Skip to main content

Advertisement

Log in

Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor β

  • Original Article
  • Published:
Cancer Immunology, Immunotherapy Aims and scope Submit manuscript

Abstract

Tumor-associated macrophages (TAMs) are frequently found in glioblastomas and a high degree of macrophage infiltration is associated with a poor prognosis for glioblastoma patients. However, it is unclear whether TAMs in glioblastomas promote tumor growth. In this study, we found that folate receptor β (FRβ) was expressed on macrophages in human glioblastomas and a rat C6 glioma implanted subcutaneously in nude mice. To target FRβ-expressing TAMs, we produced a recombinant immunotoxin consisting of immunoglobulin heavy and light chain Fv portions of an anti-mouse FRβ monoclonal antibody and Pseudomonas exotoxin A. Injection of the immunotoxin into C6 glioma xenografts in nude mice significantly depleted TAMs and reduced tumor growth. The immunotoxin targeting FRβ-expressing macrophages will provide a therapeutic tool for human glioblastomas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bacman D, Merkel S, Croner R, Papadopoulos T, Brueckl W, Dimmler A (2007) TGF-beta receptor 2 downregulation in tumour-associated stroma worsens prognosis and high-grade tumours show more tumour-associated macrophages and lower TGF-beta1 expression in colon carcinoma: a retrospective study. BMC Cancer 7:156

    Article  PubMed  Google Scholar 

  2. Bolat F, Kayaselcuk F, Nursal TZ, Yagmurdur MC, Bal N, Demirhan B (2006) Microvessel density, VEGF expression, and tumor-associated macrophages in breast tumors: correlations with prognostic parameters. J Exp Clin Cancer Res 25:365–372

    PubMed  CAS  Google Scholar 

  3. Chen JJ, Lin YC, Yao PL, Yuan A, Chen HY, Shun CT, Tsai MF, Chen CH, Yang PC (2005) Tumor-associated macrophages: the double-edged sword in cancer progression. J Clin Oncol 23:953–964

    Article  PubMed  CAS  Google Scholar 

  4. Deininger MH, Meyermann R, Schluesener HJ (2003) Expression and release of CD14 in astrocytic brain tumors. Acta Neuropathol 106:271–277

    Article  PubMed  CAS  Google Scholar 

  5. Bingle L, Brown NJ, Lewis CE (2002) The role of tumour-associated macrophages in tumour progression: implications for new anticancer therapies. J Pathol 196:254–265

    Article  PubMed  CAS  Google Scholar 

  6. Allavena P, Sica A, Solinas G, Porta C, Mantovani A (2007) The inflammatory micro-environment in tumor progression: the role of tumor-associated macrophages. Crit Rev Oncol Hematol 66:1–9

    Article  PubMed  Google Scholar 

  7. Porta C, Subhra Kumar B, Larghi P, Rubino L, Mancino A, Sica A (2007) Tumor promotion by tumor-associated macrophages. Adv Exp Med Biol 604:67–86

    Article  PubMed  Google Scholar 

  8. Yao Y, Kubota T, Sato K, Kitai R (2001) Macrophage infiltration-associated thymidine phosphorylase expression correlates with increased microvessel density and poor prognosis in astrocytic tumors. Clin Cancer Res 7:4021–4026

    PubMed  CAS  Google Scholar 

  9. Tsutsui S, Yasuda K, Suzuki K, Tahara K, Higashi H, Era S (2005) Macrophage infiltration and its prognostic implications in breast cancer: the relationship with VEGF expression and microvessel density. Oncol Rep 14:425–431

    PubMed  CAS  Google Scholar 

  10. Ueno T, Toi M, Saji H, Muta M, Bando H, Kuroi K, Koike M, Inadera H, Matsushima K (2000) Significance of macrophage chemoattractant protein-1 in macrophage recruitment, angiogenesis, and survival in human breast cancer. Clin Cancer Res 6:3282–3289

    PubMed  CAS  Google Scholar 

  11. Lin EY, Pollard JW (2004) Macrophages: modulators of breast cancer progression. Novartis Found Symp 256:158–168

    Article  PubMed  CAS  Google Scholar 

  12. Lewis CE, De Palma M, Naldini L (2007) Tie2-expressing monocytes and tumor angiogenesis: regulation by hypoxia and angiopoietin-2. Cancer Res 67:8429–8432

