Skip to main content

Surface Modification of Nanoparticles for Macrophage Targeting

  • Chapter
  • First Online:
Macrophage Targeted Delivery Systems

Abstract

Among various targeting techniques, macrophage targeting has achieved special consideration in the field of biomedicals. Macrophage targeting is facilitated through macrophages and is bestowed with several properties, such as greater payload at the desired site, minimum delivery to off-targets, and stability. Macrophage targeting can be achieved through various strategies such as receptor-mediated phagocytosis, cytoplasmic delivery with the help of endocytosis, and endocytic receptor-mediated active transport by proteins clathrin and caveolin. All the merits of macrophage targeting eventually prove it a suitable and potential target for numerous biomedical and therapeutic applications. In recent years, considerable literature has suggested macrophage targeting as important in various therapies such as cancer, tuberculosis, macular degeneration, and angiogenesis. Macrophage targeting is achieved through numerous nanodelivery systems such as niosomes, carbon nanotubes, liposomes, and dendrimers and has been explored for their drug delivery and therapeutic potential.

Further, these nanosystems are surface modified to improve the delivery of drugs and therapeutic efficacy of targeting. Surface modifiers include CD163, CD204, vascular endothelial growth factor (VEGF), cMAF, folic acid, mannose, etc. This chapter describes several strategies and their targeting potential based on macrophage targeting developed explicitly to deliver drugs and other therapeutic applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amiji MM, Kalariya M, Jain S, Attarwala H. Multi-compartmental macrophage delivery. Google Patents; 2019.

    Google Scholar 

  • Anne Février MEF, Fournet A, Gloria Yaluff AI, de Arias AR. Acetogenins and other compounds from Rolliniu emurginutu and their antiprotozoal activities. Planta Med. 1999;65:47–9.

    Article  Google Scholar 

  • Asthana S, Gupta PK, Jaiswal AK, Dube A, Chourasia MK. Targeted chemotherapy of visceral leishmaniasis by lactoferrin-appended amphotericin B-loaded nanoreservoir: in vitro and in vivo studies. Nanomedicine. 2015;10(7):1093–109.

    Article  CAS  PubMed  Google Scholar 

  • Bai S-B, Liu D-Z, Cheng Y, Cui H, Liu M, Cui M-X, et al. Osteoclasts and tumor cells dual targeting nanoparticle to treat bone metastases of lung cancer. Nanomed Nanotechnol Biol Med. 2019;21:102054.

    Article  CAS  Google Scholar 

  • Barginear MF, John V, Budman DR. Trastuzumab-DM1: a clinical update of the novel antibody-drug conjugate for HER2-overexpressing breast cancer. Mol Med. 2012;18(11):1473–9.

    Article  CAS  PubMed Central  Google Scholar 

  • Binnemars-Postma K, Storm G, Prakash J. Nanomedicine strategies to target tumor-associated macrophages. Int J Mol Sci. 2017;18(5):979.

    Article  PubMed Central  Google Scholar 

  • Biswas SK, Mantovani A. Macrophages: biology and role in the pathology of diseases. Springer; 2014.

    Book  Google Scholar 

  • Conde J, Bao C, Tan Y, Cui D, Edelman ER, Azevedo HS, et al. Dual targeted immunotherapy via in vivo delivery of biohybrid RNAi-peptide nanoparticles to tumor-associated macrophages and cancer cells. Adv Funct Mater. 2015;25(27):4183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Croft S. In vitro screens in the experimental chemotherapy of leishmaniasis and trypanosomiasis. Parasitol Today. 1986;2(3):64–9.

    Article  CAS  PubMed  Google Scholar 

  • Dave V, Gupta N, Sur S. Nanopharmaceutical advanced delivery systems. John Wiley & Sons; 2020.

    Google Scholar 

  • Etzerodt A, Maniecki MB, Graversen JH, Møller HJ, Torchilin VP, Moestrup SK. Efficient intracellular drug-targeting of macrophages using stealth liposomes directed to the hemoglobin scavenger receptor CD163. J Control Release. 2012;160(1):72–80.

    Article  CAS  PubMed  Google Scholar 

  • Fernández-Ruiz I. Macrophage mimetics to target atherosclerosis. Nat Rev Cardiol. 2020;17(8):454.

