose sensing and energy balance regulation. PLoS Biol 9(7):e1001112–e

    Google Scholar 

  82. Shin MK, Drager LF, Yao Q, Bevans-Fonti S, Yoo DY, Jun JC et al (2010) Metabolic consequences of high-fat diet are attenuated by suppression of HIF-1α. PLoS One 7(10):e46562

    Google Scholar 

  83. Jiang C, Qu A, Matsubara T, Chanturiya T, Jou W, Gavrilova O et al (2011) Disruption of hypoxia-inducible factor 1 in adipocytes improves insulin sensitivity and decreases adiposity in high-fat diet-fed mice. Diabetes 60(10):2484–2495

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Hatanaka M, Shimba S, Sakaue M, Kondo Y, Kagechika H, Kokame K et al (2009) Hypoxia-inducible factor-3alpha functions as an accelerator of 3T3-L1 adipose differentiation. Biol Pharm Bull 32(7):1166–1172

    Article  CAS  PubMed  Google Scholar 

  85. Heidbreder M, Qadri F, Jöhren O, Dendorfer A, Depping R, Fröhlich F et al (2007) Non-hypoxic induction of HIF-3alpha by 2-deoxy-D-glucose and insulin. Biochem Biophys Res Commun 352(2):437–443

    Article  CAS  PubMed  Google Scholar 

  86. Huang T, Zheng Y, Qi Q, Xu M, Ley SH, Li Y et al (2015) DNA methylation variants at HIF3A locus, B-vitamin intake, and long-term weight change: gene-diet interactions in two U.S. cohorts. Diabetes 64(9):3146–3154

    Google Scholar 

  87. Pan H, Lin X, Wu Y, Chen L, Teh AL, Soh SE et al (2015) HIF3A association with adiposity: the story begins before birth. Epigenomics 7(6):937–950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Teh AL, Pan H, Chen L, Ong ML, Dogra S, Wong J et al (2014) The effect of genotype and in utero environment on interindividual variation in neonate DNA methylomes. Genome Res 24(7):1064–1074

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Aslibekyan S, Demerath EW, Mendelson M, Zhi D, Guan W, Liang L et al (2015) Epigenome-wide study identifies novel methylation loci associated with body mass index and waist circumference. Obesity (Silver Spring, Md) 23(7):1493–1501

    Article  CAS  Google Scholar 

  90. Rönn T, Volkov P, Gillberg L, Kokosar M, Perfilyev A, Jacobsen AL et al (2015) Impact of age, BMI and HbA1c levels on the genome-wide DNA methylation and mRNA expression patterns in human adipose tissue and identification of epigenetic biomarkers in blood. Hum Mol Genet 24(13):3792–3813

    PubMed  Google Scholar 

  91. Wahl S, Drong A, Lehne B, Loh M, Scott WR, Kunze S et al (2017) Epigenome-wide association study of body mass index, and the adverse outcomes of adiposity. Nature 541(7635):81–86

    Article  CAS  PubMed  Google Scholar 

  92. Sayols-Baixeras S, Subirana I, Fernández-Sanlés A, Sentí M, Lluís-Ganella C, Marrugat J et al (2017) DNA methylation and obesity traits: An epigenome-wide association study The REGICOR study. Epigenetics 12(10):909–916

    Article  PubMed  PubMed Central  Google Scholar 

  93. Saradalekshmi KR, Neetha NV, Sathyan S, Nair IV, Nair CM, Banerjee M (2014) DNA methyl transferase (DNMT) gene polymorphisms could be a primary event in epigenetic susceptibility to schizophrenia. PLoS One 9(5):e98182

    Google Scholar 

  94. Drong AW, Nicholson G, Hedman AK, Meduri E, Grundberg E, Small KS et al (2013) The presence of methylation quantitative trait loci indicates a direct genetic influence on the level of DNA methylation in adipose tissue. PLoS One8(2):e55923

    Google Scholar 

  95. Biscetti F, Porreca CF, Bertucci F, Straface G, Santoliquido A, Tondi P et al (2014) TNFRSF11B gene polymorphisms increased risk of peripheral arterial occlusive disease and critical limb ischemia in patients with type 2 diabetes. Acta Diabetol 51(6):1025–1032

    Article  CAS  PubMed  Google Scholar 

  96. Shen H, Damcott C, Shuldiner SR, Chai S, Yang R, Hu H et al (2011) Genome-wide association study identifies genetic variants in GOT1 determining serum aspartate aminotransferase levels. J Hum Genet 56(11):801–805

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Grundberg E, Meduri E, Sandling Johanna K, Hedman Åsa K, Keildson S, Buil A et al (2013) Global analysis of DNA methylation variation in adipose tissue from twins reveals links to disease-associated variants in distal regulatory elements. Am J Human Genet 93(5):876–890

