Skip to main content

Antimicrobial Peptides and Small Molecules as Antibiotics Substitute

  • Chapter
  • First Online:
Emerging Modalities in Mitigation of Antimicrobial Resistance
  • 696 Accesses

Abstract

Despite a century of the discovery of first natural antimicrobial peptide (AMP), lysozyme, their development as clinical candidates has not progressed successfully. AMPs are small proteins usually containing 10–50 amino acid residues, having occurrence in numerous plants, insects, amphibians, and animals. These possess a broad spectrum of activity against diverse microbes (bacteria, viruses, and fungi) finding their use as topical antiseptics, anti-inflammatory, oral mucositis, candidiasis, impetigo, chronic respiratory infection, cystic fibrosis, acute bacterial skin infections, inflammatory bowel disease, etc., clinically. More than 1200 natural peptides displaying antimicrobial potency have been isolated so far. AMPs surface in all living organisms and form the major component of the “innate” human immune system. The current antibiotic regime has already been overexploited and facing the challenge of microbial resistance. However, from past few decades, researchers and pharmaceutical companies have been focussing on the development of new and improved generations of antimicrobial agents having smaller size, more selective, more potent, more stable, broad spectrum, less toxic, cost-effective, and with easier mode of administration than the existing ones. Universally, molecules with smaller pharmacophores have often offered advantage pharmacodynamically and pharmacokinetically over their larger counterparts. A variety of small molecules displaying good antibiotic potency and a broader spectrum have been discovered, synthesized, and used therapeutically. This chapter unravels the knowledge of AMPs and novel small antibiotics, with a perspective on their synergy with currently available antibiotics, and focuses on their future prospective as therapeuticals.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Allen HK, Trachsel J, Looft T, Casey TA (2014) Finding alternatives to antibiotics. Ann N Y Acad Sci 1323(1):91–100

    Article  PubMed  Google Scholar 

  • Andreu D, Rivas L (1998) Animal antimicrobial peptides: an overview. Pept Sci 47(6):415–433

    Article  CAS  Google Scholar 

  • Bahar AA, Ren D (2013) Antimicrobial peptides. Pharmaceuticals 6(12):1543–1575

    Article  PubMed  PubMed Central  Google Scholar 

  • Bakovic A, Risner K, Bhalla N, Alem F, Chang TL, Weston WK, Harness JA, Narayanan A (2021) Brilacidin demonstrates inhibition of SARS-CoV-2 in cell culture. Viruses 13(2):271

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baltzer SA, Brown MH (2011) Antimicrobial peptides—promising alternatives to conventional antibiotics. J Mol Microbiol Biotechnol 20(4):228–235

    CAS  PubMed  Google Scholar 

  • Cheng K-T, Wu C-L, Yip B-S, Yu H-Y, Cheng H-T, Chih Y-H, Cheng J-W (2018) High level expression and purification of the clinically active antimicrobial peptide P-113 in Escherichia coli. Molecules 23(4):800

    Article  PubMed Central  Google Scholar 

  • Costa F, Teixeira C, Gomes P, Martins MCL (2019) Clinical application of AMPs. Antimicrob Peptides 1117:281–298

    Article  CAS  Google Scholar 

  • Czaplewski L, Bax R, Clokie M, Dawson M, Fairhead H, Fischetti VA, Foster S, Gilmore BF, Hancock RE, Harper D (2016) Alternatives to antibiotics—a pipeline portfolio review. Lancet Infect Dis 16(2):239–251

    Article  CAS  PubMed  Google Scholar 

  • Dijksteel GS, Ulrich MM, Middelkoop E, Boekema BK (2021) Lessons learned from clinical trials using antimicrobial peptides (AMPs). Front Microbiol 12:287

    Article  Google Scholar 

  • Edwards IA, Elliott AG, Kavanagh AM, Blaskovich MA, Cooper MA (2017) Structure–activity and −toxicity relationships of the antimicrobial peptide tachyplesin-1. ACS Infect Dis 3(12):917–926

