Skip to main content

Advertisement

Log in

TNFRSF11B gene polymorphisms increased risk of peripheral arterial occlusive disease and critical limb ischemia in patients with type 2 diabetes

  • Original Article
  • Published:
Acta Diabetologica Aims and scope Submit manuscript

Abstract

Aims

Osteoprotegerin (OPG) is a secretory glycoprotein that belongs to the tumor necrosis factor receptor family and plays a role in atherosclerosis. OPG has been hypothesized to modulate vascular functions; however, its role in mediating atherosclerosis is controversial. Epidemiological data in patients with cardiovascular disease (CVD) indicate that OPG serum levels are associated with several inflammatory markers, myocardial infarction events, and calcium scores, suggesting that OPG may be causative for CVD.

Methods

The present study aimed to evaluate whether the OPG gene (TNFRSF11B) polymorphisms are involved in the development of peripheral arterial occlusive disease (PAOD) and critical limb ischemia (CLI) in patients with type 2 diabetes. This genetic association study included 402 diabetic patients (139 males and 263 females) with peripheral arterial occlusive disease and 567 diabetic subjects without peripheral arterial occlusive disease (208 males and 359 females). The T245G, T950C, and G1181C polymorphisms of the OPG gene were analyzed by polymerase chain reaction and restriction fragment length polymorphism.

Results

We found that the T245G, T950C, and G1181C gene polymorphisms of the OPG gene were significantly (27.9 vs. 12.2 %, P < 0.01; 33.6 vs. 10.4 %, P < 0.01 and 24.4 vs. 12.7 %, P < 0.01, respectively) and independently (adjusted OR 4.97 (3.12–6.91), OR 7.02 (4.96–11.67), and OR 2.85 (1.95–4.02), respectively) associated with PAOD. We also found that these three polymorphisms act synergistically in patients with PAOD and are associated with different levels of risk for PAOD and CLI, depending on the number of high-risk genotypes carried concomitantly by a given individual.

Conclusion

The TNFRSF11B gene polymorphisms under study are associated with PAOD, and synergistic effects between these genotypes might be potential markers for the presence and severity of atherosclerotic disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Lim H, Kim YU, Sun H, Lee JH, Reynolds JM et al (2014) Proatherogenic conditions promote autoimmune t helper 17 cell responses in vivo. Immunity 40:153–165. doi:10.1016/j.immuni.2013.11.021

    Article  CAS  PubMed  Google Scholar 

  2. Marinkovic N, Pasalic D, Potocki S (2013) Polymorphisms of genes involved in polycyclic aromatic hydrocarbons’ biotransformation and atherosclerosis. Biochem Med (Zagreb) 23:255–265. doi:10.11613/BM.2013.032

    Article  CAS  Google Scholar 

  3. Munger MA, Hawkins DW (2004) Atherothrombosis: epidemiology, pathophysiology, and prevention. J Am Pharm Assoc 44(Suppl 1):S5–S13

    Google Scholar 

  4. Criqui MH, Langer RD, Fronek A, Feigelson HS, Klauber MR et al (1992) Mortality over a period of 10 years in patients with peripheral arterial disease. N Engl J Med 326:381–386

    Article  CAS  PubMed  Google Scholar 

  5. Beckman JA, Creager MA, Libby P (2002) Diabetes and atherosclerosis. Epidemiology, pathophysiology and management. JAMA 287:2570–2581. doi:10.1001/jama.287.19.2570

    Article  CAS  PubMed  Google Scholar 

  6. Sipilä K, Kähönen M, Salomaa V, Päivänsalo M, Karanko H et al (2012) Carotid artery intima-media thickness and elasticity in relation to glucose tolerance. Acta Diabetol 49:215–223. doi:10.1007/s00592-011-0291-z

    Article  PubMed  Google Scholar 

  7. Sesti G, Andreozzi F, Fiorentino TV, Mannino GC, Sciacqua A et al (2014) High circulating irisin levels are associated with insulin resistance and vascular atherosclerosis in a cohort of nondiabetic adult subjects. Acta Diabetol 51:705–713. doi:10.1007/s00592-014-0576-0

