Skip to main content

Macrophage Targeting for Therapy of Intraocular Diseases

  • Chapter
  • First Online:
Macrophage Targeted Delivery Systems

Abstract

The eye is a unique and intricate organ with a persisting challenge to uphold optical clarity and sustain satisfactory neural retina function. The immune defenses in the eye occur at varying microenvironments including the corneal and conjunctival epithelia, uveal pigmented connective tissue, and even the highly protected neural retina. Ocular macrophages have been implicated in homeostasis and number of pathological conditions. In this chapter, the present understanding of ocular immunology with the distribution, phenotype, and the physiological role of the various ocular immune cells is discussed with their implication on ocular pathologies. Various novel strategies for potential macrophage targeting of drug in intraocular diseases are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdelbary G, El-Gendy N. Niosome-encapsulated gentamicin for ophthalmic controlled delivery. AAPS PharmSciTech. 2008;9(3):740–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Abdelkader H, Alany RG. Controlled and continuous release ocular drug delivery systems: pros and cons. Curr Drug Deliv. 2012;9(4):421–30.

    Article  CAS  PubMed  Google Scholar 

  • Agrahari V, Mandal A, Agrahari V, Trinh HM, Joseph M, Ray A, Hadji H, Mitra R, Pal D, Mitra AK. A comprehensive insight on ocular pharmacokinetics. Drug Deliv Transl Res. 2016;6(6):735–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akbari V, Abedi D, Pardakhty A, Sadeghi-Aliabadi H. Ciprofloxacin nano-niosomes for targeting intracellular infections: an in vitro evaluation. J Nanopart Res. 2013;15(4):1556.

    Article  Google Scholar 

  • Albuquerque RJ, Hayashi T, Cho WG, Kleinman ME, Dridi S, Takeda A, Baffi JZ, Yamada K, Kaneko H, Green MG, Chappell J. Alternatively spliced vascular endothelial growth factor receptor-2 is an essential endogenous inhibitor of lymphatic vessel growth. Nat Med. 2009;15(9):1023–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Aliabadi HM, Elhasi S, Mahmud A, Gulamhusein R, Mahdipoor P, Lavasanifar A. Encapsulation of hydrophobic drugs in polymeric micelles through co-solvent evaporation: the effect of solvent composition on micellar properties and drug loading. Int J Pharm. 2007;329(1-2):158–65.

    Article  CAS  PubMed  Google Scholar 

  • Ambati BK, Nozaki M, Singh N, Takeda A, Jani PD, Suthar T, Albuquerque RJ, Richter E, Sakurai E, Newcomb MT, Kleinman ME. Corneal avascularity is due to soluble VEGF receptor-1. Nature. 2006;443(7114):993–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andrade LM, Rocha KA, De Sá FA, Marreto RN, Lima EM, Gratieri T, Taveira SF. Voriconazole-loaded nanostructured lipid carriers for ocular drug delivery. Cornea. 2016;35(6):866–71.

    Article  PubMed  Google Scholar 

  • Araújo J, Nikolic S, Egea MA, Souto EB, Garcia ML. Nanostructured lipid carriers for triamcinolone acetonide delivery to the posterior segment of the eye. Colloids Surf B: Biointerfaces. 2011;88(1):150–7.

    Article  PubMed  Google Scholar 

  • Attama AA, Lovelyna C, Onuigbob EB. Nanotechnology for ocular and otic drug delivery and targeting. In: Nanotechnology and drug delivery, Volume two: nano-engineering strategies and nanomedicines against severe diseases. CRC Press; 2016. p. 165–90.

    Google Scholar 

  • Bachu RD, Chowdhury P, Al-Saedi ZH, Karla PK, Boddu SH. Ocular drug delivery barriers—role of nanocarriers in the treatment of anterior segment ocular diseases. Pharmaceutics. 2018;10(1):28.

    Article  PubMed Central  Google Scholar 

  • Balguri SP, Adelli GR, Majumdar S. Topical ophthalmic lipid nanoparticle formulations (SLN, NLC) of indomethacin for delivery to the posterior segment ocular tissues. Eur J Pharm Biopharm. 2016;109:224–35.

    Article  CAS  PubMed  Google Scholar 

  • Banisor I, Leist TP, Kalman B, et al. Involvement of β-chemokines in the development of inflammatory demyelination. J Neuroinflammation. 2005;2(1):1–4.

    Article  Google Scholar 

  • Biswas S, Deshpande PP, Navarro G, Dodwadkar NS, Torchilin VP. Lipid modified triblock PAMAM-based nanocarriers for siRNA drug co-delivery. Biomaterials. 2013;34(4):1289–301.

    Article  CAS  PubMed  Google Scholar 

  • Bittencourt MG, Sepah YJ, Do DV, Agbedia O, Akhtar A, Liu H, Akhlaq A, Annam R, Ibrahim M, Nguyen QD. New treatment options for noninfectious uveitis. Dev Ophthalmol. 2012;51:134–61.

    Article  CAS  Google Scholar 

  • Bochot A, Fattal E, Boutet V, Deverre JR, Jeanny JC, Chacun H, Couvreur P. Intravitreal delivery of oligonucleotides by sterically stabilized liposomes. Invest Ophthalmol Vis Sci. 2002;43(1):253–9.

    PubMed  Google Scholar 

  • Bose SK, Sharma K, Chhibber S, Harjai K. Therapeutic potential of nanolipoidal α-Terpineol in combating keratitis induced by pseudomonas aeruginosa in the Murine Model. Int J Pharm. 2020;120175

    Google Scholar 

  • Bringmann A, Skatchkov SN, Pannicke T, Biedermann B, Wolburg H, Orkand RK, Reichenbach A. Müller glial cells in anuran retina. Microsc Res Tech. 2000;50(5):384–93.