    Article  CAS  PubMed  Google Scholar 

  • Etayash H, Norman L, Thundat T, Stiles M, Kaur K (2014) Surface-conjugated antimicrobial peptide leucocin a displays high binding to pathogenic gram-positive bacteria. ACS Appl Mater Interfaces 6(2):1131–1138

    Article  CAS  PubMed  Google Scholar 

  • Fjell CD, Hiss JA, Hancock RE, Schneider G (2012) Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 11(1):37–51

    Article  CAS  Google Scholar 

  • Gabay JE, Almeida RP (1993) Antibiotic peptides and serine protease homologs in human polymorphonuclear leukocytes: defensins and azurocidin. Curr Opin Immunol 5(1):97–102

    Article  CAS  PubMed  Google Scholar 

  • Gao G, Lange D, Hilpert K, Kindrachuk J, Zou Y, Cheng JT, Kazemzadeh-Narbat M, Yu K, Wang R, Straus SK (2011) The biocompatibility and biofilm resistance of implant coatings based on hydrophilic polymer brushes conjugated with antimicrobial peptides. Biomaterials 32(16):3899–3909

    Article  CAS  PubMed  Google Scholar 

  • Ghosh C, Sarkar P, Issa R, Haldar J (2019) Alternatives to conventional antibiotics in the era of antimicrobial resistance. Trends Microbiol 27(4):323–338

    Article  CAS  PubMed  Google Scholar 

  • Gopal R, Lee JH, Kim YG, Kim M-S, Seo CH, Park Y (2013) Anti-microbial, anti-biofilm activities and cell selectivity of the NRC-16 peptide derived from witch flounder, Glyptocephalus cynoglossus. Mar Drugs 11(6):1836–1852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • van der Helm A (2014) An overview of alternatives for conventional antibiotics

    Google Scholar 

  • Hwang PM, Zhou N, Shan X, Arrowsmith CH, Vogel HJ (1998) Three-dimensional solution structure of lactoferricin B, an antimicrobial peptide derived from bovine lactoferrin. Biochemistry 37(12):4288–4298

    Article  CAS  PubMed  Google Scholar 

  • Izadpanah A, Gallo RL (2005) Antimicrobial peptides. J Am Acad Dermatol 52(3):381–390

    Article  PubMed  Google Scholar 

  • Jacob L, Zasloff M (1994) Potential therapeutic applications of magainins and other antimicrobial agents of animal origin. Antimicrob Pept 186:197–223

    CAS  Google Scholar 

  • Jani S, Ramirez MS, Tolmasky ME (2021) Silencing antibiotic resistance with antisense oligonucleotides. Biomedicine 9(4):416

    CAS  Google Scholar 

  • van Kan E, van der Bent A, van Amerongen A (1998) Antimicrobial peptides as food preservatives. In: SON-study section for protein research, 7-8 December, Lunteren, The Netherlands

    Google Scholar 

  • Kang S-J, Park SJ, Mishig-Ochir T, Lee B-J (2014) Antimicrobial peptides: therapeutic potentials. Expert Rev Anti-Infect Ther 12(12):1477–1486

    Article  CAS  PubMed  Google Scholar 

  • Kang H-K, Kim C, Seo CH, Park Y (2017) The therapeutic applications of antimicrobial peptides (AMPs): a patent review. J Microbiol 55(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Killian JA (1992) Gramicidin and gramicidin-lipid interactions. Biochim Biophys Acta 1113(3–4):391–425

    Article  CAS  PubMed  Google Scholar 

  • Koczulla AR, Bals R (2003) Antimicrobial peptides. Drugs 63(4):389–406

    Article  CAS  PubMed  Google Scholar 

  • Koo HB, Seo J (2019) Antimicrobial peptides under clinical investigation. Pept Sci 111(5):e24122

