Skip to main content

Fundamentals of Adsorption Process onto Carbon, Integration with Biological Process for Treating Industrial Waste Water: Future Perspectives and Challenges

  • Chapter
  • First Online:
Advanced Industrial Wastewater Treatment and Reclamation of Water

Abstract

Presence of various types of micro-pollutants in domestic, industrial and municipal wastewater and landfill leachates are hazardous for living organisms. Thus, industries need to follow stringent requirements for discharging the chemicals in aquatic system. Organic pollutants, including dyes, hormones, phenols, pharmaceuticals, aromatic compounds, dyes, herbicides, pesticides, bromine containing retardants, industrial by-products, domestic products, sterilisers, and antiseptics, are referred as xenobiotic organic compounds (XOCs). Traditional treatment techniques used for organic pollutant removal is not sufficient. The porous carbonaceous structure of granular (GAC) and powdered (PAC) activate carbon can adsorb targeted pollutants from water. The surface area of activated carbon can be varied from (500ā€“1500 m2gāˆ’1). The first part of the chapter illustrated the basic mechanism for adsorptive removal of contaminants over powdered and granular activated carbon (PAC or GAC). Now a days, adsorption onto activated carbon is integrated with biological process for treating industrial effluents. Adsorption integrated with biological treatment of waste water can be carried out using powdered activated carbon membrane bioreactor (PAC-MBR) and biological activated carbon reactor (BAC). The fundamentals of using activated carbon adsorption process integrated with biological treatment is discussed in the subsequent section of the chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Adebisi GA, Chowdhury ZZ, Alaba PA (2017a) Equilibrium, kinetic, and thermodynamic studies of lead ion and zinc ion adsorption from aqueous solution onto activated carbon prepared from palm oil mill effluent. J Clean Prod 148:958ā€“968. https://doi.org/10.1016/j.jclepro.2017.02.047

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Adebisi GA, Chowdhury ZZ, Abd Hamid SB, Ali E (2017b) Equilibrium isotherm, kinetic, and thermodynamic studies of divalent cation adsorption onto Calamus gracilis sawdust-based activated carbon. BioResources 12(2). https://doi.org/10.15376/biores.12.2.2872-2898

  • Adebisi GA, Chowdhury ZZ, Abd Hamid SB, Ali E (2016) Hydrothermally treated banana empty fruit bunch fiber activated carbon for Pb(II) and Zn(II) removal. BioResources 11(4). https://doi.org/10.15376/biores.11.4.9686-9709

  • Ahnert F, Arafat HA, Pinto NG (2003) A study of the influence of hydrophobicity of activated carbon on the adsorption equilibrium of aromatics in non-aqueous media. Adsorption 9:311ā€“319

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ahmed A, Abu Bakar MS, Azad AK, Sukri RS, Phusunti N (2018) Intermediate pyrolysis of Acacia cincinnata and Acacia holosericea species for bio-oil and biochar production. Energy Convers Manag 176:393ā€“408. https://doi.org/10.1016/j.enconman.2018.09.041

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ahmed MJ (2017) Adsorption of non-steroidal anti-inflammatory drugs from aqueous solution using activated carbons: review. J Environ Manag 190:274ā€“282. https://doi.org/10.1016/j.jenvman.2016.12.073

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Akinpelu AA, Ali ME, Johan MR, Saidur R, Chowdhury ZZ, Shemsi AM, Saleh TA (2019) Effect of the oxidation process on the molecular interaction of polyaromatic hydrocarbons (PAH) with carbon nanotubes: adsorption kinetic and isotherm study. J Mol Liq 289:111107. https://doi.org/10.1016/j.molliq.2019.111107

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Akinpelu AA, Chowdhury ZZ, Shibly SM, Faisal ANM, Badruddin IA, Rahman MM, Amin MA, Sagadevan S, Akbarzadeh O, Khan TMY, Kamangar S, Khalid K, Saidur R, Johan MR (2021) Adsorption studies of volatile organic compound (naphthalene) from aqueous effluents: chemical activation process using weak Lewis acid, equilibrium kinetics and isotherm modelling. Int J Mol Sci 22(4):2090. https://doi.org/10.3390/ijms22042090