    Article  PubMed  CAS  Google Scholar 

  13. Gallina G, Dolcetti L, Serafini P, De Santo C, Marigo I, Colombo MP, Basso G, Brombacher F, Borrello I, Zanovello P, Bicciato S, Bronte V (2006) Tumors induce a subset of inflammatory monocytes with immunosuppressive activity on CD8+ T cells. J Clin Invest 116:2777–2790

    Article  PubMed  CAS  Google Scholar 

  14. Bak SP, Walters JJ, Takeya M, Conejo-Garcia JR, Berwin BL (2007) Scavenger receptor-A-targeted leukocyte depletion inhibits peritoneal ovarian tumor progression. Cancer Res 67:4783–4789

    Article  PubMed  CAS  Google Scholar 

  15. Kagaya T, Nakamoto Y, Sakai Y, Tsuchiyama T, Yagita H, Mukaida N, Kaneko S (2006) Monocyte chemoattractant protein-1 gene delivery enhances antitumor effects of herpes simplex virus thymidine kinase/ganciclovir system in a model of colon cancer. Cancer Gene Ther 13:357–366

    Article  PubMed  CAS  Google Scholar 

  16. Gazzaniga S, Bravo AI, Guglielmotti A, van Rooijen N, Maschi F, Vecchi A, Mantovani A, Mordoh J, Wainstok R (2007) Targeting tumor-associated macrophages and inhibition of MCP-1 reduce angiogenesis and tumor growth in a human melanoma xenograft. J Invest Dermatol 127:2031–2041

    Article  PubMed  CAS  Google Scholar 

  17. Nagayoshi R, Nagai T, Matsushita K, Sato K, Sunahara N, Matsuda T, Nakamura T, Komiya S, Onda M, Matsuyama T (2005) Effectiveness of anti-folate receptor-beta antibody conjugated with truncated Pseudomonas exotoxin in the targeting of rheumatoid arthritis synovial macrophages. Arthritis Rheum 52:2666–2675

    Article  PubMed  CAS  Google Scholar 

  18. Nagai T, Tanaka M, Tsuneyoshi Y, Matsushita K, Sunahara N, Matsuda T, Yoshida H, Komiya S, Onda M, Matsuyama T (2006) In vitro and in vivo efficacy of a recombinant immunotoxin against folate receptor beta on the activation and proliferation of rheumatoid arthritis synovial cells. Arthritis Rheum 54:3126–3134

    Article  PubMed  CAS  Google Scholar 

  19. Giometto B, Bozza F, Faresin F, Alessio L, Mingrino S, Tavolato B (1996) Immune infiltrates and cytokines in gliomas. Acta Neurochir (Wien) 138:50–56

    Article  CAS  Google Scholar 

  20. Tynninen O, Aronen HJ, Ruhala M, Paetau A, Von Boguslawski K, Salonen O, Jääskeläinen J, Paavonen T (1999) MRI enhancement and microvascular density in gliomas. Correlation with tumor cell proliferation. Invest Radiol 34:427–434

    Article  PubMed  CAS  Google Scholar 

  21. Gabizon A, Horowitz AT, Goren D, Tzemach D, Mandelbaum-Shavit F, Qazen MM, Zalipsky S (1999) Targeting folate receptor with folate linked to extremities of poly(ethylene glycol)-grafted liposomes: in vitro studies. Bioconjug Chem 10:289–298

    Article  PubMed  CAS  Google Scholar 

  22. Stefanik DF, Fellows WK, Rizkalla LR, Rizkalla WM, Stefanik PP, Deleo AB, Welch WC (2001) Monoclonal antibodies to vascular endothelial growth factor (VEGF) and the VEGF receptor, FLT-1, inhibit the growth of C6 glioma in a mouse xenograft. J Neurooncol 55:91–100

    Article  PubMed  CAS  Google Scholar 

  23. Matsushita N, Kashiwagi M, Wait R, Nagayoshi R, Nakamura M, Matsuda T, Hogger P, Guyre PM, Nagase H, Matsuyama T (2002) Elevated levels of soluble CD163 in sera and fluids from rheumatoid arthritis patients and inhibition of the shedding of CD163 by TIMP-3. Clin Exp Immunol 130:156–161

    Article  PubMed  CAS  Google Scholar 

  24. Wesseling P, van der Laak JA, Link M, Teepen HL, Ruiter DJ (1998) Quantitative analysis of microvascular changes in diffuse astrocytic neoplasms with increasing grade of malignancy. Hum Pathol 29:352–358