    Article  CAS  Google Scholar 

  98. Volkov P, Olsson AH, Gillberg L, Jørgensen SW, Brøns C, Eriksson KF et al (2016) A genome-wide mQTL analysis in human adipose tissue identifies genetic variants associated with DNA methylation, gene expression and metabolic traits. PLoS One11(6):e0157776

    Google Scholar 

  99. Johansson LE, Danielsson AP, Parikh H, Klintenberg M, Norström F, Groop L et al (2012) Differential gene expression in adipose tissue from obese human subjects during weight loss and weight maintenance. Am J Clin Nutr 96(1):196–207

    Article  CAS  PubMed  Google Scholar 

  100. Aron-Wisnewsky J, Julia Z, Poitou C, Bouillot J-L, Basdevant A, Chapman MJ et al (2011) Effect of bariatric surgery-induced weight loss on SR-BI-, ABCG1-, and ABCA1-mediated cellular cholesterol efflux in obese women. J Clin Endocrinol Metab 96(4):1151–1159

    Article  CAS  PubMed  Google Scholar 

  101. Bell CG, Finer S, Lindgren CM, Wilson GA, Rakyan VK, Teschendorff AE et al (2010) Integrated genetic and epigenetic analysis identifies haplotype-specific methylation in the FTO type 2 diabetes and obesity susceptibility locus. PLoS One5(11):e14040

    Google Scholar 

  102. Zhou Y, Simmons D, Lai D, Hambly BD, McLachlan CS (2017) rs9939609 FTO genotype associations with FTO methylation level influences body mass and telomere length in an Australian rural population. Int J Obes 41(9):1427–1433

    Article  CAS  Google Scholar 

  103. Boissel S, Reish O, Proulx K, Kawagoe-Takaki H, Sedgwick B, Yeo GS et al (2009) Loss-of-function mutation in the dioxygenase-encoding FTO gene causes severe growth retardation and multiple malformations. Am J Human Genet 85(1):106–111

    Article  CAS  Google Scholar 

  104. Verlaan DJ, Ge B, Grundberg E, Hoberman R, Lam KC, Koka V et al (2009) Targeted screening of cis-regulatory variation in human haplotypes. Genome Res 19(1):118–127

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Candler T, Kühnen P, Prentice AM, Silver M (2019) Epigenetic regulation of POMC; implications for nutritional programming, obesity and metabolic disease. Front Neuroendocrinol 54:100773

    Google Scholar 

  106. Crujeiras AB, Campion J, Díaz-Lagares A, Milagro FI, Goyenechea E, Abete I et al (2013) Association of weight regain with specific methylation levels in the NPY and POMC promoters in leukocytes of obese men: a translational study. Regul Pept 186:1–6

    Article  CAS  PubMed  Google Scholar 

  107. Kühnen P, Handke D, Waterland Robert A, Hennig Branwen J, Silver M, Fulford Anthony J et al (2016) Interindividual variation in DNA methylation at a putative POMC metastable epiallele is associated with obesity. Cell Metab 24(3):502–509

    Article  PubMed  CAS  Google Scholar 

  108. Huang RC, Galati JC, Burrows S, Beilin LJ, Li X, Pennell CE et al (2012) DNA methylation of the IGF2/H19 imprinting control region and adiposity distribution in young adults. Clin Epigenetics 4(1):21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  109. Soubry A, Schildkraut JM, Murtha A, Wang F, Huang Z, Bernal A et al (2013) Paternal obesity is associated with IGF2hypomethylation in newborns: results from a Newborn Epigenetics Study (NEST) cohort. BMC Med 11(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  110. Mudhasani R, Imbalzano AN, Jones SN (2010) An essential role for Dicer in adipocyte differentiation. J Cell Biochem 110(4):812–816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Mudhasani R, Puri V, Hoover K, Czech MP, Imbalzano AN, Jones SN (2011) Dicer is required for the formation of white but not brown adipose tissue. J Cell Physiol 226(5):1399–1406

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Fujimoto Y, Nakagawa Y, Shingyouchi A, Tokushige N, Nakanishi N, Satoh A et al (2012) Dicer has a crucial role in the early stage of adipocyte differentiation, but not in lipid synthesis, in 3T3-L1 cells. Biochem Biophys Res Commun 420(4):931–936

    Article  CAS  PubMed  Google Scholar 

  113. Reis FCG, Branquinho JLO, Brandão BB, Guerra BA, Silva ID, Frontini A et al (2016) Fat-specific Dicer deficiency accelerates aging and mitigates several effects of dietary restriction in mice. Aging 8(6):1201–1222