    Article  PubMed  Google Scholar 

  • Fernando S, Gunasekara T, Holton J. Antimicrobial nanoparticles: applications and mechanisms of action. 2018.

    Google Scholar 

  • Fujiwara N, Kobayashi K. Macrophages in inflammation. Curr Drug Targets Inflamm Allergy. 2005;4(3):281–6.

    Article  CAS  PubMed  Google Scholar 

  • Fukushima K, Hedrick JL, Nelson A, Sanders DP. Surface modified nanoparticles, methods of their preparation, and uses thereof for gene and drug delivery. Google Patents; 2014.

    Google Scholar 

  • Golani LK, Wallace-Povirk A, Deis SM, Wong J, Ke J, Gu X, et al. Tumor targeting with novel 6-substituted pyrrolo [2, 3-d] pyrimidine antifolates with heteroatom bridge substitutions via cellular uptake by folate receptor α and the proton-coupled folate transporter and inhibition of de novo purine nucleotide biosynthesis. J Med Chem. 2016;59(17):7856–76.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouveia VM, Rizzello L, Nunes C, Poma A, Ruiz-Perez L, Oliveira A, et al. Macrophage targeting pH responsive polymersomes for glucocorticoid therapy. Pharmaceutics. 2019;11(11):614.

    Article  CAS  PubMed Central  Google Scholar 

  • Gregorc V, Santoro A, Bennicelli E, Punt C, Citterio G, Timmer-Bonte J, et al. Phase Ib study of NGR–hTNF, a selective vascular targeting agent, administered at low doses in combination with doxorubicin to patients with advanced solid tumours. Br J Cancer. 2009;101(2):219–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haque AR, Moriyama M, Kubota K, Ishiguro N, Sakamoto M, Chinju A, et al. CD206+ tumor-associated macrophages promote proliferation and invasion in oral squamous cell carcinoma via EGF production. Sci Rep. 2019;9(1):1–10.

    Article  Google Scholar 

  • Hattori Y, Yamashita J, Sakaida C, Kawano K, Yonemochi E. Evaluation of antitumor effect of zoledronic acid entrapped in folate-linked liposome for targeting to tumor-associated macrophages. J Liposome Res. 2015;25(2):131–40.

    Article  CAS  PubMed  Google Scholar 

  • Haubner R, Weber WA, Beer AJ, Vabuliene E, Reim D, Sarbia M, et al. Noninvasive visualization of the activated αvβ3 integrin in cancer patients by positron emission tomography and [18 F] Galacto-RGD. PLoS Med. 2005;2(3):e70.

    Article  PubMed  PubMed Central  Google Scholar 

  • He K-F, Zhang L, Huang C-F, Ma S-R, Wang Y-F, Wang W-M, et al. CD163+ tumor-associated macrophages correlated with poor prognosis and cancer stem cells in oral squamous cell carcinoma. Biomed Res Int. 2014;2014

    Google Scholar 

  • He W, Kapate N, Shields CW IV, Mitragotri S. Drug delivery to macrophages: a review of targeting drugs and drug carriers to macrophages for inflammatory diseases. Adv Drug Deliv Rev. 2020;165:15–40.

    Article  PubMed  Google Scholar 

  • Hibbitts A, O’Leary C. Emerging nanomedicine therapies to counter the rise of methicillin-resistant Staphylococcus aureus. Materials. 2018;11(2):321.

    Article  PubMed Central  Google Scholar 

  • Horváti K, Gyulai G, Csámpai A, Rohonczy J, Kiss É, Bősze S. Surface layer modification of Poly(d,l-lactic- co-glycolic acid) nanoparticles with targeting peptide: a convenient synthetic route for pluronic F127-Tuftsin conjugate. Bioconjug Chem. 2018;29(5):1495–9.

    Article  PubMed  Google Scholar 

  • Hu G, Christman JW. Editorial: Alveolar Macrophages in Lung Inflammation and Resolution. Front Immunol. 2019;10(2275)

    Google Scholar 

  • Hu C-MJ, Fang RH, Luk BT, Chen KN, Carpenter C, Gao W, et al. ‘Marker-of-self’functionalization of nanoscale particles through a top-down cellular membrane coating approach. Nanoscale. 2013;5(7):2664–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang Z, Zhang Z, Jiang Y, Zhang D, Chen J, Dong L, et al. Targeted delivery of oligonucleotides into tumor-associated macrophages for cancer immunotherapy. J Control Release. 2012;158(2):286–92.