    Article  PubMed  CAS  Google Scholar 

  25. Hasui K, Takatsuka T, Sakamoto R, Matsushita S, Tsuyama S, Izumo S, Murata F (2003) Double autoimmunostaining with glycine treatment. J Histochem Cytochem 51:1169–1176

    PubMed  CAS  Google Scholar 

  26. Ghassabeh GH, De Baetselier P, Brys L, Noël W, Van Ginderachter JA, Meerschaut S, Beschin A, Brombacher F, Raes G (2006) Identification of a common gene signature for type II cytokine-associated myeloid cells elicited in vivo in different pathologic conditions. Blood 108:575–583

    Article  PubMed  CAS  Google Scholar 

  27. Grobben B, De Deyn PP, Slegers H (2002) Rat C6 glioma as experimental model system for the study of glioblastoma growth and invasion. Cell Tissue Res 310:257–270

    Article  PubMed  CAS  Google Scholar 

  28. Kirsch M, Strasser J, Allende R, Bello L, Zhang J, Black PM (1998) Angiostatin suppresses malignant glioma growth in vivo. Cancer Res 58:4654–4659

    PubMed  CAS  Google Scholar 

  29. Komohara Y, Ohnishi K, Kuratsu J, Takeya M (2008) Possible involvement of the M2 anti-inflammatory macrophage phenotype in growth of human gliomas. J Pathol 216:15–24

    Article  PubMed  CAS  Google Scholar 

  30. Turk MJ, Waters DJ, Low PS (2004) Folate-conjugated liposomes preferentially target macrophages associated with ovarian carcinoma. Cancer Lett 213(2):165–172

    Article  PubMed  CAS  Google Scholar 

  31. Pastan I, Hassan R, FitzGerald DJ, Kreitman RJ (2007) Immunotoxin treatment of cancer. Annu Rev Med 58:221–237

    Article  PubMed  CAS  Google Scholar 

  32. De Lorenzo C, D’Alessio G (2008) From immunotoxins to immunoRNases. Curr Pharm Biotechnol 9(3):210–214

    Article  PubMed  Google Scholar 

  33. Rainov NG, Gorbatyuk K, Heidecke V (2008) Clinical trials with intracerebral convection-enhanced delivery of targeted toxins in malignant glioma. Rev Recent Clin Trials 3:2–9

    Article  PubMed  CAS  Google Scholar 

  34. Nardin A, Abastado JP (2008) Macrophages and cancer. Front Biosci 13:3494–3505

    Article  PubMed  CAS  Google Scholar 

  35. Nishie A, Ono M, Shono T et al (1999) Macrophage infiltration and heme oxygenase–1 expression correlate with angiogenesis in human gliomas. Clin Cancer Res 5:1107–1113

    PubMed  CAS  Google Scholar 

  36. Doblas S, Saunders D, Kshirsagar P, Pye Q, Oblander J, Gordon B, Kosanke S, Floyd RA, Towner RA (2008) Phenyl-tert-butylnitrone induces tumor regression and decreases angiogenesis in a C6 rat glioma model. Free Radic Biol Med 44:63–72

    Article  PubMed  CAS  Google Scholar 

  37. Galarneau H, Villeneuve J, Gowing G, Julien JP, Vallières L (2007) Increased glioma growth in mice depleted of macrophages. Cancer Res 67:8874–8881

    Article  PubMed  CAS  Google Scholar 

  38. Dirkx AE, Oude Egbrink MG, Wagstaff J, Griffioen AW (2006) Monocyte/macrophage infiltration in tumors: modulators of angiogenesis. J Leukoc Biol 80:1183–1196

    Article  PubMed  CAS  Google Scholar 

  39. Shojaei F, Wu X, Malik AK, Zhong C, Baldwin ME, Schanz S, Fuh G, Gerber HP, Ferrara N (2007) Tumor refractoriness to anti-VEGF treatment is mediated by CD11b + Gr1 + myeloid cells. Nat Biotechnol 25:911–920

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by KAKENHI (20790377), a Grant-in-Aid for Young Scientists (B) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT) of Japan, and the Kodama Memorial Fund Medical Research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takami Matsuyama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nagai, T., Tanaka, M., Tsuneyoshi, Y. et al. Targeting tumor-associated macrophages in an experimental glioma model with a recombinant immunotoxin to folate receptor β. Cancer Immunol Immunother 58, 1577–1586 (2009). https://doi.org/10.1007/s00262-009-0667-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00262-009-0667-x

Keywords

Navigation