    Article  PubMed  PubMed Central  Google Scholar 

  114. Mori MA, Thomou T, Boucher J, Lee KY, Lallukka S, Kim JK et al (2014) Altered miRNA processing disrupts brown/white adipocyte determination and associates with lipodystrophy. J Clin Investig 124(8):3339–3351

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Arner P, Kulyté A (2015) MicroRNA regulatory networks in human adipose tissue and obesity. Nat Rev Endocrinol 11(5):276–288

    Article  CAS  PubMed  Google Scholar 

  116. Iacomino G, Siani A (2017) Role of microRNAs in obesity and obesity-related diseases. Genes Nutr 12:23–

    Google Scholar 

  117. Raajendiran A, Ooi G, Bayliss J, O’Brien PE, Schittenhelm RB, Clark AK et al (2019) Identification of metabolically distinct adipocyte progenitor cells in human adipose tissues. Cell Rep 27(5):1528–40.e7

    Article  CAS  PubMed  Google Scholar 

  118. Bijland S, Mancini S, Salt I (2013) Role of AMP-activated protein kinase in adipose tissue metabolism and inflammation. Clin Sci (London, England: 1979) 124:491–507

    Google Scholar 

  119. Xu P, Vernooy SY, Guo M, Hay BA (2003) The Drosophila microRNA Mir-14 suppresses cell death and is required for normal fat metabolism. Curr Biol CB 13(9):790–795

    Article  CAS  PubMed  Google Scholar 

  120. Teleman AA, Maitra S, Cohen SM (2006) Drosophila lacking microRNA miR-278 are defective in energy homeostasis. Genes Dev 20(4):417–422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Kajimoto K, Naraba H, Iwai N (2006) MicroRNA and 3T3-L1 pre-adipocyte differentiation. RNA 12(9):1626–1632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  122. Kim YJ, Hwang SJ, Bae YC, Jung JS (2009) MiR-21 regulates adipogenic differentiation through the modulation of TGF-beta signaling in mesenchymal stem cells derived from human adipose tissue. Stem cells (Dayton, Ohio) 27(12):3093–3102

    Article  CAS  Google Scholar 

  123. Esau C, Kang X, Peralta E, Hanson E, Marcusson EG, Ravichandran LV et al (2004) MicroRNA-143 regulates adipocyte differentiation. J Biol Chem 279(50):52361–52365

    Article  CAS  PubMed  Google Scholar 

  124. Wang Q, Li YC, Wang J, Kong J, Qi Y, Quigg RJ et al (2008) miR-17-92 cluster accelerates adipocyte differentiation by negatively regulating tumor-suppressor Rb2/p130. Proc Natl Acad Sci USA 105(8):2889–2894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  125. Yi C, Xie W-d, Li F, Lv Q, He J, Wu J et al (2011) MiR-143 enhances adipogenic differentiation of 3T3-L1 cells through targeting the coding region of mouse pleiotrophin. FEBS Lett 585(20):3303–3309

    Google Scholar 

  126. Hu F, Wang M, Xiao T, Yin B, He L, Meng W et al (2015) miR-30 promotes thermogenesis and the development of beige fat by targeting RIP140. Diabetes 64(6):2056–2068

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  127. Zaragosi LE, Wdziekonski B, Brigand KL, Villageois P, Mari B, Waldmann R et al (2011) Small RNA sequencing reveals miR-642a-3p as a novel adipocyte-specific microRNA and miR-30 as a key regulator of human adipogenesis. Genome Biol 12(7):R64

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Huang J, Zhao L, Xing L, Chen D (2010) MicroRNA-204 regulates Runx2 protein expression and mesenchymal progenitor cell differentiation. Stem cells (Dayton, Ohio) 28(2):357–364

    Article  CAS  Google Scholar 

  129. Han H, Gu S, Chu W, Sun W, Wei W, Dang X et al (2017) miR-17-5p regulates differential expression of NCOA3 in pig intramuscular and subcutaneous adipose tissue. Lipids 52(11):939–949

    Article  CAS  PubMed  Google Scholar 

  130. Klöting N, Berthold S, Kovacs P, Schön MR, Fasshauer M, Ruschke K et al (2009) MicroRNA expression in human omental and subcutaneous adipose tissue. PLoS One4(3):e4699

    Google Scholar 

  131. Sun L, Xie H, Mori MA, Alexander R, Yuan B, Hattangadi SM et al (2011) Mir193b-365 is essential for brown fat differentiation. Nat Cell Biol 13(8):958–965

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Seale P, Kajimura S, Yang W, Chin S, Rohas LM, Uldry M et al (2007) Transcriptional control of brown fat determination by PRDM16. Cell Metab 6(1):38–54