    Article  Google Scholar 

  • Kościuczuk EM, Lisowski P, Jarczak J, Strzałkowska N, Jóźwik A, Horbańczuk J, Krzyżewski J, Zwierzchowski L, Bagnicka E (2012) Cathelicidins: family of antimicrobial peptides. A review. Mol Biol Rep 39(12):10957–10970

    Article  PubMed  PubMed Central  Google Scholar 

  • Kosikowska P, Lesner A (2016) Antimicrobial peptides (AMPs) as drug candidates: a patent review (2003–2015). Expert Opin Ther Pat 26(6):689–702

    Article  CAS  PubMed  Google Scholar 

  • Kuhn-Nentwig L, Müller J, Schaller J, Walz A, Dathe M, Nentwig W (2002) Cupiennin 1, a new family of highly basic antimicrobial peptides in the venom of the spider Cupiennius salei (Ctenidae). J Biol Chem 277(13):11208–11216

    Article  CAS  PubMed  Google Scholar 

  • Mahlapuu M, Håkansson J, Ringstad L, Björn C (2016) Antimicrobial peptides: an emerging category of therapeutic agents. Front Cell Infect Microbiol 6:194

    Article  PubMed  PubMed Central  Google Scholar 

  • Mandard N, Sy D, Maufrais C, Bonmatin J-M, Bulet P, Hetru C, Vovelle F (1999) Androctonin, a novel antimicrobial peptide from scorpion Androctonus australis: solution structure and molecular dynamics simulations in the presence of a lipid monolayer. J Biomol Struct Dyn 17(2):367–380

    Article  CAS  PubMed  Google Scholar 

  • Mirski T, Niemcewicz M, Bartoszcze M, Gryko R, Michalski A (2018) Utilisation of peptides against microbial infections—a review. Ann Agric Environ Med 25:205–210

    Article  CAS  Google Scholar 

  • Mohamed MF, Abdelkhalek A, Seleem MN (2016) Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep 6(1):1–14

    Article  Google Scholar 

  • Mor A (2000) Antimicrobial peptides. In: Kirk-Othmer encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  • Munshi T, Sparrow A, Wren BW, Reljic R, Willcocks SJ (2020) The antimicrobial peptide, Bactenecin 5, supports cell-mediated but not humoral immunity in the context of a mycobacterial antigen vaccine model. Antibiotics 9(12):926

    Article  CAS  PubMed Central  Google Scholar 

  • Park Y-K, Hahm K-S (2005) Antimicrobial peptides (AMPs): peptide structure and mode of action. BMB Rep 38(5):507–516

    Article  CAS  Google Scholar 

  • Peravali J, Kotra S, Sobha K, Nelson R, Rajesh K, Pulicherla K (2013) Antimicrobial peptides: an effective alternative for antibiotic therapy. Mintage J Pharm Med Sci 2(2):1–7

    CAS  Google Scholar 

  • Piper P, Mahé Y, Thompson S, Pandjaitan R, Holyoak C, Egner R, Mühlbauer M, Coote P, Kuchler K (1998) The Pdr12 ABC transporter is required for the development of weak organic acid resistance in yeast. EMBO J 17(15):4257–4265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Powers J-PS, Rozek A, Hancock RE (2004) Structure–activity relationships for the β-hairpin cationic antimicrobial peptide polyphemusin I. Biochim Biophys Acta 1698(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Radermacher S, Schoop V, Schluesener H (1993) Bactenecin, a leukocytic antimicrobial peptide, is cytotoxic to neuronal and glial cells. J Neurosci Res 36(6):657–662

    Article  CAS  PubMed  Google Scholar 

  • Reddy K, Yedery R, Aranha C (2004) Antimicrobial peptides: premises and promises. Int J Antimicrob Agents 24(6):536–547

