Skip to main content

Effects of Mycotoxins on Macrophages and Their Possible Clinical Implications

  • Chapter
  • First Online:
Macrophage Targeted Delivery Systems

Abstract

Fungi and their mycotoxins are ubiquitous, contaminating the air we breathe and the food we eat on a daily basis. Mycotoxins are considered a natural and unavoidable contaminant of food crops. Anthropogenic climate change is anticipated to increase mycotoxin contamination. Although mycotoxins are too small to be seen by the naked eye, uncontrolled mycotoxins can cause gangrene, miscarriage, cancer, and death. Mycotoxins in low amounts stimulate an immune response from macrophages. Mycotoxins in high amounts shut down the immune response preventing an adequate defence. Fumigaclavine C reduces toll-like receptor 4 expression and tumor necrosis factor alpha. Aflatoxins are carcinogenic and have been linked to tumor formation in the colon, kidneys, liver, and lungs. Aflatoxin B1 is the strongest carcinogen of all the aflatoxins. Aflatoxin B1 is removed by macrophage autophagy and by extracellular traps. Ochratoxin A has been found to be nephrotoxic, teratogenic, carcinogenic, and immunotoxic. Ochratoxin A acts as a competitive inhibitor for phenylalanine-tRNA synthetase which halts protein synthesis. Ochratoxin A’s effects can be blocked by phenylalanine. Trichothecene mycotoxins are lethal enough to be utilized as biological chemical warfare agents, and they have been. Mycotoxins act synergistically with other mycotoxins, bacterial endotoxin, and virus causing a greater adverse effect than the sum of their individual effects. Synergy helps to explain the observed effects of damp building-related illness. Controlled amounts of specific mycotoxins can be clinically useful. Ergometrine has been used clinically to stimulate uterine contractions in order to induce childbirth. After child delivery, ergometrine can be used to help control bleeding via its vasoconstrictive action. Ergotamine has been used clinically to reduce pain associated with migraine headaches. The immunosuppressant activity of mycophenolic acid arises from its ability to reversibly inhibit the enzyme inosine 5′-monophosphate dehydrogenase thereby shutting down the biochemical de novo pathway which synthesizes guanine nucleotides. The immunosuppressive effects of mycophenolic acid have found utility in treating autoimmune diseases of rheumatoid arthritis and lupus nephritis. Mycophenolic acid helps prevent organ transplant rejection for kidney, heart, and liver recipients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alshannaq A, Yu JH. Occurrence, toxicity, and analysis of major mycotoxins in food. Int J Environ Res Pub Health. 2017;14(6):632.

    Article  Google Scholar 

  • An Y, Shi X, Tang X, et al. Aflatoxin B1 induces reactive oxygen species-mediated autophagy and extracellular trap formation in macrophages. Front Cell Infect Microbiol. 2017;7:53.

    Article  PubMed  PubMed Central  Google Scholar 

  • Aronson JK. Plant poisons and traditional medicines. In: Farrar J, Hotez PJ, Junghanss T, Kang G, Lalloo D, White NJ, editors. Manson’s tropical infectious diseases. 23rd ed. W.B. Saunders; 2014. p. 1128–50.

    Chapter  Google Scholar 

  • Bardal SK, Waechter JE, Martin DS. Neurology and the neuromuscular system. In: Bardal SK, Martin DS, Waechter JE, editors. Applied pharmacology. St. Louis: Elsevier Saunders; 2011. p. 325–65.

    Chapter  Google Scholar 

  • Barrett JR. Mycotoxins: of molds and maladies. Environ Health Perspect. 2000;108(1):A20–3.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behrend M. Mycophenolate mofetil: suggested guidelines for use in kidney transplantation. BioDrugs. 2001;15(1):37–53.

    Article  CAS  PubMed  Google Scholar 

  • Belmont HM, Levartovsky D, Goel A, et al. Increased nitric oxide production accompanied by the up-regulation of inducible nitric oxide synthase in vascular endothelium from patients with systemic lupus erythematosus. Arthritis Rheum. 1997;40(10):1810–6.

    Article  CAS  PubMed  Google Scholar 

  • Belser-Ehrlich S, Harper A, Hussey J, Hallock R. Human and cattle ergotism since 1900: symptoms, outbreaks, and regulations. Toxicol Ind Health. 2013;29(4):307–16.

    Article  PubMed  Google Scholar 

  • Boorman GA, Hong HL, Dieter MP, et al. Myelotoxicity and macrophage alteration in mice exposed to ochratoxin A. Toxicol Appl Pharmacol. 1984;72:304–12.