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Meerson A, Traurig M, Ossowski V, Fleming JM, Mullins M, Baier LJ (2013) Human adipose microRNA-221 is upregulated in obesity and affects fat metabolism downstream of leptin and TNF-α. Diabetologia 56(9):1971–1979

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Arner E, Mejhert N, Kulyté A, Balwierz PJ, Pachkov M, Cormont M et al (2012) Adipose tissue microRNAs as regulators of CCL2 production in human obesity. Diabetes 61(8):1986–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Ling HY, Wen GB, Feng SD, Tuo QH, Ou HS, Yao CH et al (2011) MicroRNA-375 promotes 3T3-L1 adipocyte differentiation through modulation of extracellular signal-regulated kinase signalling. Clin Exp Pharmacol Physiol 38(4):239–246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Scherer PE (2006) Adipose tissue: from lipid storage compartment to endocrine organ. Diabetes 55(6):1537–1545

    Article  CAS  PubMed  Google Scholar 

  137. Al-Lahham SH, Roelofsen H, Priebe M, Weening D, Dijkstra M, Hoek A et al (2010) Regulation of adipokine production in human adipose tissue by propionic acid. Eur J Clin Invest 40(5):401–407

    Article  CAS  PubMed  Google Scholar 

  138. Karkeni E, Astier J, Tourniaire F, El Abed M, Romier B, Gouranton E et al (2016) Obesity-associated Inflammation Induces microRNA-155 expression in adipocytes and adipose tissue: outcome on adipocyte function. J Clin Endocrinol Metab 101(4):1615–1626

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  139. Ying W, Riopel M, Bandyopadhyay G, Dong Y, Birmingham A, Seo JB et al (2017) Adipose tissue macrophage-derived exosomal miRNAs can modulate in vivo and in vitro insulin sensitivity. Cell 171(2):372–84.e12

    Article  CAS  PubMed  Google Scholar 

  140. Xie H, Lim B, Lodish H (2009) MicroRNAs induced during adipogenesis that accelerate fat cell development are downregulated in obesity. Diabetes 58:1050–1057

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  141. Chou WW, Wang YT, Liao YC, Chuang SC, Wang SN, Juo SHH (2013) Decreased microRNA-221 is associated with high levels of TNF-α in human adipose tissue-derived mesenchymal stem cells from obese woman. Cell Physiol Biochem 32(1):127–137

    Article  CAS  PubMed  Google Scholar 

  142. Peng J, Zhou Y, Deng Z, Zhang H, Wu Y, Song T et al (2018) miR-221 negatively regulates inflammation and insulin sensitivity in white adipose tissue by repression of sirtuin-1 (SIRT1). J Cell Biochem 119(8):6418–6428

    Article  CAS  PubMed  Google Scholar 

  143. Zhuang G, Meng C, Guo X, Cheruku PS, Shi L, Xu H et al (2012) A novel regulator of macrophage activation: miR-223 in obesity-associated adipose tissue inflammation. Circulation 125(23):2892–2903

    Article  CAS  PubMed  Google Scholar 

  144. Parra P, Serra F, Palou A (2010) Expression of adipose microRNAs is sensitive to dietary conjugated linoleic acid treatment in mice. PLoS One5(9):e13005

    Google Scholar 

  145. Ge Q, Gérard J, Noël L, Scroyen I, Brichard SM (2012) MicroRNAs regulated by adiponectin as novel targets for controlling adipose tissue inflammation. Endocrinology 153(11):5285–5296

    Article  CAS  PubMed  Google Scholar 

  146. Gebert LFR, MacRae IJ (2019) Regulation of microRNA function in animals. Nat Rev Mol Cell Biol 20(1):21–37

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Lanz RB, McKenna NJ, Onate SA, Albrecht U, Wong J, Tsai SY et al (1999) A steroid receptor coactivator, SRA, functions as an RNA and is present in an SRC-1 complex. Cell 97(1):17–27

    Article  CAS  PubMed  Google Scholar 

  148. Xu B, Gerin I, Miao H, Vu-Phan D, Johnson CN, Xu R et al (2010) Multiple roles for the non-coding RNA SRA in regulation of adipogenesis and insulin sensitivity. PLoS One5(12):e14199

    Google Scholar 

  149. Chooniedass-Kothari S, Emberley E, Hamedani MK, Troup S, Wang X, Czosnek A et al (2004) The steroid receptor RNA activator is the first functional RNA encoding a protein. FEBS Lett 566(1–3):43–47

    Article  CAS  PubMed  Google Scholar 

  150. Kawashima H, Takano H, Sugita S, Takahara Y, Sugimura K, Nakatani T (2003) A novel steroid receptor co-activator protein (SRAP) as an alternative form of steroid receptor RNA-activator gene: expression in prostate cancer cells and enhancement of androgen receptor activity. Biochem J 369(Pt 1):163–171