    Article  CAS  PubMed  Google Scholar 

  • Brissette-Storkus CS, Reynolds SM, Lepisto AJ, Hendricks RL. Identification of a novel macrophage population in the normal mouse corneal stroma. Invest Ophthalmol Vis Sci. 2002;43(7):2264–71.

    PubMed  Google Scholar 

  • Bruno S, Bussolati B, Grange C, Collino F, di Cantogno LV, Herrera MB, Biancone L, Tetta C, Segoloni G, Camussi G. Isolation and characterization of resident mesenchymal stem cells in human glomeruli. Stem Cells Dev. 2009;18(6):867–80.

    Article  CAS  PubMed  Google Scholar 

  • Butler TL, McMenamin PG. Resident and infiltrating immune cells in the uveal tract in the early and late stages of experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 1996;37(11):2195–210.

    CAS  PubMed  Google Scholar 

  • Camelo S, Lajavardi L, Bochot A, Goldenberg B, Naud MC, Fattal E, Behar-Cohen F, de Kozak Y. Ocular and systemic bio-distribution of rhodamine-conjugated liposomes loaded with VIP injected into the vitreous of Lewis rats. Mol Vis. 2007;13:2263.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Candiello J, Balasubramani M, Schreiber EM, Cole GJ, Mayer U, Halfter W, Lin H. Biomechanical properties of native basement membranes. FEBS J. 2007;274(11):2897–908.

    Article  CAS  PubMed  Google Scholar 

  • Cao X, Shen D, Patel MM, Tuo J, Johnson TM, Olsen TW, Chan CC. Macrophage polarization in the maculae of age-related macular degeneration: a pilot study. Pathol Int. 2011;61(9):528–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Casettari L, Illum L. Chitosan in nasal delivery systems for therapeutic drugs. J Control Release. 2014;190:189–200.

    Article  CAS  PubMed  Google Scholar 

  • Checchin D, Sennlaub F, Levavasseur E, Leduc M, Chemtob S. Potential role of microglia in retinal blood vessel formation. Invest Ophthalmol Vis Sci. 2006;47(8):3595–602.

    Article  PubMed  Google Scholar 

  • Cherepanoff S, McMenamin P, Gillies MC, Kettle E, Sarks SH. Bruch's membrane and choroidal macrophages in early and advanced age-related macular degeneration. Br J Ophthalmol. 2010;94(7):918–25.

    Article  CAS  PubMed  Google Scholar 

  • Chinnery HR, McMenamin PG, Dando SJ. Macrophage physiology in the eye. Pflügers Arch. 2017;469(3-4):501–15.

    Article  CAS  PubMed  Google Scholar 

  • Choi SK, Thomas T, Li MH, Kotlyar A, Desai A, Baker JR Jr. Light-controlled release of caged doxorubicin from folate receptor-targeting PAMAM dendrimer nanoconjugate. Chem Commun. 2010;46(15):2632–4.

    Article  CAS  Google Scholar 

  • Chucair-Elliott AJ, Gurung HR, Carr MM, Carr DJ. Colony stimulating factor-1 receptor expressing cells infiltrating the cornea control corneal nerve degeneration in response to HSV-1 infection. Invest Ophthalmol Vis Sci. 2017;58(11):4670–82.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Condren AB, Kumar A, Mettu P, Liang KJ, Zhao L, Tsai JY, Fariss RN, Wong WT, et al. Perivascular mural cells of the mouse choroid demonstrate morphological diversity that is correlated to vasoregulatory function. PLoS One. 2013;8(1):e53386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Costagliola C, Romano MR, Dell'Omo R, Russo A, Mastropasqua R, Semeraro F. Effect of palmitoylethanolamide on visual field damage progression in normal tension glaucoma patients: results of an open-label six-month follow-up. J Med Food. 2014;17(9):949–54.

    Article  CAS  PubMed  Google Scholar 

  • Crabb JW, Miyagi M, Gu X, Shadrach K, West KA, Sakaguchi H, Kamei M, Hasan A, Yan L, Rayborn ME, Salomon RG. Drusen proteome analysis: an approach to the etiology of age-related macular degeneration. Proc Natl Acad Sci. 2002;99(23):14682–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cruysberg LP, Nuijts RM, Geroski DH, Koole LH, Hendrikse F, Edelhauser HF. In vitro human scleral permeability of fluorescein, dexamethasone-fluorescein, methotrexate-fluorescein and rhodamine 6G and the use of a coated coil as a new drug delivery system. J Ocul Pharmacol Ther. 2002;18(6):559–69.

    Article  CAS  PubMed  Google Scholar 

  • Cunha-Vaz J. The blood-ocular barriers. Surv Ophthalmol. 1979;23(5):279–96.

    Article  CAS  PubMed  Google Scholar 

  • Cursiefen C. Immune privilege and angiogenic privilege of the cornea. Chem Immunol Allergy. 2007;92:50–7.

    Article  CAS  PubMed  Google Scholar 

  • Cursiefen C, Chen L, Saint-Geniez M, Hamrah P, Jin Y, Rashid S, Pytowski B, Persaud K, Wu Y, Streilein JW, Dana R. Nonvascular VEGF receptor 3 expression by corneal epithelium maintains avascularity and vision. Proc Natl Acad Sci. 2006;103(30):11405–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Curtin BJ. Physiopathologic aspects of scleral stress-strain. Trans Am Ophthalmol Soc. 1969;67:417.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dawson DG, Ubels JL, Edelhauser HF. Cornea and sclera. Adler’s physiology of the eye. 2011;11,71–130.