    Article  CAS  PubMed  Google Scholar 

  • Borroto-Esoda K, Myrick F, Feng J, Jeffrey J, Furman P. In vitro combination of amdoxovir and the inosine monophosphate dehydrogenase inhibitors mycophenolic acid and ribavirin demonstrates potent activity against wild-type and drug-resistant variants of human immunodeficiency virus type 1. Antimicrob Agents Chemother. 2004;48(11):4387–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bui-Klimke TR, Wu F. Ochratoxin A and human health risk: a review of the evidence. Crit Rev Food Sci Nutr. 2015;55(13):1860–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chan TM, Li FK, Tang CSO, et al. Efficacy of mycophenolate Mofetil in patients with diffuse proliferative lupus nephritis. N Engl J Med. 2000;343:1156–62.

    Article  CAS  PubMed  Google Scholar 

  • Coffel ED, Horton RM, Sherbinin A. Temperature and humidity based projections of a rapid rise in global heat stress exposure during the 21st century. Environ Res Lett. 2018;13:014001.

    Article  PubMed  Google Scholar 

  • Creppy EE, Lugnier AAJ, Beck G, Röschenthaler R, Dirheimer G. Action of Ochratoxin A on cultured hepatoma cells reversion of inhibition by phenylalanine. FEBS Lett. 1979;104:287–90.

    Article  CAS  PubMed  Google Scholar 

  • Creppy EE, Schlegel M, Röschenthaler R, Dirheimer G. Phenylalanine prevents acute poisoning by Ochratoxin A in mice. Toxicol Lett. 1980;6:77–80.

    Article  CAS  PubMed  Google Scholar 

  • Desaint H, Aoun N, Deslandes L, Vailleau F, Roux F, Berthome R. Fight hard or die trying: when plants face pathogens under heat stress. New Phytol. 2021;229(2):712–34.

    Article  PubMed  Google Scholar 

  • Du RH, Li EG, Cao Y, Song YC, Tan RX. Fumigaclavine C inhibits tumor necrosis factor α production via suppression of toll-like receptor 4 and nuclear factor κB activation in macrophages. Life Sci. 2011;89(7-8):235–40.

    Article  CAS  PubMed  Google Scholar 

  • Ferrante MC, MattaceRaso G, Bilancione M, Esposito E, Iacono A, Meli R. Differential modification of inflammatory enzymes in J774A.1 macrophages by Ochratoxin A alone or in combination with lipopolysaccharide. Toxicol Lett. 2008;181(1):40–6.

    Article  CAS  PubMed  Google Scholar 

  • Goldblum R. Therapy of rheumatoid arthritis with mycophenolate mofetil. Clin Exp Rheumatol. 1993;11(Suppl 8):S117–9.

    PubMed  Google Scholar 

  • Haarmann T, Rolke Y, Giesbert S, Tudzynski P. Ergot: from witchcraft to biotechnology. Mol Plant Pathol. 2009;10(4):563–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haschek WM, Beasley VR. Trichothecene Mycotoxins. In: Gupta RC, editor. Handbook of toxicology of chemical warfare agents. Academic Press; 2009. p. 353–69.

    Chapter  Google Scholar 

  • Haubeck HD, Lorkowski G, Kölsch E, Röschenthaler R. Immunosuppression by Ochratoxin A and its prevention by phenylalanine. Appl Environ Microbiol. 1981;41(4):1040–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hogquist KA, Unanue ER, Chaplin DD. Release of IL-1 from mononuclear phagocytes. J Immunol. 1991;147(7):2181–6.

    CAS  PubMed  Google Scholar 

  • Holstege CP, Traven SA. Ergot. In: Wexler P, editor. Encyclopedia of toxicology. 3rd ed. Academic Press; 2014. p. 444–7.

    Chapter  Google Scholar 

  • Islam Z, Pestka JJ. LPS priming potentiates and prolongs proinflammatory cytokine response to the trichothecene deoxynivalenol in the mouse. Toxicol Appl Pharmacol. 2006;211(1):53–63.

    Article  CAS  PubMed  Google Scholar 

  • Jonsson CA, Carlsten H. Mycophenolic acid inhibits inosine 5′-monophosphate dehydrogenase and suppresses production of pro-inflammatory cytokines, nitric oxide, and LDH in macrophages. Cell Immunol. 2002;216(1-2):93–101.

    Article  CAS  PubMed  Google Scholar 

  • Kankkunen P, Rintahaka J, Aalto A, et al. Trichothecene Mycotoxins activate inflammatory response in human macrophages. J Immunol. 2009;182(10):6418–25.

    Article  CAS  PubMed  Google Scholar 

  • Kew MC. Synergistic interaction between aflatoxin B1 and hepatitis B virus in hepatocarcinogenesis. Liver Int. 2003;23(6):405–9.

    Article  CAS  PubMed  Google Scholar 

  • Lindenfelser LA, Lillehoj EB, Burmeister HR. Aflatoxin and Trichothecene toxins: skin tumor induction and synergistic acute toxicity in white mice. J Natl Cancer Inst. 1974;52(1):113–6.

    Article  CAS  PubMed  Google Scholar 

  • Madsen A, Mortensen HP, Hald B. Feeding experiments with ochratoxin A contaminated barley for bacon pigs I. influence on pig performance and residues. Acta Agric Scand. 1982;32:225–39.