    Article  CAS  PubMed  Google Scholar 

  • Hubbell JA, O’neil CP, Reddy ST, Swartz MA, Velluto D, van Der Vlies A, et al. Nanoparticles for immunotherapy. Google Patents; 2012.

    Google Scholar 

  • Ishida J, Kurozumi K, Ichikawa T, Otani Y, Onishi M, Fujii K, et al. Evaluation of extracellular matrix protein CCN1 as a prognostic factor for glioblastoma. Brain Tumor Pathol. 2015;32(4):245–52.

    Article  CAS  PubMed  Google Scholar 

  • Jain NK, Mishra V, Mehra NK. Targeted drug delivery to macrophages. Expert Opin Drug Deliv. 2013;10(3):353–67.

    Article  CAS  PubMed  Google Scholar 

  • Jayasingam SD, Citartan M, Thang TH, Zin AAM, Ang KC, Ch’ng ES. Evaluating the polarization of tumor-associated macrophages into M1 and M2 phenotypes in human cancer tissue: technicalities and challenges in routine clinical practice. Front Oncol. 2019;9

    Google Scholar 

  • Kagan JM, Sanchez AM, Landay A, Denny TN. A brief chronicle of CD4 as a biomarker for HIV/AIDS: a tribute to the memory of John L. Fahey. In: Forum on immunopathological diseases and therapeutics. Begel House Inc; 2015.

    Google Scholar 

  • Kalyane D, Raval N, Maheshwari R, Tambe V, Kalia K, Tekade RK. Employment of enhanced permeability and retention effect (EPR): nanoparticle-based precision tools for targeting of therapeutic and diagnostic agent in cancer. Mater Sci Eng C. 2019;98:1252–76.

    Article  CAS  Google Scholar 

  • Khatik R, Dwivedi P, Khare P, Kansal S, Dube A, Mishra PR, et al. Development of targeted 1,2-diacyl-sn-glycero-3-phospho-l-serine-coated gelatin nanoparticles loaded with amphotericin B for improved in vitro and in vivo effect in leishmaniasis. Expert Opin Drug Deliv. 2014;11(5):633–46.

    Article  CAS  PubMed  Google Scholar 

  • Kim MS, Lee JS, Kim JE, Kim J-W, Bok S, Keum KC, et al. Enhancement of antitumor effect of radiotherapy via combination with Au@ SiO2 nanoparticles targeted to tumor-associated macrophages. J Ind Eng Chem. 2020;84:349–57.

    Article  CAS  Google Scholar 

  • Komohara Y, Niino D, Saito Y, Ohnishi K, Horlad H, Ohshima K, et al. Clinical significance of CD 163+ tumor-associated macrophages in patients with adult T-cell leukemia/lymphoma. Cancer Sci. 2013;104(7):945–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar Singh P, Gorain B, Choudhury H, Kumar Singh S, Whadwa P, Shilpa, et al. Macrophage targeted amphotericin B nanodelivery systems against visceral leishmaniasis. Material Sci & Eng: B. 2020;258:114571.

    Article  CAS  Google Scholar 

  • Kunjachan S, Gupta S, Dwivedi AK, Dube A, Chourasia MK. Chitosan-based macrophage-mediated drug targeting for the treatment of experimental visceral leishmaniasis. J Microencapsul. 2011;28(4):301–10.

    Article  CAS  PubMed  Google Scholar 

  • Kzhyshkowska J, Riabov V, Gudima A, Wang N, Orekhov A, Mickley A. Role of tumor associated macrophages in tumor angiogenesis and lymphangiogenesis. Front Physiol. 2014;5:75.

    PubMed  PubMed Central  Google Scholar 

  • Leber N, Kaps L, Yang A, Aslam M, Giardino M, Klefenz A, et al. α-mannosyl-functionalized cationic nanohydrogel particles for targeted gene knockdown in immunosuppressive macrophages. Macromol Biosci. 2019;19(7):e1900162.

    Article  PubMed  Google Scholar 

  • Ledermann JA, Canevari S, Thigpen T. Targeting the folate receptor: diagnostic and therapeutic approaches to personalize cancer treatments. Ann Oncol: Official J Eu Soc Med Oncol. 2015;26(10):2034–43.