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. McKay DB, Xi L, Barthel KKB, Cech TR (2014) Structure and function of steroid receptor RNA activator protein, the proposed partner of SRA noncoding RNA. J Mol Biol 426(8):1766–1785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  152. Coleman KM, Lam V, Jaber BM, Lanz RB, Smith CL (2004) SRA coactivation of estrogen receptor-alpha is phosphorylation-independent, and enhances 4-hydroxytamoxifen agonist activity. Biochem Biophys Res Commun 323(1):332–338

    Article  CAS  PubMed  Google Scholar 

  153. Gupta RA, Shah N, Wang KC, Kim J, Horlings HM, Wong DJ et al (2010) Long non-coding RNA HOTAIR reprograms chromatin state to promote cancer metastasis. Nature 464(7291):1071–1076

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Divoux A, Karastergiou K, Xie H, Guo W, Perera RJ, Fried SK et al (2014) Identification of a novel lncRNA in gluteal adipose tissue and evidence for its positive effect on preadipocyte differentiation. Obesity (Silver Spring, Md) 22(8):1781–1785

    Article  CAS  Google Scholar 

  155. Xiao T, Liu L, Li H, Sun Y, Luo H, Li T et al (2015) Long Noncoding RNA ADINR Regulates Adipogenesis by Transcriptionally Activating C/EBPα. Stem Cell Rep 5(5):856–865

    Article  CAS  Google Scholar 

  156. Gao H, Kerr A, Jiao H, Hon CC, Rydén M, Dahlman I et al (2018) Long non-coding RNAs associated with metabolic traits in human white adipose tissue. EBioMedicine 30:248–260

    Article  PubMed  PubMed Central  Google Scholar 

  157. Dallner OS, Marinis JM, Lu YH, Birsoy K, Werner E, Fayzikhodjaeva G et al (2019) Dysregulation of a long noncoding RNA reduces leptin leading to a leptin-responsive form of obesity. Nat Med 25(3):507–516

    Article  CAS  PubMed  Google Scholar 

  158. Zhao XY, Li S, Wang GX, Yu Q, Lin JD (2014) A long noncoding RNA transcriptional regulatory circuit drives thermogenic adipocyte differentiation. Mol Cell 55(3):372–382

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  159. Heward JA, Lindsay MA (2014) Long non-coding RNAs in the regulation of the immune response. Trends Immunol 35(9):408–419

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  160. Stapleton K, Das S, Reddy MA, Leung A, Amaram V, Lanting L et al (2020) Novel long noncoding RNA, Macrophage Inflammation-Suppressing Transcript (MIST), regulates macrophage activation during obesity. Arterioscler Thromb Vasc Biol 40(4):914–928

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  161. Rodrigues D, Barbosa AI, Rebelo R, Kwon IK, Reis RL, Correlo VM (2020) Skin-integrated wearable systems and implantable biosensors: a comprehensive review. Biosensors (Basel) 10(7)

    Google Scholar 

  162. Dolinoy DC (2008) The agouti mouse model: an epigenetic biosensor for nutritional and environmental alterations on the fetal epigenome. Nutr Rev 66(Suppl 1):S7-11

    Article  PubMed  Google Scholar 

  163. Jirtle RL (2014) The Agouti mouse: a biosensor for environmental epigenomics studies investigating the developmental origins of health and disease. Epigenomics 6(5):447–450

    Article  CAS  PubMed  Google Scholar 

  164. Sung R, Heo YS (2020) Sandwich ELISA-based electrochemical biosensor for leptin in control and diet-induced obesity mouse model. Biosensors (Basel) 11(1)

    Google Scholar 

  165. Pirsean C, Negut C, Stefan-van Staden RI, Dinu-Pirvu CE, Armean P, Udeanu DI (2019) The salivary levels of leptin and interleukin-6 as potential inflammatory markers in children obesity. PLoS One 14(1):e0210288

    Google Scholar 

  166. Mehrotra P (2016) Biosensors and their applications—a review. J Oral Biol Craniofac Res 6(2):153–159

    Article  PubMed  PubMed Central  Google Scholar 

  167. Zhang X, Ehrlich KC, Yu F, Hu X, Meng XH, Deng HW et al (2020) Osteoporosis- and obesity-risk interrelationships: an epigenetic analysis of GWAS-derived SNPs at the developmental gene TBX15. Epigenetics 15(6–7):728–749