    Google Scholar 

  • de Kozak Y, Andrieux K, Villarroya H, Klein C, Thillaye-Goldenberg B, Naud MC, Garcia E, Couvreur P. Intraocular injection of tamoxifen-loaded nanoparticles: a new treatment of experimental autoimmune uveoretinitis. Eur J Immunol. 2004;34(12):3702–12.

    Article  PubMed  Google Scholar 

  • Dib E, Maia M, Longo-Maugeri IM, Martins MC, Mussalem JS, Squaiella CC, Penha FM, Magalhães O, Rodrigues EB, Farah ME. Subretinal bevacizumab detection after intravitreous injection in rabbits. Invest Ophthalmol Vis Sci. 2008;49(3):1097–100.

    Article  PubMed  Google Scholar 

  • Diebold Y, Calonge M. Applications of nanoparticles in ophthalmology. Prog Retin Eye Res. 2010;29(6):596–609.

    Article  CAS  PubMed  Google Scholar 

  • Ding XQ, Quiambao AB, Fitzgerald JB, Cooper MJ, Conley SM, Naash MI. Ocular delivery of compacted DNA-nanoparticles does not elicit toxicity in the mouse retina. PLoS One. 2009;4(10):e7410.

    Article  PubMed  PubMed Central  Google Scholar 

  • Distler C, Dreher Z. Glia cells of the monkey retina—II. Müller cells. Vision Res. 1996;36(16):2381–94.

    Article  CAS  PubMed  Google Scholar 

  • Eichler W, Kuhrt H, Hoffmann S, Wiedemann P, Reichenbach A. VEGF release by retinal glia depends on both oxygen and glucose supply. Neuroreport. 2000;11(16):3533–7.

    Article  CAS  PubMed  Google Scholar 

  • El-Nabarawi MA, Abd El Rehem RT, Teaima M, Abary M, El-Mofty HM, Khafagy MM, Lotfy NM, Salah M. Natamycin niosomes as a promising ocular nanosized delivery system with ketorolac tromethamine for dual effects for treatment of candida rabbit keratitis; in vitro/in vivo and histopathological studies. Drug Dev Ind Pharm. 2019;45(6):922–36.

    Article  CAS  PubMed  Google Scholar 

  • Farmoudeh A, Akbari J, Saeedi M, Ghasemi M, Asemi N, Nokhodchi A. Methylene blue-loaded niosome: preparation, physicochemical characterization, and in vivo wound healing assessment. Drug Deliv Transl Res. 2020;10(5):1428–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fischer AJ, Zelinka C, Milani-Nejad N. Reactive retinal microglia, neuronal survival, and the formation of retinal folds and detachments. Glia. 2015;63(2):313–27.

    Article  PubMed  Google Scholar 

  • Fukushima A, Ozaki A, Ishida W, Van Rooijen N, Fukata K, Ueno H. Suppression of macrophage infiltration into the conjunctiva by clodronate liposomes in experimental immune-mediated blepharoconjunctivitis. Cell Biol Int. 2005;29(4):277–86.

    Article  CAS  PubMed  Google Scholar 

  • Gardner TW, Lieth E, Khin SA, Barber A, Bonsall DJ, Lesher T, Rice K, Brennan WA. Astrocytes increase barrier properties and ZO-1 expression in retinal vascular endothelial cells. Invest Ophthalmol Vis Sci. 1997;38(11):2423–7.

    CAS  PubMed  Google Scholar 

  • Gaudana R, Ananthula HK, Parenky A, Mitra AK. Ocular drug delivery. AAPS J. 2010;12(3):348–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Godiska R, Chantry D, Dietsch GN, Gray PW. Chemokine expression in murine experimental allergic encephalomyelitis. J Neuroimmunol. 1995;58(2):167–76.

    Article  CAS  PubMed  Google Scholar 

  • Goharian I, Sehi M. Is there any role for the choroid in glaucoma? J Glaucoma. 2016;25(5):452–8.

    Article  PubMed  PubMed Central  Google Scholar 

  • Gopidas KR, Leheny AR, Caminati G, Turro NJ, Tomalia DA. Photophysical investigation of similarities between starburst dendrimers and anionic micelles. J Am Chem Soc. 1991;113(19):7335–42.

    Article  CAS  Google Scholar 

  • Gorantla S, Rapalli VK, Waghule T, Singh PP, Dubey SK, Saha RN, Singhvi G. Nanocarriers for ocular drug delivery: current status and translational opportunity. RSC Adv. 2020;10(46):27835–55.

    Article  CAS  Google Scholar 

  • Haider M, Abdin SM, Kamal L, Orive G. Nanostructured lipid carriers for delivery of chemotherapeutics: a review. Pharmaceutics. 2020;12(3):288.

    Article  CAS  PubMed Central  Google Scholar 

  • Hao J, Wang X, Bi Y, Teng Y, Wang J, Li F, Li Q, Zhang J, Guo F, Liu J. Fabrication of a composite system combining solid lipid nanoparticles and thermosensitive hydrogel for challenging ophthalmic drug delivery. Colloids Surf B: Biointerfaces. 2014;114:111–20.

    Article  CAS  PubMed  Google Scholar 

  • Hashida N, Ohguro N, Yamazaki N, Arakawa Y, Oiki E, Mashimo H, Kurokawa N, Tano Y. High-efficacy site-directed drug delivery system using sialyl-Lewis X conjugated liposome. Exp Eye Res. 2008;86(1):138–49.

    Article  CAS  PubMed  Google Scholar 

  • Hee MR, Puliafito CA, Duker JS, Reichel E, Coker JG, Wilkins JR, Schuman JS, Swanson EA, Fujimoto JG. Topography of diabetic macular edema with optical coherence tomography. Ophthalmology. 1998;105(2):360–70.