    Article  CAS  Google Scholar 

  • Li J, Hsu H-C, Mountz JD. Managing macrophages in rheumatoid arthritis by reform or removal. Curr Rheumatol Rep. 2012;14(5):445–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Y, Wu H, Ji B, Qian W, Xia S, Wang L, et al. Targeted imaging of CD206 expressing tumor-associated M2-like macrophages using mannose-conjugated antibiofouling magnetic iron oxide nanoparticles. ACS Appl Bio Material. 2020;3(7):4335–47.

    Article  CAS  Google Scholar 

  • Liu Z, Xiong M, Gong J, Zhang Y, Bai N, Luo Y, et al. Legumain protease-activated TAT-liposome cargo for targeting tumours and their microenvironment. Nat Commun. 2014;5(1):1–11.

    Google Scholar 

  • Liu M, Tong Z, Ding C, Luo F, Wu S, Wu C, et al. Transcription factor c-Maf is a checkpoint that programs macrophages in lung cancer. J Clin Invest. 2020;130(4)

    Google Scholar 

  • Locke LW, Mayo MW, Yoo AD, Williams MB, Berr SS. PET imaging of tumor associated macrophages using mannose coated 64Cu liposomes. Biomaterials. 2012;33(31):7785–93.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luria-Pérez R, Helguera G, Rodríguez JA. Antibody-mediated targeting of the transferrin receptor in cancer cells. Bol Med Hosp Infant Mex. 2016;73(6):372–9.

    PubMed  Google Scholar 

  • Ma C, Wu M, Ye W, Huang Z, Ma X, Wang W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res. 2020a;

    Google Scholar 

  • Ma C, Wu M, Ye W, Huang Z, Ma X, Wang W, et al. Inhalable solid lipid nanoparticles for intracellular tuberculosis infection therapy: macrophage-targeting and pH-sensitive properties. Drug Deliv Transl Res. 2020b:1–18.

    Google Scholar 

  • Marcianes P, Negro S, Barcia E, Montejo C, Fernández-Carballido A. Potential active targeting of gatifloxacin to macrophages by means of surface-modified PLGA microparticles destined to treat tuberculosis. AAPS PharmSciTech. 2019;21(1):15.

    Article  PubMed  Google Scholar 

  • Matute-Blanch C, Montalban X, Comabella M. Multiple sclerosis, and other demyelinating and autoimmune inflammatory diseases of the central nervous system. Handbook of clinical neurology, vol. 146. Elsevier; 2018. p. 67–84.

    Google Scholar 

  • Miyasato Y, Shiota T, Ohnishi K, Pan C, Yano H, Horlad H, et al. High density of CD 204-positive macrophages predicts worse clinical prognosis in patients with breast cancer. Cancer Sci. 2017;108(8):1693–700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Movahedi K, Schoonooghe S, Laoui D, Houbracken I, Waelput W, Breckpot K, et al. Nanobody-based targeting of the macrophage mannose receptor for effective in vivo imaging of tumor-associated macrophages. Cancer Res. 2012;72(16):4165–77.

    Article  CAS  PubMed  Google Scholar 

  • Muppidi K, Wang J, Betageri G, Pumerantz AS. PEGylated liposome encapsulation increases the lung tissue concentration of vancomycin. Antimicrob Agents Chemother. 2011;55(10):4537–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nagai T, Tanaka M, Tsuneyoshi Y, Xu B, Michie SA, Hasui K, et al. Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor β. Cancer Immunol Immunother. 2009;58(10):1577–86.

    Article  CAS  PubMed  Google Scholar 

  • Nemeth JA, Nakada MT, Trikha M, Lang Z, Gordon MS, Jayson GC, et al. Alpha-v integrins as therapeutic targets in oncology. Cancer Invest. 2007;25(7):632–46.

    Article  CAS  PubMed  Google Scholar 

  • Ng PQ, Ling LSC, Chellian J, Madheswaran T, Panneerselvam J, Kunnath AP, et al. Applications of nanocarriers as drug delivery vehicles for active phytoconstituents. Curr Pharm Des. 2020;

    Google Scholar 

  • Ngambenjawong C, Gustafson HH, Pun SH. Progress in tumor-associated macrophage (TAM)-targeted therapeutics. Adv Drug Deliv Rev. 2017;114:206–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Niu M, Valdes S, Naguib YW, Hursting SD, Cui Z. Tumor-associated macrophage-mediated targeted therapy of triple-negative breast cancer. Mol Pharm. 2016;13(6):1833–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohtaki Y, Ishii G, Nagai K, Ashimine S, Kuwata T, Hishida T, et al. Stromal macrophage expressing CD204 is associated with tumor aggressiveness in lung adenocarcinoma. J Thorac Oncol. 2010;5(10):1507–15.