    Article  CAS  Google Scholar 

  • Mitchell CG, Slight J, Donaldson K. Diffusible component from the spore surface of the fungus Aspergillus fumigatus which inhibits the macrophage oxidative burst is distinct from gliotoxin and other hyphal toxins. Thorax. 1997;52:796–801.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Morabia A. Joseph Goldberger’s research on the prevention of pellagra. J R Soc Med. 2008;101(11):566–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Müller G, Rosner H, Rohrmann B, et al. Effects of the mycotoxin Ochratoxin A and some of its metabolites on the human cell line THP-1. Toxicology. 2003;184(1):69–82.

    Article  PubMed  Google Scholar 

  • National Center for Biotechnology Information. PubChem compound summary for CID 5281078, Mycophenolate mofetil. 2021. https://pubchem.ncbi.nlm.nih.gov/compound/Mycophenolate-mofetil

  • Online Etymology Dictionary.. https://www.etymonline.com/word/ergot

  • Paulussen C, Hallsworth JE, Alvarez-Perez S, et al. Ecology of aspergillosis: insights into the pathogenic potency of Aspergillus fumigatus and some other Aspergillus species. Microbial Biotechnol. 2017;10(2):296–322.

    Article  Google Scholar 

  • Pestka JJ, Yike I, Dearborn DG, Ward MD, Harkema JR. Stachybotrys chartarum, trichothecene mycotoxins, and damp building-related illness: new insights into a public health enigma. Toxicol Sci. 2008;104(1):4–26.

    Article  CAS  PubMed  Google Scholar 

  • Regueira TB, Kildegaard KR, Hansen BG, Mortensen UH, Hertweck C, Nielsen J. Molecular basis for Mycophenolic acid biosynthesis in Penicillium brevicompactum. Appl Environ Microbiol. 2011;77(9):3035–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson MD, Seaton A, Raeburn A, Milne LJR. Inhibition of phagocyte migration and spreading by spore diffusates of Aspergillus fumigatus. J Med Vet Mycol. 1987a;25(6):389–96.

    Article  CAS  PubMed  Google Scholar 

  • Robertson MD, Seaton A, Milne LJ, Raeburn JA. Suppression of host defences by Aspergillus fumigatus. Thorax. 1987b;42(1):19–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Robertson MD, Seaton A, Milne LJR, Raeburn A. Resistance of spores of Aspergillus fumigatus to ingestion by phagocytic cells. Thorax. 1987c;42:466–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shiva S. Nitrite: A physiological store of nitric oxide and modulator of mitochondrial function. Redox Biol. 2013;1(1):40–4.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sokoloski JA, Blair OC, Salterelli AC. Alterations in glycoprotein synthesis and guanosine triphosphate levels associated with the differentiation of HL-60 leukemia cells produced by inhibitors of inosine 5′-phosphate dehydrogenase. Cancer Res. 1986;46:2314–9.

    CAS  PubMed  Google Scholar 

  • Special Report No. 104 United States Department of State Chemical Warfare in Southeast Asia and Afghanistan: An Update Report from Secretary of State George P. Shultz November 1982. http://insidethecoldwar.org/sites/default/files/documents/Chemical%20Warfare%20in%20Southeast%20Asia%20and%20Afghanistan%20an%20Update%20November%201982.pdf

  • Squire RA. Ranking animal carcinogens: a proposed regulatory approach. Science. 1981;214:877–80.

    Article  CAS  PubMed  Google Scholar 

  • United States Environmental Protection Agency A Brief Guide to Mold, Moisture and Your Home. https://www.epa.gov/mold/brief-guide-mold-moisture-and-your-home

  • United States Environmental Protection Agency Mold Course Chapter 1: Introduction to Molds. https://www.epa.gov/mold/mold-course-chapter-1

  • Wang H, Yadav JS. DNA damage, redox changes, and associated stress-inducible signaling events underlying the apoptosis and cytotoxicity in murine alveolar macrophage cell line MH-S by methanol-extracted Stachybotrys chartarum toxins. Toxicol Appl Pharmacol. 2006;214(3):297–308.

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Yadav JS. Global gene expression changes underlying Stachybotrys chartarum toxin-induced apoptosis in murine alveolar macrophages: Evidence of multiple signal transduction pathways. Apoptosis. 2007;12:535–48.

    Article  CAS  PubMed  Google Scholar 

  • Yagen B, Joffe AZ. Screening of toxic isolates of Fusarium poae and Fusarium sporotrichioides involved in causing alimentary toxic aleukia. Appl Environ Microbiol. 1976;32(3):423–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Cleary .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cleary, D. (2022). Effects of Mycotoxins on Macrophages and Their Possible Clinical Implications. In: Gupta, S., Pathak, Y.V. (eds) Macrophage Targeted Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-84164-5_23

Download citation

Publish with us

Policies and ethics