    Article  CAS  PubMed  Google Scholar 

  • Ricci M, Horváti K, Juhász T, Szigyártó I, Török G, Sebák F, Bodor A, Homolya L, Henczkó J, Pályi B (2020) Anionic food color tartrazine enhances antibacterial efficacy of histatin-derived peptide DHVAR4 by fine-tuning its membrane activity. Q Rev Biophys 53:e5

    Article  PubMed  Google Scholar 

  • Schneider JJ, Unholzer A, Schaller M, Schäfer-Korting M, Korting HC (2005) Human defensins. J Mol Med 83(8):587–595

    Article  CAS  PubMed  Google Scholar 

  • Sharma R, Lomash S, Salunke DM (2013) Putative bioactive motif of tritrpticin revealed by an antibody with biological receptor-like properties. PLoS One 8(9):e75582

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sperstad SV, Haug T, Blencke H-M, Styrvold OB, Li C, Stensvåg K (2011) Antimicrobial peptides from marine invertebrates: challenges and perspectives in marine antimicrobial peptide discovery. Biotechnol Adv 29(5):519–530

    Article  CAS  PubMed  Google Scholar 

  • Sun C, Gu L, Hussain MA, Chen L, Lin L, Wang H, Pang S, Jiang C, Jiang Z, Hou J (2019) Characterization of the bioactivity and mechanism of bactenecin derivatives against food-pathogens. Front Microbiol 10:2593

    Article  PubMed  PubMed Central  Google Scholar 

  • Tew GN, Scott RW, Klein ML, DeGrado WF (2010) De novo design of antimicrobial polymers, foldamers, and small molecules: from discovery to practical applications. Acc Chem Res 43(1):30–39

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Usmani SS, Bedi G, Samuel JS, Singh S, Kalra S, Kumar P, Ahuja AA, Sharma M, Gautam A, Raghava GP (2017) THPdb: database of FDA-approved peptide and protein therapeutics. PLoS One 12(7):e0181748

    Article  PubMed  PubMed Central  Google Scholar 

  • Vergis J, Malik SS, Pathak R, Kumar M, Ramanjaneya S, Kurkure NV, Barbuddhe SB, Rawool DB (2019) Antimicrobial efficacy of indolicidin against multi-drug resistant enteroaggregative Escherichia coli in a Galleria mellonella model. Front Microbiol 10:2723

    Article  PubMed  PubMed Central  Google Scholar 

  • Vetterli SU, Zerbe K, Müller M, Urfer M, Mondal M, Wang S-Y, Moehle K, Zerbe O, Vitale A, Pessi G (2018) Thanatin targets the intermembrane protein complex required for lipopolysaccharide transport in Escherichia coli. Sci Adv 4(11):eaau2634

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Violette A, Fournel S, Lamour K, Chaloin O, Frisch B, Briand J-P, Monteil H, Guichard G (2006) Mimicking helical antibacterial peptides with nonpeptidic folding oligomers. Chem Biol 13(5):531–538

    Article  CAS  PubMed  Google Scholar 

  • Wimley WC (2010) Describing the mechanism of antimicrobial Peptide action with the interfacial activity model. ACS Chem Biol 5(10):905–17

    Google Scholar 

  • Wu M, Hancock RE (1999) Improved derivatives of bactenecin, a cyclic dodecameric antimicrobial cationic peptide. Antimicrob Agents Chemother 43(5):1274–1276

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zairi A, Tangy F, Bouassida K, Hani K (2009) Dermaseptins and magainins: antimicrobial peptides from frogs’ skin—new sources for a promising spermicides microbicides—a mini review. J Biomed Biotechnol 2009:452567

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sethi, N. (2022). Antimicrobial Peptides and Small Molecules as Antibiotics Substitute. In: Akhtar, N., Singh, K.S., Prerna, Goyal, D. (eds) Emerging Modalities in Mitigation of Antimicrobial Resistance. Springer, Cham. https://doi.org/10.1007/978-3-030-84126-3_11

Download citation

Publish with us

Policies and ethics