    Article  PubMed  Google Scholar 

  • Organization WH. WHO traditional medicine strategy: 2014–2023: World Health Organization; 2013.

    Google Scholar 

  • Ortega RA, Barham WJ, Kumar B, Tikhomirov O, McFadden ID, Yull FE, et al. Biocompatible mannosylated endosomal-escape nanoparticles enhance selective delivery of short nucleotide sequences to tumor associated macrophages. Nanoscale. 2015;7(2):500–10.

    Article  CAS  PubMed  Google Scholar 

  • Ortega RA, Barham W, Sharman K, Tikhomirov O, Giorgio TD, Yull FE. Manipulating the NF-κB pathway in macrophages using mannosylated, siRNA-delivering nanoparticles can induce immunostimulatory and tumor cytotoxic functions. Int J Nanomedicine. 2016;11:2163.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Parashar P, Rathor M, Dwivedi M, Saraf SA. Hyaluronic acid decorated naringenin nanoparticles: appraisal of chemopreventive and curative potential for lung cancer. Pharmaceutics. 2018;10(1)

    Google Scholar 

  • Peñate-Medina T, Damoah C, Benezra M, Will O, Kairemo K, Humbert J, et al. Alpha-MSH targeted liposomal nanoparticle for imaging in inflammatory bowel disease (IBD). Curr Pharm Des. 2020;26(31):3840–6.

    Article  PubMed  Google Scholar 

  • Peng R, Ji H, Jin L, Lin S, Huang Y, Xu K, et al. Macrophage-based therapies for atherosclerosis management. J Immunol Res. 2020;2020

    Google Scholar 

  • Peterson KR, Cottam MA, Kennedy AJ, Hasty AH. Macrophage-targeted therapeutics for metabolic disease. Trends Pharmacol Sci. 2018;39(6):536–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Placha D, Jampilek J. Chronic inflammatory diseases, anti-inflammatory agents and their delivery Nanosystems. Pharmaceutics. 2021;13(1):64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Poh AR, Ernst M. Targeting macrophages in cancer: from bench to bedside. Front Oncol. 2018;8:49.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ponzoni M, Pastorino F, Di Paolo D, Perri P, Brignole C. Targeting macrophages as a potential therapeutic intervention: impact on inflammatory diseases and cancer. Int J Mol Sci. 2018;19(7):1953.

    Article  PubMed Central  Google Scholar 

  • Qie Y, Yuan H, Von Roemeling CA, Chen Y, Liu X, Shih KD, et al. Surface modification of nanoparticles enables selective evasion of phagocytic clearance by distinct macrophage phenotypes. Sci Rep. 2016;6(1):1–11.

    Google Scholar 

  • Ramos RN, Rodriguez C, Hubert M, Ardin M, Treilleux I, Ries CH, et al. CD163+ tumor-associated macrophage accumulation in breast cancer patients reflects both local differentiation signals and systemic skewing of monocytes. Clinic & Translation Immunol. 2020;9(2):e1108.

    Google Scholar 

  • Ravindra M, Wallace-Povirk A, Karim MA, Wilson MR, O’Connor C, White K, et al. Tumor targeting with novel Pyridyl 6-substituted Pyrrolo [2, 3-d] pyrimidine Antifolates via cellular uptake by folate receptor α and the proton-coupled folate transporter and inhibition of De novo purine nucleotide biosynthesis. J Med Chem. 2018;61(5):2027–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rittig M, Bogdan C. Leishmania–host-cell interaction: complexities and alternative views. Parasitol Today. 2000;16(7):292–7.

    Article  CAS  PubMed  Google Scholar 

  • Rotman SG, Thompson K, Grijpma DW, Richards RG, Moriarty TF, Eglin D, et al. Development of bone seeker–functionalised microspheres as a targeted local antibiotic delivery system for bone infections. J Orthop Translat. 2020;21:136–45.