    Article  CAS  PubMed  Google Scholar 

  • Heiduschka P, Fietz H, Hofmeister S, Schultheiss S, Mack AF, Peters S, Ziemssen F, Niggemann B, Julien S, Bartz-Schmidt KU, Schraermeyer U. Penetration of bevacizumab through the retina after intravitreal injection in the monkey. Invest Ophthalmol Vis Sci. 2007;48(6):2814–23.

    Article  PubMed  Google Scholar 

  • Hu K, Harris DL, Yamaguchi T, von Andrian UH, Hamrah P. A dual role for corneal dendritic cells in herpes simplex keratitis: local suppression of corneal damage and promotion of systemic viral dissemination. PLoS One. 2015;10(9):e0137123.

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang T, Cui J, Li L, Hitchcock PF, Li Y. The role of microglia in the neurogenesis of zebrafish retina. Biochem Biophys Res Commun. 2012;421(2):214–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Huang J, Yu X, Zhou Y, Zhang R, Song Q, Wang Q, Li X. Directing the nanoparticle formation by the combination with small molecular assembly and polymeric assembly for topical suppression of ocular inflammation. Int J Pharm. 2018;551(1-2):223–31.

    Article  CAS  PubMed  Google Scholar 

  • Iezzi R, Guru BR, Glybina IV, Mishra MK, Kennedy A, Kannan RM. Dendrimer-based targeted intravitreal therapy for sustained attenuation of neuroinflammation in retinal degeneration. Biomaterials. 2012;33(3):979–88.

    Article  CAS  PubMed  Google Scholar 

  • Ikuno Y, Kawaguchi K, Nouchi T, Yasuno Y. Choroidal thickness in healthy Japanese subjects. Invest Ophthalmol Vis Sci. 2010;51(4):2173–6.

    Article  PubMed  Google Scholar 

  • Jansen JF, Meijer EW. Encapsulation of guest molecules into a dendritic box. Science. 1994;266(5188):1226–9.

    Article  CAS  PubMed  Google Scholar 

  • Jansen JF, Meijer EW, de Brabander-van den Berg EM. The dendritic box: shape-selective liberation of encapsulated guests. J Am Chem Soc. 1995;117(15):4417–8.

    Article  CAS  Google Scholar 

  • Kaluzhny Y, Kinuthia MW, Truong T, Lapointe AM, Hayden P, Klausner M. New human organotypic corneal tissue model for ophthalmic drug delivery studies. Investig Ophthalmol Vis Sci. 2018;59(7):2880–98.

    Article  Google Scholar 

  • Kambhampati SP. Dendrimer based nanotherapeutics for ocular drug delivery. 2014.

    Google Scholar 

  • Kambhampati SP, Clunies-Ross AJ, Bhutto I, Mishra MK, Edwards M, McLeod DS, Kannan RM, Lutty G, et al. Systemic and intravitreal delivery of dendrimers to activated microglia/macrophage in ischemia/reperfusion mouse retina. Invest Ophthalmol Vis Sci. 2015;56(8):4413–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kazi KM, Mandal AS, Biswas N, Guha A, Chatterjee S, Behera M, Kuotsu K. Niosome: a future of targeted drug delivery systems. J Adv Pharm Technol Res. 2010;1(4):374.

    Article  PubMed  PubMed Central  Google Scholar 

  • Keino H, Horie S, Sugita S. Immune privilege and eye-derived T-regulatory cells. J Immunol Res. 2018;2018

    Google Scholar 

  • Kezic J, Xu H, Chinnery HR, Murphy CC, McMenamin PG. Retinal microglia and uveal tract dendritic cells and macrophages are not CX3CR1 dependent in their recruitment and distribution in the young mouse eye. Invest Ophthalmol Vis Sci. 2008;49(4):1599–608.

    Article  PubMed  Google Scholar 

  • Kiesewetter A, Cursiefen C, Eming SA, Hos D. Phase-specific functions of macrophages determine injury-mediated corneal hem-and lymphangiogenesis. Sci Rep. 2019;9(1):1–6.

    Article  CAS  Google Scholar 

  • Kim H, Csaky KG. Nanoparticle–integrin antagonist C16Y peptide treatment of choroidal neovascularization in rats. J Control Release. 2010;142(2):286–93.

    Article  CAS  PubMed  Google Scholar 

  • Knickelbein JE, Buela KA, Hendricks RL. Antigen-presenting cells are stratified within normal human corneas and are rapidly mobilized during ex vivo viral infection. Invest Ophthalmol Vis Sci. 2014;55(2):1118–23.

    Article  PubMed  PubMed Central  Google Scholar 

  • Krause L, Coupland SE, Hoffmann F. The behaviour of ED1-and ED2-positive cells in the rat iris and choroid following penetrating keratoplasty and cyclosporin A therapy. Graefes Arch Clin Exp Ophthalmol. 1996;234(1):S149–58.

    Article  PubMed  Google Scholar 

  • Lajavardi L, Bochot A, Camelo S, Goldenberg B, Naud MC, Behar-Cohen F, Fattal E, de Kozak Y. Downregulation of endotoxin-induced uveitis by intravitreal injection of vasoactive intestinal peptide encapsulated in liposomes. Invest Ophthalmol Vis Sci. 2007;48(7):3230–8.

    Article  PubMed  Google Scholar 

  • Lee DH, Ghiasi H. Roles of M1 and M2 macrophages in herpes simplex virus 1 infectivity. J Virol. 2017;91(15):e00578.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lee JE, Liang KJ, Fariss RN, Wong WT. Ex vivo dynamic imaging of retinal microglia using time-lapse confocal microscopy. Invest Ophthalmol Vis Sci. 2008;49(9):4169–76.