    ArticleĀ  PubMedĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Akinpelu AA, Ali ME, Owolabi TO, Johan MR, Saidur R, Olatunji SO, Chowdbury Z (2020) A support vector regression model for the prediction of total polyaromatic hydrocarbons in soil: an artificial intelligent system for mapping environmental pollution. Neural Comput Appl 32(18):14899ā€“14908. https://doi.org/10.1007/s00521-020-04845-3

    ArticleĀ  Google ScholarĀ 

  • Aktaş Z, ƇeƧen F (2007) Bioregeneration of activated carbon: a review. Int Biodeterior Biodegrad 59(4):257ā€“272. https://doi.org/10.1016/j.ibiod.2007.01.003

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Alhamed YA (2009) Adsorption kinetics and performance of packed bed adsorber for phenol removal using activated carbon from datesā€™ stones. J Hazard Mater 170(2ā€“3):763ā€“770. https://doi.org/10.1016/j.jhazmat.2009.05.002

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Azimi A, Azari A, Rezakazemi M, Ansarpour M (2017) Removal of heavy metals from industrial wastewaters: a review. ChemBioEng Rev 4(1):37ā€“59. https://doi.org/10.1002/cben.201600010

    ArticleĀ  Google ScholarĀ 

  • Balasundram V, Ibrahim N, Kasmani RM, Hamid MKA, Isha R, Hasbullah H, Ali RR (2017) Thermogravimetric catalytic pyrolysis and kinetic studies of coconut copra and rice husk for possible maximum production of pyrolysis oil. J Clean Prod 167:218ā€“228. https://doi.org/10.1016/j.jclepro.2017.08.173

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Bernhardt A, Gysi N (2016) Worldā€™s worst pollution problems: the toxics beneath our feet. Fabrikstrasse 17, 8005, Zurich, Switzerland

    Google ScholarĀ 

  • Bian Y, Yuan Q, Zhu G, Ren B, Hursthouse A, Zhang P (2018) Recycling of waste sludge: preparation and application of sludge-based activated carbon. Int J Polym Sci 2018:1ā€“17. https://doi.org/10.1155/2018/8320609

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chang H, Yuan XG, Tian H, Zeng AW (2006) Experiment and prediction of breakthrough curves for packed bed adsorption of water vapor on cornmeal. Chem Eng Process: Process Intensif 45(9):747ā€“754. https://doi.org/10.1016/j.cep.2006.03.001

    ArticleĀ  CASĀ  Google ScholarĀ 

  • ƇeƧen F, Aktaş Ɩ (2011) Activated carbon for water and wastewater treatment. Wiley-VCH. ISBN: 978-3-527-32471-2

    Google ScholarĀ 

  • Cheremisinoff NP (2002) Handbook of water and wastewater treatment technologies. Butterworth-Heinemann, Woburn, MA, USA

    Google ScholarĀ 

  • Chowdhury Z, Krishnan B, Sagadevan S, Rafique R, Hamizi N, Abdul Wahab Y, Khan A, Johan R, Al-douri Y, Kazi S, Tawab Shah S (2018) Effect of temperature on the physical, electro-chemical and adsorption properties of carbon micro-spheres using hydrothermal carbonization process. Nanomaterials 8(8):597. https://doi.org/10.3390/nano8080597

    ArticleĀ  PubMed CentralĀ  CASĀ  Google ScholarĀ 

  • Chowdhury ZZ, Pal K, Johan RB, Yehya Dabdawb WA, Ali ME, Faizur Rafique R (2017) Comparative evaluation of physiochemical properties of a solid fuel derived from Adansonia digitata trunk using torrefaction. BioResources 12(2). https://doi.org/10.15376/biores.12.2.3816-3833

  • Chowdhury ZZ, Yehye WA, Julkapli NM, Al Saadi MAH, Atieh MA (2016) Application of graphitic bio-carbon using two-level factorial design for microwave-assisted carbonization. BioResources 11(2). https://doi.org/10.15376/biores.11.2.3637-3659

  • Chowdhury ZZ, Hasan MR, Abd Hamid SB, MarlinaSamsudin E, Zain SM, Khalid K (2015) Catalytic pretreatment of biochar residues derived from lignocellulosic feedstock for equilibrium studies of manganese, Mn(II) cations from aqueous solution. RSC Adv 5(9):6345ā€“6356. https://doi.org/10.1039/c4ra09709b