    Article  PubMed  Google Scholar 

  • Sandeep D, AlSawaftah NM, Husseini G. Immunoliposomes: synthesis, structure, and their potential as drug delivery carriers; 2020.

    Google Scholar 

  • Schoonooghe S, Laoui D, Van Ginderachter JA, Devoogdt N, Lahoutte T, De Baetselier P, et al. Novel applications of nanobodies for in vivo bio-imaging of inflamed tissues in inflammatory diseases and cancer. Immunobiology. 2012;217(12):1266–72.

    Article  CAS  PubMed  Google Scholar 

  • Shahnaz G, Edagwa BJ, McMillan J, Akhtar S, Raza A, Qureshi NA, et al. Development of mannose-anchored thiolated amphotericin B nanocarriers for treatment of visceral leishmaniasis. Nanomedicine. 2017;12(2):99–115.

    Article  CAS  PubMed  Google Scholar 

  • Shahnaz G, Sarwar HS, Yasinzai M. Crossing biological barriers for Leishmaniasis therapy: from Nanomedicinal targeting perspective. Leishmanias Re-emerg Diseas. 2018;199

    Google Scholar 

  • Sharma A, Liaw K, Sharma R, Thomas AG, Slusher BS, Kannan S, et al. Targeting mitochondria in tumor-associated macrophages using a dendrimer-conjugated TSPO ligand that stimulates antitumor signaling in glioblastoma. Biomacromolecules. 2020;21(9):3909–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shen TW, Fromen CA, Kai MP, Luft JC, Rahhal TB, Robbins GR, et al. Distribution and cellular uptake of PEGylated polymeric particles in the lung towards cell-specific targeted delivery. Pharm Res. 2015;32(10):3248–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sherje AP, Jadhav M, Dravyakar BR, Kadam D. Dendrimers: a versatile nanocarrier for drug delivery and targeting. Int J Pharm. 2018;548(1):707–20.

    Article  CAS  PubMed  Google Scholar 

  • Singh G, Dwivedi H, Saraf SK, Saraf SA. Niosomal delivery of isoniazid-development and characterization. Tropic J Pharma Res. 2011;10(2)

    Google Scholar 

  • Singh PK, Sah P, Meher JG, Joshi S, Pawar VK, Raval K, et al. Macrophage-targeted chitosan anchored PLGA nanoparticles bearing doxorubicin and amphotericin B against visceral leishmaniasis. RSC Adv. 2016;6(75):71705–18.

    Article  CAS  Google Scholar 

  • Singh N, Parashar P, Tripathi CB, Kanoujia J, Kaithwas G, Saraf SA. Oral delivery of allopurinol niosomes in treatment of gout in animal model. J Liposome Res. 2017;27(2):130–8.

    Article  CAS  PubMed  Google Scholar 

  • Singh PK, Gorain B, Choudhury H, Singh SK, Whadwa P, Sahu S, et al. Macrophage targeted amphotericin B nanodelivery systems against visceral leishmaniasis. Mater Sci Eng B. 2020;258:114571.

    Article  Google Scholar 

  • Song X, Wan Z, Chen T, Fu Y, Jiang K, Yi X, et al. Development of a multi-target peptide for potentiating chemotherapy by modulating tumor microenvironment. Biomaterials. 2016;108:44–56.

    Article  CAS  PubMed  Google Scholar 

  • Srivastava S, Singh D, Patel S, Singh MR. Treatment of rheumatoid arthritis by targeting macrophages through folic acid tailored superoxide dismutase and serratiopeptidase. J Drug Deliv Sci & Technol. 2017;41:431–5.

    Article  CAS  Google Scholar 

  • Stein CA, Castanotto D. FDA-approved oligonucleotide therapies in 2017. Mol Ther. 2017;25(5):1069–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun X, Gao D, Gao L, Zhang C, Yu X, Jia B, et al. Molecular imaging of tumor-infiltrating macrophages in a preclinical mouse model of breast cancer. Theranostics. 2015;5(6):597.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Swati S, Batta S, Pandala S, Sravanthi TS, Vineesha S. Formulation and in vitro characterisation of floating microspheres of glipizide. J Pharm Sci Res. 2020;12(5):684–90.

    CAS  Google Scholar 

  • Taghizadeh E, Taheri F, Renani PG, Reiner Ž, Navashenaq JG, Sahebkar A. Macrophage: a key therapeutic target in atherosclerosis? Curr Pharm Des. 2019;25(29):3165–74.