    Article  PubMed  Google Scholar 

  • Liu J, Xue Y, Dong D, Xiao C, Lin C, Wang H, Song F, Fu T, Wang Z, Chen J, Pan H. CCR2− and CCR2+ corneal macrophages exhibit distinct characteristics and balance inflammatory responses after epithelial abrasion. Mucosal Immunol. 2017;10(5):1145–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ljubimova D. Biomechanics of the human eye and intraocular pressure measurements (Doctoral dissertation, KTH). 2009

    Google Scholar 

  • Luo Q, Zhao J, Zhang X, Pan W. Nanostructured lipid carrier (NLC) coated with Chitosan Oligosaccharides and its potential use in ocular drug delivery system. Int J Pharm. 2011;403(1-2):185–91.

    Article  CAS  PubMed  Google Scholar 

  • Maneu V, Yáñez A, Murciano C, Molina A, Gil ML, Gozalbo D. Dectin-1 mediates in vitro phagocytosis of Candida albicans yeast cells by retinal microglia. FEMS Immunol Med Microbiol. 2011;63(1):148–50.

    Article  CAS  PubMed  Google Scholar 

  • Margolis R, Spaide RF. A pilot study of enhanced depth imaging optical coherence tomography of the choroid in normal eyes. Am J Ophthalmol. 2009;147(5):811–5.

    Article  PubMed  Google Scholar 

  • Maurice DM, Polgar J. Diffusion across the sclera. Exp Eye Res. 1977;25(6):577–82.

    Article  CAS  PubMed  Google Scholar 

  • May CA. Mast cell heterogeneity in the human uvea. Histochem Cell Biol. 1999;112(5):381–6.

    Article  CAS  PubMed  Google Scholar 

  • McKay TB, Seyed-Razavi Y, Ghezzi CE, Dieckmann G, Nieland TJ, Cairns DM, Pollard RE, Hamrah P, Kaplan DL. Corneal pain and experimental model development. Prog Retin Eye Res. 2019;71:88–113.

    Article  PubMed  Google Scholar 

  • McLeod DS, Bhutto I, Edwards MM, Silver RE, Seddon JM, Lutty GA. Distribution and quantification of choroidal macrophages in human eyes with age-related macular degeneration. Invest Ophthalmol Vis Sci. 2016;57(14):5843–55.

    Article  PubMed  PubMed Central  Google Scholar 

  • McMenamin PG. Dendritic cells and macrophages in the uveal tract of the normal mouse eye. Br J Ophthalmol. 1999;83(5):598–604.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMenamin PG, Lee WR. Ultrastructural pathology of melanomalytic glaucoma. Br J Ophthalmol. 1986;70(12):895–906.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McMenamin PG, Djano J, Wealthall R, Griffin BJ. Characterization of the macrophages associated with the tunica vasculosa lentis of the rat eye. Invest Ophthalmol Vis Sci. 2002;43(7):2076–82.

    PubMed  Google Scholar 

  • McWhorter FY, Wang T, Nguyen P, Chung T, Liu WF. Modulation of macrophage phenotype by cell shape. Proc Natl Acad Sci. 2013;110(43):17253–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Menjoge AR, Kannan RM, Tomalia DA. Dendrimer-based drug and imaging conjugates: design considerations for nanomedical applications. Drug Discov Today. 2010;15(5-6):171–85.

    Article  CAS  PubMed  Google Scholar 

  • Mérida S, Palacios E, Navea A, Bosch-Morell F. Macrophages and uveitis in experimental animal models. Mediat Inflamm. 2015;2015

    Google Scholar 

  • Mishra GP, Bagui M, Tamboli V, Mitra AK. Recent applications of liposomes in ophthalmic drug delivery. J Drug Deliv. 2011;2011

    Google Scholar 

  • Mitra AK, Kwatra D, Vadlapudi AD. Drug delivery. Sudbury: Jones & Bartlett Publishers; 2014.

    Google Scholar 

  • Mudgil M, Gupta N, Nagpal M, Pawar P. Nanotechnology: a new approach for ocular drug delivery system. Int J Pharm Pharm Sci. 2012;4(2):105–12.

    CAS  Google Scholar 

  • Murakami T, Felinski EA, Antonetti DA. Occludin phosphorylation and ubiquitination regulate tight junction trafficking and vascular endothelial growth factor-induced permeability. J Biol Chem. 2009;284(31):21036–46.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Myles ME, Neumann DM, Hill JM. Recent progress in ocular drug delivery for posterior segment disease: emphasis on transscleral iontophoresis. Adv Drug Deliv Rev. 2005;57(14):2063–79.

    Article  CAS  PubMed  Google Scholar 

  • Naseri N, Valizadeh H, Zakeri-Milani P. Solid lipid nanoparticles and nanostructured lipid carriers: structure, preparation and application. Adv Pharm Bull. 2015 Sep;5(3):305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Naumann GO. Pathology of the eye. New York: Springer; 2012.

    Google Scholar 

  • Navegantes KC, de Souza Gomes R, Pereira PA, Czaikoski PG, Azevedo CH, Monteiro MC. Immune modulation of some autoimmune diseases: the critical role of macrophages and neutrophils in the innate and adaptive immunity. J Transl Med. 2017;15(1):1–21.

    Article  Google Scholar 

  • Nickla DL, Wallman J. The multifunctional choroid. Prog Retin Eye Res. 2010;29(2):144–68.

    Article  PubMed  Google Scholar 

  • Nozaki M, Raisler BJ, Sakurai E, Sarma JV, Barnum SR, Lambris JD, Chen Y, Zhang K, Ambati BK, Baffi JZ, Ambati J. Drusen. complement components C3a and C5a promote choroidal neovascularization. Proc Natl Acad Sci. 2006;103(7):2328–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Obeid MA, Al Qaraghuli MM, Alsaadi M, Alzahrani AR, Niwasabutra K, Ferro VA. Delivering natural products and biotherapeutics to improve drug efficacy. Ther Deliv. 2017;8(11):947–56.