  8. Jung CH, Lee WY, Kim SY, Jung JH, Rhee EJ et al (2010) The relationship between coronary artery calcification score, plasma osteoprotegerin level and arterial stiffness in asymptomatic type 2 DM. Acta Diabetol 47(Suppl 1):145–152. doi:10.1007/s00592-009-0154-z

    Article  CAS  PubMed  Google Scholar 

  9. Kiechl S, Schett G, Wenning G, Redlich K, Oberhollenzer M et al (2004) Osteoprotegerin is a risk factor for progressive atherosclerosis and cardiovascular disease. Circulation 109:175–180. doi:10.1161/01.CIR.0000127957.43874.BB

    Article  Google Scholar 

  10. Ziegler S, Kudlacek S, Luger A, Minar E (2005) Osteoprotegerin plasma concentrations correlate with severity of peripheral artery disease. Atherosclerosis 182:175–180. doi:10.1016/j.atherosclerosis.2005.01.042

    Article  CAS  PubMed  Google Scholar 

  11. Simonet WS, Lacey DL, Dunstan CR, Kelley M, Chang MS (1997) Osteoprotegerin: a novel secreted protein involved in the regulation of bone density. Cell 89:309–319

    Article  CAS  PubMed  Google Scholar 

  12. Boyle WJ, Simonet WS, Lacey DL (2003) Osteoclast differentiation and activation. Nature 423:337–342. doi:10.1038/nature01658

    Article  CAS  PubMed  Google Scholar 

  13. Dai Y, Shen L (2007) Relationships between serum osteoprotegerin, matrix metalloproteinase-2 levels and bone metabolism in postmenopausal women. Chin Med J (Engl) 120:2017–2021

    CAS  Google Scholar 

  14. Turk N, Cukovic-Cavka S, Korsic M, Turk Z, Vucelic B (2009) Proinflammatory cytokines and receptor activator of nuclear factor kappaB-ligand/osteoprotegerin associated with bone deterioration in patients with Crohn’s disease. Eur J Gastroenterol Hepatol 21:159–166. doi:10.1097/MEG.0b013e3283200032

    Article  CAS  PubMed  Google Scholar 

  15. Goranova-Marinova V, Goranov S, Tzveltkova T (2007) Serum levels of OPG, RANKL and RANKL/OPG ratio in newly-diagnosed patients with multiple myeloma. Clinical correlations. Haematologica 92:1000–1001. doi:10.3324/haematol.10943

    Article  PubMed  Google Scholar 

  16. Whyte MP (2006) Paget’s disease of bone and genetic disorders of RANKL/OPG/RANK/NF-kappaB signaling. Ann NY Acad Sci 1068:143–164. doi:10.1196/annals.1346.016

    Article  CAS  PubMed  Google Scholar 

  17. Bucay N, Sarosi I, Dunstan CR, Morony S, Tarpley J et al (1998) Osteoprotegerin-deficient mice develop early onset osteoporosis and arterial calcification. Genes Dev 12:1260–1268

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  18. Min H, Morony S, Sarosi I, Dunstan CR, Capparelli C et al (2000) Osteoprotegerin reverses osteoporosis by inhibiting endosteal osteoclasts and prevents vascular calcification by blocking a process resembling osteoclastogenesis. J Exp Med 192:463–474. doi:10.1084/jem.192.4.463

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Ueland T, Yndestad A, Oie E, Florholmen G, Halvorsen B et al (2005) Dysregulated osteoprotegerin/RANK ligand/RANK axis in clinical and experimental heart failure. Circulation 111:2461–2468. doi:10.1161/01.CIR.0000165119.62099.14

    Article  CAS  PubMed  Google Scholar 

  20. Golledge J, McCann M, Mangan S, Lam A, Karan M (2004) Osteoprotegerin and osteopontin are expressed at high concentrations within symptomatic carotid atherosclerosis. Stroke 35:1636–1641. doi:10.1161/01.STR.0000129790.00318.a3