    Article  PubMed  PubMed Central  Google Scholar 

  168. Song QY, Meng XR, Hinney A, Song JY, Huang T, Ma J et al (2018) Waist-hip ratio related genetic loci are associated with risk of impaired fasting glucose in Chinese children: a case control study. Nutr Metab 15:34

    Article  CAS  Google Scholar 

  169. D’Angelo CS, Varela MC, de Castro CIE, Otto PA, Perez ABA, Lourenço CM et al (2018) Chromosomal microarray analysis in the genetic evaluation of 279 patients with syndromic obesity. Mol Cytogenet 11(1):14

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  170. Dennis EL, Jahanshad N, Braskie MN, Warstadt NM, Hibar DP, Kohannim O et al (2014) Obesity gene NEGR1 associated with white matter integrity in healthy young adults. Neuroimage 102:548–557

    Article  CAS  PubMed  Google Scholar 

  171. Samaan Z, Lee YK, Gerstein HC, Engert JC, Bosch J, Mohan V et al (2015) Obesity genes and risk of major depressive disorder in a multiethnic population: a cross-sectional study. J Clin Psychiatry 76(12):1611–1618

    Article  Google Scholar 

  172. Zhang X, Cupples LA, Liu C-T (2018) A fine-mapping study of central obesity loci incorporating functional annotation and imputation. Eur J Hum Genet 26(9):1369–1377

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Hotta K, Nakamura M, Nakamura T, Matsuo T, Nakata Y, Kamohara S et al (2009) Association between obesity and polymorphisms in SEC16B, TMEM18, GNPDA2, BDNF, FAIM2 and MC4R in a Japanese population. J Hum Genet 54(12):727–731

    Article  CAS  PubMed  Google Scholar 

  174. Albuquerque D, Stice E, Rodríguez-López R, Manco L, Nóbrega C (2015) Current review of genetics of human obesity: from molecular mechanisms to an evolutionary perspective. Mol Genet Genomics 290(4):1191–1221

    Article  CAS  PubMed  Google Scholar 

  175. Chedid MF, do Nascimento FV, de Oliveira FS, de Souza BM, Kruel CR, Gurski RR et al (2019) Interaction of HSD11B1 and H6PD polymorphisms in subjects with type 2 diabetes are protective factors against obesity: a cross-sectional study. Diabetol Metab Syndr 11(1):78

    Google Scholar 

  176. Kochetova O, Viktorova T (2015) Genetics and epigenetics of obesity. Biol Bull Rev 5(6):538–547

    Article  Google Scholar 

  177. Scherag A, Kleber M, Boes T, Kolbe AL, Ruth A, Grallert H et al (2012) SDCCAG8 obesity alleles and reduced weight loss after a lifestyle intervention in overweight children and adolescents. Obesity 20(2):466–470

    Article  CAS  PubMed  Google Scholar 

  178. Williams MJ, Almén MS, Fredriksson R, Schiöth HB (2012) What model organisms and interactomics can reveal about the genetics of human obesity. Cell Mol Life Sci 69(22):3819–3834

    Article  CAS  PubMed  Google Scholar 

  179. Parton LE, Ye CP, Coppari R, Enriori PJ, Choi B, Zhang C-Y et al (2007) Glucose sensing by POMC neurons regulates glucose homeostasis and is impaired in obesity. Nature 449(7159):228–232

    Article  CAS  PubMed  Google Scholar 

  180. Houde A-A, Ruchat S-M, Allard C, Baillargeon J-P, St-Pierre J, Perron P et al (2015) LRP1B, BRD2 and CACNA1D: new candidate genes in fetal metabolic programming of newborns exposed to maternal hyperglycemia. Epigenomics 7(7):1111–1122

    Article  CAS  PubMed  Google Scholar 

  181. Grarup N, Andersen G, Krarup NT, Albrechtsen A, Schmitz O, Jørgensen T et al (2008) Association testing of novel type 2 diabetes risk alleles in the JAZF1, CDC123/CAMK1D, TSPAN8, THADA, ADAMTS9, and NOTCH2 loci with insulin release, insulin sensitivity, and obesity in a population-based sample of 4,516 glucose-tolerant middle-aged Danes. Diabetes 57(9):2534–2540

    Google Scholar 

  182. Morris J, Bailey ME, Baldassarre D, Cullen B, de Faire U, Ferguson A et al (2019) Genetic variation in CADM2 as a link between psychological traits and obesity. Sci Rep 9(1):1–14

    Article  Google Scholar 

  183. Ng MC, Tam CH, So WY, Ho JS, Chan AW, Lee HM et al (2010) Implication of genetic variants near negr1, sec16b, tmem18, etv5/dgkg, gnpda2, lin7c/bdnf, mtch2, bcdin3d/faim2, sh2b1, fto, mc4r, and kctd15 with obesity and type 2 diabetes in 7705 Chinese. J Clin Endocrinol Metab 95(5):2418–2425