    Article  CAS  PubMed  Google Scholar 

  • Okunuki Y, Mukai R, Nakao T, Tabor SJ, Butovsky O, Dana R, Ksander BR, Connor KM. Retinal microglia initiate neuroinflammation in ocular autoimmunity. Proc Natl Acad Sci. 2019;116(20):9989–98.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oyster CW. The human eye. Sunderland: Sinauer; 1999.

    Google Scholar 

  • Pannier AK, Segura T. Surface-and hydrogel-mediated delivery of nucleic acid nanoparticles. In: Nanotechnology for nucleic acid delivery. Totowa: Humana Press; 2013. p. 149–69.

    Chapter  Google Scholar 

  • Pardakhty A, Moazeni E, Varshosaz J, Hajhashemi VA, Najafabadi AR. Pharmacokinetic study of niosome-loaded insulin in diabetic rats. DARU J Pharm Sci. 2011;19(6):404.

    CAS  Google Scholar 

  • Patel A, Cholkar K, Agrahari V, Mitra AK. Ocular drug delivery systems: An overview. World J Pharmacol. 2013;2(2):47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patra JK, Das G, Fraceto LF, Campos EV, del Pilar Rodriguez-Torres M, Acosta-Torres LS, Diaz-Torres LA, Grillo R, Swamy MK, Sharma S, Habtemariam S. Nano based drug delivery systems: recent developments and future prospects. J Nanobiotechnol. 2018;16(1):1–33.

    Article  Google Scholar 

  • Pederson JE. Fluid physiology of the subretinal space. Retina. 1989:89–102.

    Google Scholar 

  • Petrosino S, Di Marzo V. The pharmacology of palmitoylethanolamide and first data on the therapeutic efficacy of some of its new formulations. Br J Pharmacol. 2017;174(11):1349–65.

    Article  CAS  PubMed  Google Scholar 

  • Peyman GA. Methods to regulate polarization of excitable cells. United States patent US 8,409,263. 2013.

    Google Scholar 

  • Price KM, Richard MJ. The tearing patient: Diagnosis and management. Ed. Scott IU & Fekrat S. American Academy of Ophthalmology. www.aao.org. 2009.

  • Qiao H, Hisatomi T, Sonoda KH, Kura S, Sassa Y, Kinoshita S, Nakamura T, Sakamoto T, Ishibashi T. The characterisation of hyalocytes: the origin, phenotype, and turnover. Br J Ophthalmol. 2005;89(4):513–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rashid K, Akhtar-Schaefer I, Langmann T. Microglia in retinal degeneration. Front Immunol. 2019;10:1975.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rathnasamy G, Foulds WS, Ling EA, Kaur C, et al. Retinal microglia–A key player in healthy and diseased retina. Prog Neurobiol. 2019;173:18–40.

    Article  PubMed  Google Scholar 

  • Ravar F, Saadat E, Gholami M, Dehghankelishadi P, Mahdavi M, Azami S, Dorkoosh FA. Hyaluronic acid-coated liposomes for targeted delivery of paclitaxel, in-vitro characterization and in-vivo evaluation. J Control Release. 2016;229:10–22.

    Article  CAS  PubMed  Google Scholar 

  • Raviola G. Conjunctival and episcleral blood vessels are permeable to blood-borne horseradish peroxidase. Invest Ophthalmol Vis Sci. 1983;24(6):725–36.

    CAS  PubMed  Google Scholar 

  • Reichenbach A, Wurm A, Pannicke T, Iandiev I, Wiedemann P, Bringmann A. Müller cells as players in retinal degeneration and edema. Graefes Arch Clin Exp Ophthalmol. 2007;245(5):627–36.

    Article  PubMed  Google Scholar 

  • Sakai T, Kohno H, Ishihara T, Higaki M, Saito S, Matsushima M, Mizushima Y, Kitahara K. Treatment of experimental autoimmune uveoretinitis with poly (lactic acid) nanoparticles encapsulating betamethasone phosphate. Exp Eye Res. 2006;82(4):657–63.

    Article  CAS  PubMed  Google Scholar 

  • Sakai T, Kuno N, Takamatsu F, Kimura E, Kohno H, Okano K, Kitahara K. Prolonged protective effect of basic fibroblast growth factor–impregnated nanoparticles in Royal College of Surgeons rats. Invest Ophthalmol Vis Sci. 2007;48(7):3381–7.

    Article  PubMed  Google Scholar 

  • Sakai T, Ishihara T, Higaki M, Akiyama G, Tsuneoka H. Therapeutic effect of stealth-type polymeric nanoparticles with encapsulated betamethasone phosphate on experimental autoimmune uveoretinitis. Invest Ophthalmol Vis Sci. 2011;52(3):1516–21.

    Article  CAS  PubMed  Google Scholar 

  • Sakurai E, Ozeki H, Kunou N, Ogura Y. Effect of particle size of polymeric nanospheres on intravitreal kinetics. Ophthalmic Res. 2001;33(1):31–6.

    Article  CAS  PubMed  Google Scholar 

  • Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR, Yamasaki R, Ransohoff RM, Greenberg ME, Barres BA, Stevens B. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron. 2012;74(4):691–705.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schlereth SL, Kremers S, Schrödl F, Cursiefen C, Heindl LM. Characterization of antigen-presenting macrophages and dendritic cells in the healthy human sclera. Invest Ophthalmol Vis Sci. 2016;57(11):4878–85.