    Article  CAS  PubMed  Google Scholar 

  21. Sandberg WJ, Yndestad A, Øie E, Smith C, Ueland T (2006) Enhanced T-cell expression of RANK ligand in acute coronary syndrome: possible role in plaque destabilization. Arterioscler Thromb Vasc Biol 26:857–863. doi:10.1161/ATVBAHA.108.162305

    Article  CAS  PubMed  Google Scholar 

  22. Straface G, Biscetti F, Pitocco D, Bertoletti G, Misuraca M et al (2011) Assessment of the genetic effects of polymorphisms in the osteoprotegerin gene, TNFRSF11B, on serum osteoprotegerin levels and carotid plaque vulnerability. Stroke 42:3022–3028. doi:10.1161/STROKEAHA.111.619288

    Article  CAS  PubMed  Google Scholar 

  23. Crisafulli A, Micari A, Altavilla D, Saporito F, Sardella A (2005) Serum levels of osteoprotegerin and RANKL in patients with ST elevation acute myocardial infarction. Clin Sci (Lond) 109:389–395. doi:10.1042/CS20050058

    Article  CAS  Google Scholar 

  24. Rutherford RB, Flanigan DP, Gupta SK, The Ad Hoc Committee on Reporting Standards SVS, ISCVS (1986) Suggested standards for reports dealing with lower extremity ischaemia. J Vasc Surg 4:80–94

    Article  Google Scholar 

  25. Dormandy JA, Rutherford RB (2000) Management of peripheral arterial disease (PAD). TASC working group. TransAtlantic inter-society consensus (TASC). J Vasc Surg 31:S1–S296

    Article  CAS  PubMed  Google Scholar 

  26. Biscetti F, Straface G, Giovannini S, Santoliquido A, Angelini F et al (2013) Association between TNFRSF11B gene polymorphisms and history of ischemic stroke in Italian diabetic patients. Hum Genet 132:49–55. doi:10.1007/s00439-012-1224-9

  27. Attia I, Thakkinstian A, D’Este C (2003) Meta-analyses of molecular association studies: methodologic lessons for genetic epidemiology. J Clin Epidemiol 56:297–303

    Article  PubMed  Google Scholar 

  28. Kiechl S, Werner P, Knoflach M, Furtner M, Willeit J, Schett G (2006) The osteoprotegerin/RANK/RANKL system: a bone key to vascular disease. Expert Rev Cardiovasc Ther 4:801–811. doi:10.1586/14779072.4.6.801

    Article  CAS  PubMed  Google Scholar 

  29. Van Campenhout A, Golledge J (2009) Osteoprotegerin, vascular calcification and atherosclerosis. Atherosclerosis 204:321–329. doi:10.1016/j.atherosclerosis.2008.09.033

    Article  PubMed Central  PubMed  Google Scholar 

  30. Doherty TM, Asotra K, Fitzpatrick LA, Qiao JH, Wilkin DJ (2003) Calcification in atherosclerosis: bone biology and chronic inflammation at the arterial crossroads. Proc Natl Acad Sci USA 10:11201–11206. doi:10.1073/pnas.1932554100

    Article  Google Scholar 

  31. Candido B, Toffoli F, Corallini S, Bernardi D, Zella R (2010) Human full-length osteoprotegerin induces the proliferation of rodent vascular smooth muscle cells both in vitro and in vivo. J Vasc Res 47:252–261. doi:10.1016/j.mce.2010.08.019

    Article  CAS  PubMed  Google Scholar 

  32. Caidahl K, Ueland T, Aukrust P (2010) Osteoprotegerin: a biomarker with many faces. Arterioscler Thromb Vasc Biol 30:1684–1686. doi:10.1161/ATVBAHA.110.208843

    Article  CAS  PubMed  Google Scholar 

  33. Sage AP, Tintut Y, Demer LL (2010) Regulatory mechanisms in vascular calcification. Nat Rev Cardiol 7:528–536. doi:10.1038/nrcardio.2010.115