    Article  CAS  PubMed  Google Scholar 

  • Ulbrich W, Lamprecht A. Targeted drug-delivery approaches by nanoparticulate carriers in the therapy of inflammatory diseases. J Royal Soc Interface. 2010;7(suppl_1):S55–66.

    Article  CAS  Google Scholar 

  • Wang D-Y, Van Der Mei HC, Ren Y, Busscher HJ, Shi L. Lipid-based antimicrobial delivery-systems for the treatment of bacterial infections. Front Chem. 2020a;7:872.

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang X, Dong A, Hu Y, Qian J, Huang S. A review of recent work on using metal–organic frameworks to grow carbon nanotubes. Chem Commun. 2020b;56(74):10809–23.

    Article  CAS  Google Scholar 

  • Wolf GL, Schmidt KF. Theranosis of macrophage-associated diseases with ultrasmall superparamagnetic iron oxide nanoparticles (uspio). Google Patents; 2014.

    Google Scholar 

  • Yang Y, Guo L, Wang Z, Liu P, Liu X, Ding J, et al. Targeted silver nanoparticles for rheumatoid arthritis therapy via macrophage apoptosis and re-polarization. Biomaterials. 2020a;264:120390.

    Article  PubMed  Google Scholar 

  • Yang X, Chang Y, Wei W. Emerging role of targeting macrophages in rheumatoid arthritis: Focus on polarization, metabolism and apoptosis. Cell Prolif. 2020b:e12854.

    Google Scholar 

  • Yoo J-W, Irvine DJ, Discher DE, Mitragotri S. Bio-inspired, bioengineered and biomimetic drug delivery carriers. Nat Rev Drug Discov. 2011;10(7):521–35.

    Article  CAS  PubMed  Google Scholar 

  • Yu W, Liu C, Liu Y, Zhang N, Xu W. Mannan-modified solid lipid nanoparticles for targeted gene delivery to alveolar macrophages. Pharm Res. 2010;27(8):1584–96.

    Article  CAS  PubMed  Google Scholar 

  • Yu SS, Lau CM, Barham WJ, Onishko HM, Nelson CE, Li H, et al. Macrophage-specific RNA interference targeting via “click”, mannosylated polymeric micelles. Mol Pharm. 2013;10(3):975–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhan X, Jia L, Niu Y, Qi H, Chen X, Zhang Q, et al. Targeted depletion of tumour-associated macrophages by an alendronate–glucomannan conjugate for cancer immunotherapy. Biomaterials. 2014;35(38):10046–57.

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Kim JA. Effect of molecular size and modification pattern on the internalization of water soluble β-(1→ 3)-(1→ 4)-glucan by primary murine macrophages. Int J Biochem Cell Biol. 2012;44(6):914–27.

    Article  CAS  PubMed  Google Scholar 

  • Zhang X-Y, Zhang P-Y. Polymersomes in nanomedicine – a review. Curr Nanosci. 2017;13(2):124–9.

    Article  CAS  Google Scholar 

  • Zhang X, Tian W, Cai X, Wang X, Dang W, Tang H, et al. Hydrazinocurcumin Encapsuled nanoparticles “re-educate” tumor-associated macrophages and exhibit anti-tumor effects on breast cancer following STAT3 suppression. PLoS One. 2013;8(6):e65896.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang M, He Y, Sun X, Li Q, Wang W, Zhao A, et al. A high M1/M2 ratio of tumor-associated macrophages is associated with extended survival in ovarian cancer patients. J Ovarian Res. 2014;7(1):19.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Ye J, Hosseini-Nassab N, Flores A, Kalashnikova I, Paluri SL, et al. Macrophage-targeted single walled carbon nanotubes stimulate phagocytosis via pH-dependent drug release. Nano Res. 2020:1–8.

    Google Scholar 

  • Zhu S, Niu M, O’Mary H, Cui Z. Targeting of tumor-associated macrophages made possible by PEG-sheddable, mannose-modified nanoparticles. Mol Pharm. 2013;10(9):3525–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Singh, N. et al. (2022). Surface Modification of Nanoparticles for Macrophage Targeting. In: Gupta, S., Pathak, Y.V. (eds) Macrophage Targeted Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-84164-5_8

Download citation

Publish with us

Policies and ethics