    Article  CAS  PubMed  Google Scholar 

  • Schnitzer JE, Liu J, Oh P. Endothelial caveolae have the molecular transport machinery for vesicle budding, docking, and fusion including VAMP, NSF, SNAP, annexins, and GTPases. J Biol Chem. 1995;270(24):14399–404.

    Article  CAS  PubMed  Google Scholar 

  • Schraermeyer M, Schnichels S, Julien S, Heiduschka P, Bartz-Schmidt KU, Schraermeyer U. Ultrastructural analysis of the pigment dispersion syndrome in DBA/2J mice. Graefes Arch Clin Exp Ophthalmol. 2009;247(11):1493–504.

    Article  PubMed  Google Scholar 

  • Sharma R, Kim SY, Sharma A, Zhang Z, Kambhampati SP, Kannan S, Kannan RM. Activated microglia targeting dendrimer–minocycline conjugate as therapeutics for neuroinflammation. Bioconjug Chem. 2017;28(11):2874–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sharma A, Liaw K, Sharma R, Zhang Z, Kannan S, Kannan RM. Targeting mitochondrial dysfunction and oxidative stress in activated microglia using dendrimer-based therapeutics. Theranostics. 2018;8(20):5529.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shidhaye SS, Vaidya R, Sutar S, Patwardhan A, Kadam VJ. Solid lipid nanoparticles and nanostructured lipid carriers-innovative generations of solid lipid carriers. Curr Drug Deliv. 2008;5(4):324–31.

    Article  CAS  PubMed  Google Scholar 

  • Singh D, Singh RS, Singh K, Singh SK, Singh IR, Singh R, Fugo RJ. The conjunctival lymphatic system. Ann Ophthalmol. 2003;35(2):99–104.

    Article  Google Scholar 

  • Soiberman U, Kambhampati SP, Wu T, Mishra MK, Oh Y, Sharma R, Wang J, Al Towerki AE, Yiu S, Stark WJ, Kannan RM. Subconjunctival injectable dendrimer-dexamethasone gel for the treatment of corneal inflammation. Biomaterials. 2017;125:38–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Solanki A, Desai S, Grover A, Hirani A, Pathak Y, Sutariya V. Ocular drug delivery: impact of in vitro cell culture models. In: Nano-biomaterials for ophthalmic drug delivery. Cham: Springer; 2016. p. 483–94.

    Chapter  Google Scholar 

  • Sonoda KH, Sasa Y, Qiao H, Tsutsumi C, Hisatomi T, Komiyama S, Kubota T, Sakamoto T, Kawano YI, Ishibashi T. Immunoregulatory role of ocular macrophages: the macrophages produce RANTES to suppress experimental autoimmune uveitis. J Immunol. 2003;171(5):2652–9.

    Article  CAS  PubMed  Google Scholar 

  • Sosnová M, Bradl M, Forrester JV. CD34+ corneal stromal cells are bone marrow–derived and express hemopoietic stem cell markers. Stem Cells. 2005;23(4):507–15.

    Article  PubMed  Google Scholar 

  • Souto EB, Doktorovova S, Gonzalez-Mira E, Egea MA, Garcia ML. Feasibility of lipid nanoparticles for ocular delivery of anti-inflammatory drugs. Curr Eye Res. 2010;35(7):537–52.

    Article  CAS  PubMed  Google Scholar 

  • Sridhar MS. Anatomy of cornea and ocular surface. Indian J Ophthalmol. 2018;66(2):190.

    Article  PubMed  PubMed Central  Google Scholar 

  • Stern ME, Schaumburg CS, Dana R, Calonge M, Niederkorn JY, Pflugfelder SC. Autoimmunity at the ocular surface: pathogenesis and regulation. Mucosal Immunol. 2010;3(5):425–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Strack A, Asensio VC, Campbell IL, Schlüter D, Deckert M. Chemokines are differentially expressed by astrocytes, microglia and inflammatory leukocytes in Toxoplasma encephalitis and critically regulated by interferon-γ. Acta Neuropathol. 2002;103(5):458–68.

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam B, Siddik ZH, Nagoor NH. Optimization of nanostructured lipid carriers: understanding the types, designs, and parameters in the process of formulations. J Nanopart Res. 2020;22:1–29.

    Article  Google Scholar 

  • Taylor AW, Streilein JW, Cousins SW. Immunoreactive vasoactive intestinal peptide contributes to the immunosuppressive activity of normal aqueous humor. J Immunol. 1994;153(3):1080–6.

    CAS  PubMed  Google Scholar 

  • Tong L, Lan W, Petznick A. Definition of the ocular surface. In: Ocular surface: anatomy and physiology, disorders and therapeutic care. 2012. 1.

    Google Scholar 

  • Torchilin VP. Recent advances with liposomes as pharmaceutical carriers. Nat Rev Drug Discov. 2005;4(2):145–60.

    Article  CAS  PubMed  Google Scholar 

  • Tretiach M, Madigan MC, Wen L, Gillies MC. Effect of Müller cell co-culture on in vitro permeability of bovine retinal vascular endothelium in normoxic and hypoxic conditions. Neurosci Lett. 2005;378(3):160–5.

    Article  CAS  PubMed  Google Scholar 

  • Ueno H, Tamai A, Iyota K, Moriki T. Electron microscopic observation of the cells floating in the anterior chamber in a case of phacolytic glaucoma. Jpn J Ophthalmol. 1989;33(1):103–13.