    Article  CAS  PubMed  Google Scholar 

  184. Li D, Achkar J-P, Haritunians T, Jacobs JP, Hui KY, D’Amato M et al (2016) A pleiotropic missense variant in SLC39A8 is associated with Crohn’s disease and human gut microbiome composition. Gastroenterology 151(4):724–732

    Article  CAS  PubMed  Google Scholar 

  185. Lamiquiz-Moneo I, Mateo-Gallego R, Bea AM, Dehesa-García B, Pérez-Calahorra S, Marco-Benedí V et al (2019) Genetic predictors of weight loss in overweight and obese subjects. Sci Rep 9(1):1–9

    Article  CAS  Google Scholar 

  186. Hinney A, Albayrak Ö, Antel J, Volckmar AL, Sims R, Chapman J et al (2014) Genetic variation at the CELF1 (CUGBP, elav-like family member 1 gene) locus is genome-wide associated with Alzheimer’s disease and obesity. Am J Med Genet B Neuropsychiatr Genet 165(4):283–293

    Article  CAS  Google Scholar 

  187. Waalen J (2014) The genetics of human obesity. Transl Res 164(4):293–301

    Article  CAS  PubMed  Google Scholar 

  188. Bille DS, Banasik K, Justesen JM, Sandholt CH, Sandbæk A, Lauritzen T et al (2011) Implications of central obesity-related variants in LYPLAL1, NRXN3, MSRA, and TFAP2B on quantitative metabolic traits in adult Danes. PLoS One 6(6):e20640

    Google Scholar 

  189. Yoganathan P, Karunakaran S, Ho MM, Clee SM (2012) Nutritional regulation of genome-wide association obesity genes in a tissue-dependent manner. Nutr Metab 9(1):1–10

    Article  CAS  Google Scholar 

  190. Elias I, Franckhauser S, Bosch F (2013) New insights into adipose tissue VEGF-A actions in the control of obesity and insulin resistance. Adipocyte 2(2):109–112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  191. Zhao J, Bradfield JP, Zhang H, Sleiman PM, Kim CE, Glessner JT et al (2011) Role of BMI-associated loci identified in GWAS meta-analyses in the context of common childhood obesity in European Americans. Obesity 19(12):2436–2439

    Article  CAS  PubMed  Google Scholar 

  192. Rouskas K, Kouvatsi A, Paletas K, Papazoglou D, Tsapas A, Lobbens S et al (2012) Common variants in FTO, MC4R, TMEM18, PRL, AIF1, and PCSK1 show evidence of association with adult obesity in the Greek population. Obesity 20(2):389–395

    Article  CAS  PubMed  Google Scholar 

  193. Su S, Zhu H, Xu X, Wang X, Dong Y, Kapuku G et al (2014) DNA methylation of the LY86 gene is associated with obesity, insulin resistance, and inflammation. Twin Res Hum Genet 17(3):183–191

    Article  PubMed  PubMed Central  Google Scholar 

  194. Chevillard G, Blank V (2011) NFE2L3 (NRF3): the Cinderella of the Cap‘n’Collar transcription factors. Cell Mol Life Sci 68(20):3337–3348

    Article  CAS  PubMed  Google Scholar 

  195. Withers SB, Dewhurst T, Hammond C, Topham CH (2020) MiRNAs as novel adipokines: obesity-related circulating MiRNAs influence chemosensitivity in cancer patients. Non-coding RNA 6(1):5

    Article  CAS  PubMed Central  Google Scholar 

  196. Selvanayagam T, Walker S, Gazzellone MJ, Kellam B, Cytrynbaum C, Stavropoulos DJ et al (2018) Genome-wide copy number variation analysis identifies novel candidate loci associated with pediatric obesity. Eur J Hum Genet 26(11):1588–1596

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  197. Rask-Andersen M, Almén MS, Lind L, Schiöth HB (2015) Association of the LINGO2-related SNP rs10968576 with body mass in a cohort of elderly Swedes. Mol Genet Genomics 290(4):1485–1491

    Article  CAS  PubMed  Google Scholar 

  198. Bernhard F, Landgraf K, Klöting N, Berthold A, Büttner P, Friebe D et al (2013) Functional relevance of genes implicated by obesity genome-wide association study signals for human adipocyte biology. Diabetologia 56(2):311–322

    Article  CAS  PubMed  Google Scholar 

  199. Wu Y, Yu Y, Zhao T, Wang S, Fu Y, Qi Y et al (2016) Interactions of environmental factors and APOA1-APOC3-APOA4-APOA5 gene cluster gene polymorphisms with metabolic syndrome. PLoS One11(1):e0147946