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  34. Shao JS, Cheng SL, Sadhu J, Towler DA (2010) Inflammation and the osteogenic regulation of vascular calcification: a review and perspective. Hypertension 55:579–592. doi:10.1161/HYPERTENSIONAHA.109.134205

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  35. Sangiorgi G, Rumberger JA, Severson A, Edwards WD, Gregoire J (1998) Arterial calcification and not lumen stenosis is highly correlated with atherosclerotic plaque burden in humans: a histologic study of 723 coronary artery segments using nondecalcifying methodology. J Am Coll Cardiol 31:126–133. doi:10.1016/S0735-1097(97)00443-9

    Article  CAS  PubMed  Google Scholar 

  36. Ehara S, Kobayashi Y, Yoshiyama M, Shimada K, Shimada Y (2004) Spotty calcification typifies the culprit plaque in patients with acute myocardial infarction: an intravascular ultrasound study. Circulation 110:3424–3429. doi:10.1161/01.CIR.0000148131.41425.E9

    Article  PubMed  Google Scholar 

  37. Vliegenthart R, Oudkerk M, Song B, van der Kuip DA, Hofman A, Witteman JC (2002) Coronary calcification detected by electron-beam computed tomography and myocardial infarction. The rotterdam coronary calcification study. Eur Heart J 23:1596–1603

    Article  CAS  PubMed  Google Scholar 

  38. Detrano R, Guerci AD, Carr JJ, Bild DE, Burke G (2008) Coronary calcium as a predictor of coronary events in four racial or ethnic groups. N Engl J Med 358:1336–1345. doi:10.1056/NEJMoa072100

    Article  CAS  PubMed  Google Scholar 

  39. Lacey DL, Timms E, Tan HL, Kelley MJ, Dunstan CR (1998) Osteoprotegerin ligand is a cytokine that regulates osteoclast differentiation and activation. Cell 93:165–176. doi:10.1016/S0092-8674(00)81569-X

    Article  CAS  PubMed  Google Scholar 

  40. Bennett BJ, Scatena M, Kirk EA, Rattazzi M, Varon RM (2006) Osteoprotegerin inactivation accelerates advanced atherosclerotic lesion progression and calcification in older ApoE−/− mice. Arterioscler Thromb Vasc Biol 26:2117–2124. doi:10.1161/01.ATV.0000236428.91125.e6

    Article  CAS  PubMed  Google Scholar 

  41. Jono S, Ikari Y, Shioi A, Mori K, Miki T (2002) Serum osteoprotegerin levels are associated with the presence and severity of coronary artery disease. Circulation 106:1192–1194. doi:10.1161/01.CIR.0000031524.49139.29

    Article  CAS  PubMed  Google Scholar 

Download references

Conflict of interest

Federico Biscetti, Carlo Filippo Porreca, Flavio Bertucci, Giuseppe Straface, Angelo Santoliquido, Paolo Tondi, Flavia Angelini, Dario Pitocco, Luca Santoro, Antonio Gasbarrini, Raffaele Landolfi, and Andrea Flex declare that they have no conflict of interest.

Human and Animal Rights disclosure

All procedures followed were in accordance with the ethical standards of the responsible committee on human experimentation (institutional and national) and with the Helsinki Declaration of 1975, as revised in 2008 (5).

Informed consent disclosure

Informed consent was obtained from all patients for being included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Flex.

Additional information

Managed by Antonio Secchi.

Federico Biscetti and Carlo Filippo Porreca have contributed equally to this study.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Biscetti, F., Porreca, C.F., Bertucci, F. et al. TNFRSF11B gene polymorphisms increased risk of peripheral arterial occlusive disease and critical limb ischemia in patients with type 2 diabetes. Acta Diabetol 51, 1025–1032 (2014). https://doi.org/10.1007/s00592-014-0664-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00592-014-0664-1

Keywords

Navigation