    CAS  PubMed  Google Scholar 

  • Vadlapudi AD, Patel A, Cholkar K, Mitra AK. Recent patents on emerging therapeutics for the treatment of glaucoma, age related macular degeneration and uveitis. Recent Pat Biomed Eng. 2012;5(1):83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vagaja NN, Chinnery HR, Binz N, Kezic JM, Rakoczy EP, McMenamin PG. Changes in murine hyalocytes are valuable early indicators of ocular disease. Invest Ophthalmol Vis Sci. 2012;53(3):1445–51.

    Article  PubMed  Google Scholar 

  • Wadhwa S, Paliwal R, Paliwal SR, Vyas SP. Nanocarriers in ocular drug delivery: an update review. Curr Pharm Des. 2009;15(23):2724–50.

    Article  CAS  PubMed  Google Scholar 

  • Wang WY, Yao C, Shao YF, Mu HJ, Sun KX. Determination of puerarin in rabbit aqueous humor by liquid chromatography tandem mass spectrometry using microdialysis sampling after topical administration of Puerarin PAMAM dendrimer complex. J Pharm Biomed Anal. 2011;56(4):825–9.

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Wang X, Zhao L, Ma W, Rodriguez IR, Fariss RN, Wong WT. Macroglia-microglia interactions via TSPO signaling regulates microglial activation in the mouse retina. J Neurosci. 2014;34(10):3793–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang X, Zhao L, Zhang J, Fariss RN, Ma W, Kretschmer F, Wang M, Hua Qian H, Badea TC, Diamond JS, Gan WB. Requirement for microglia for the maintenance of synaptic function and integrity in the mature retina. J Neurosci. 2016;36(9):2827–42.

    Article  PubMed  PubMed Central  Google Scholar 

  • Watanabe T, Raff MC. Retinal astrocytes are immigrants from the optic nerve. Nature. 1988;332(6167):834–7.

    Article  CAS  PubMed  Google Scholar 

  • Wobmann PR, Fine BS. The clump cells of Koganei: a light and electron microscopic study. Am J Ophthalmol. 1972;73(1):90–101.

    Article  CAS  PubMed  Google Scholar 

  • Wu M, Downie LE, Grover LM, Moakes RJ, Rauz S, Logan A, Jiao H, Hill LJ, Chinnery HR. The neuroregenerative effects of topical decorin on the injured mouse cornea. J Neuroinflammation. 2020;17:1–4.

    Article  Google Scholar 

  • Xiao X, Wu ZC, Chou KC. A multi-label classifier for predicting the subcellular localization of gram-negative bacterial proteins with both single and multiple sites. PLoS One. 2011;6(6):e20592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu H, Chen M, Reid DM, Forrester JV. LYVE-1–positive macrophages are present in normal murine eyes. Invest Ophthalmol Vis Sci. 2007;48(5):2162–71.

    Article  PubMed  Google Scholar 

  • Yeo PL, Lim CL, Chye SM, Ling AP, Koh RY. Niosomes: a review of their structure, properties, methods of preparation, and medical applications. Asian Biomed. 2018;11(4):301–14.

    Article  Google Scholar 

  • Yoshida M, Takeuchi M, Streilein W. Participation of pigment epithelium of iris and ciliary body in ocular immune privilege. 1. Inhibition of T-cell activation in vitro by direct cell-to-cell contact. Invest Ophthalmol Vis Sci. 2000;41(3):811–21.

    CAS  PubMed  Google Scholar 

  • Yu Y, Chen D, Li Y, Yang W, Tu J, Shen Y. Improving the topical ocular pharmacokinetics of lyophilized cyclosporine A-loaded micelles: formulation, in vitro and in vivo studies. Drug Deliv. 2018;25(1):888–99.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yuan TF, Liang YX, Peng B, Lin B, So KF. Local proliferation is the main source of rod microglia after optic nerve transection. Sci Rep. 2015;5(1):1–8.

    Article  Google Scholar 

  • Zeng XX, Ng YK, Ling EA. Labelling of retinal microglial cells following an intravenous injection of a fluorescent dye into rats of different ages. J Anat. 2000;196(2):173–9.

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang Y, Stone J. Role of astrocytes in the control of developing retinal vessels. Invest Ophthalmol Vis Sci. 1997;38(9):1653–66.

    CAS  PubMed  Google Scholar 

  • Zhang L, Li Y, Zhang C, Wang Y, Song C. Pharmacokinetics and tolerance study of intravitreal injection of dexamethasone-loaded nanoparticles in rabbits. Int J Nanomed. 2009;4:175.

    Article  CAS  Google Scholar 

  • Zhang J, Zhou T, Wang L, He J, Xia H. Nanoemulsion as a vehicle to enhance the ocular absorption after topically applied Cyclosporine A in the rabbit eye. Invest Ophthalmol Vis Sci. 2012;53(14):488.

    Google Scholar 

  • Zhao Y, He G, Guo W, Bao L, Yi M, Gong Y, Zhang S. Self-assembled micelles prepared from amphiphilic copolymers bearing cell outer membrane phosphorylcholine zwitterions for a potential anti-phagocytic clearance carrier. Polym Chem. 2016;7(36):5698–708.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are thankful to the Director, University Institute of Pharmacy, Pandit Ravishankar Shukla University, Raipur. The authors extend special thanks to the Librarian, Pt. Sundarlal Sharma Library of the University for making e-resources available through UGC-INFLIBNET. The authors are thankful to the Chhattisgarh Council of Science and Technology for MRP (1863/CCOST/MRP/2014).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bhuwane, N., Choudhary, I., Ramkar, S., Hemnani, N., Sah, A.K., Suresh, P.K. (2022). Macrophage Targeting for Therapy of Intraocular Diseases. In: Gupta, S., Pathak, Y.V. (eds) Macrophage Targeted Delivery Systems. Springer, Cham. https://doi.org/10.1007/978-3-030-84164-5_19

Download citation

Publish with us

Policies and ethics