    Google Scholar 

  200. Buzaglo-Azriel L, Kuperman Y, Tsoory M, Zaltsman Y, Shachnai L, Zaidman SL et al (2016) Loss of muscle MTCH2 increases whole-body energy utilization and protects from diet-induced obesity. Cell Rep 14(7):1602–1610

    Article  CAS  PubMed  Google Scholar 

  201. Unger TJ, Calderon GA, Bradley LC, Sena-Esteves M, Rios M (2007) Selective deletion of Bdnf in the ventromedial and dorsomedial hypothalamus of adult mice results in hyperphagic behavior and obesity. J Neurosci 27(52):14265–14274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  202. Tkatchenko AV, Visconti RP, Shang L, Papenbrock T, Pruett ND, Ito T et al (2001) Overexpression of Hoxc13 in differentiating keratinocytes results in downregulation of a novel hair keratin gene cluster and alopecia. Development 128(9):1547–1558

    Article  CAS  PubMed  Google Scholar 

  203. Wang K-S, Wang L, Liu X, Zeng M (2013) Association of HS6ST3 gene polymorphisms with obesity and triglycerides: gene× gender interaction. J Genet 92(3):395–402

    Article  CAS  PubMed  Google Scholar 

  204. Lv D, Zhang D-D, Wang H, Zhang Y, Liang L, Fu J-F et al (2015) Genetic variations in SEC16B, MC4R, MAP2K5 and KCTD15 were associated with childhood obesity and interacted with dietary behaviors in Chinese school-age population. Gene 560(2):149–155

    Article  CAS  PubMed  Google Scholar 

  205. Doche ME, Bochukova EG, Su H-W, Pearce LR, Keogh JM, Henning E et al (2012) Human SH2B1 mutations are associated with maladaptive behaviors and obesity. J Clin Investig 122(12):4732–4736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Kim Y-J, Sano T, Nabetani T, Asano Y, Hirabayashi Y (2012) GPRC5B activates obesity-associated inflammatory signaling in adipocytes. Sci Signal 5(251):ra85–ra

    Google Scholar 

  207. Nissen SE, Pillai SG, Nicholls SJ, Wolski K, Riesmeyer JS, Weerakkody GJ et al (2018) ADCY9 genetic variants and cardiovascular outcomes with evacetrapib in patients with high-risk vascular disease: a nested case-control study. JAMA Cardiol 3(5):401–408

    Article  PubMed  PubMed Central  Google Scholar 

  208. Lugo-Candelas C, Pang Y, Lee S, Cha J, Hong S, Ranzenhofer L et al (2020) Differences in brain structure and function in children with the FTO obesity-risk allele. Obes Sci Pract 6(4):409–424

    Article  PubMed  PubMed Central  Google Scholar 

  209. Yang L, Liu Z, Ling W, Wang L, Wang C, Ma J et al (2020) Effect of anthocyanins supplementation on serum IGFBP-4 fragments and glycemic control in patients with fasting hyperglycemia: a randomized controlled trial. Diabetes Metab Syndr Obes Targets Ther 13:3395

    Article  CAS  Google Scholar 

  210. Nakayama K, Miyashita H, Iwamoto S (2014) Seasonal effects of the UCP3 and the RPTOR gene polymorphisms on obesity traits in Japanese adults. J Physiol Anthropol 33(1):38

    Article  PubMed  PubMed Central  Google Scholar 

  211. Chami N, Preuss M, Walker RW, Moscati A, Loos RJ (2020) The role of polygenic susceptibility to obesity among carriers of pathogenic mutations in MC4R in the UK Biobank population. PLoS Med 17(7):e1003196

    Google Scholar 

  212. Liu R, Zou Y, Hong J, Cao M, Cui B, Zhang H et al (2017) Rare loss-of-function variants in NPC1 predispose to human obesity. Diabetes 66(4):935–947

    Article  CAS  PubMed  Google Scholar 

  213. Hong J, Shi J, Qi L, Cui B, Gu W, Zhang Y et al (2013) Genetic susceptibility, birth weight and obesity risk in young Chinese. Int J Obes 37(5):673–677

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sepehri, Z., Motavaf, M., Sargazi, A., Kiani, Z., Sepehri, M., Alavian, M.S. (2021). Interaction Between Genetics and Epigenetics in Obesity and Their Clinical Significance. In: Tappia, P.S., Ramjiawan, B., Dhalla, N.S. (eds) Cellular and Biochemical Mechanisms of Obesity. Advances in Biochemistry in Health and Disease, vol 23. Springer, Cham. https://doi.org/10.1007/978-3-030-84763-0_3

Download citation

Publish with us

Policies and ethics