    ArticleĀ  ADSĀ  CASĀ  Google ScholarĀ 

  • Chowdhury ZZ, Sharifuddin MZ, Rashid AK, Khalid K (2012) Application of Response Surface Methodology (RSM) for optimizing production condition for removal of Pb (II) and Cu (II) onto kenaf fiber based activated carbon. Res J Appl Sci Eng Technol (RJASET) 4(5):458ā€“465

    CASĀ  Google ScholarĀ 

  • Chowdhury ZZ, Zain SM, Rashid AK, Rafique RF, Khalid K (2013) Breakthrough curve analysis for column dynamics sorption of Mn(II) ions from wastewater by using Mangostana garcinia peel-based granular-activated carbon. J Chem 1ā€“8. https://doi.org/10.1155/2013/959761

  • Chowdhury ZZ, Zain SM, Rashid AK, Ahmed AA (2011a) Equilibrium kinetics and isotherm studies of Cu (II) adsorption from waste water onto alkali activated oil palm ash. Am J Appl Sci 8(3):230ā€“237. https://doi.org/10.3844/ajassp.2011.230.237

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Chowdhury ZZ, Zain SM, Rashid AK, Khalid K (2011b) Linear regression analysis for kinetics and isotherm studies of sorption of manganese (II) ions onto activated palm ash from waste water. Orient J Chem 27(2):405ā€“415

    CASĀ  Google ScholarĀ 

  • Danish M, Hashim R, Ibrahim MNM, Rafatullah M, Ahmad T, Sulaiman O (2011) Characterization of Acacia mangium wood based activated carbons prepared in the presence of basic activating agents. BioResources 8(3):3019ā€“3033

    Google ScholarĀ 

  • Danish M, Hashim R, Ibrahim MM, Sulaiman O (2013) Effect of acidic activating agents on surface area and surface functional groups of activated carbons produced from Acacia mangium wood. J Anal Appl Pyrolysis 104:418ā€“425. https://doi.org/10.1016/j.jaap.2013.06.003

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Danish M, Ahmad T (2018) A review on utilization of wood biomass as a sustainable precursor for activated carbon production and application. Renew Sustain Energy Rev 87:1ā€“21. https://doi.org/10.1016/j.rser.2018.02.003

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Din MI, Ashraf S, Intisar A (2017) Comparative study of different activation treatments for the preparation of activated carbon: a mini-review. Sci Prog 100(3):299ā€“312. https://doi.org/10.3184/003685017X14967570531606

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Emanuelsson MA, Henriques IS, Ferreira Jorge RM, Castro PM (2006) Biodegradation of 2-fluorobenzoate in upflow fixed bed bioreactors operated with different growth support materials. J Chem Technol Biotechnol 81(9):1577ā€“1585. https://doi.org/10.1002/jctb.1565

    ArticleĀ  CASĀ  Google ScholarĀ 

  • El Gamal M, Mousa HA, El-Naas MH, Zacharia R, Judd S (2018) Bio-regeneration of activated carbon: a comprehensive review. Sep Purif Technol 197:345ā€“359. https://doi.org/10.1016/j.seppur.2018.01.015

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hansen BR, Davies SR (1994) Review of potential technologies for the removal of dissolved components from produced water. Chem Eng Res Des 72:176ā€“188

    CASĀ  Google ScholarĀ 

  • Hendricks D (2006) Water treatment unit processes: physical and chemical. CRC Press, USA

    Google ScholarĀ 

  • Huang T, Zhou R, Cui J, Zhang J, Tang X, Chen S, Feng J, Liu H (2018) Fast and cost-effective preparation of antimicrobial zinc oxide embedded in activated carbon composite for water purification applications. Mater Chem Phys 206:124ā€“129. https://doi.org/10.1016/j.matchemphys.2017.11.044

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Hung Y, Lo HH, Wang LK, Taricska JR, Li KH (2005) Granular activated carbon adsorption. In: Wang LK, Hung Y, Shammas NH (eds) Physicochemical treatment processes. Handbook of environmental engineering, vol 3. The Humana Press Inc., Totowa, New Jersey, USA

    Google ScholarĀ 

  • Inglezakis VJ, Poulopoulos SG (eds) (2006) Adsorption, ion exchange and catalysis: design of operations and environmental applications. Elsevier, Amsterdam The Netherlands

    Google ScholarĀ 

  • Jones RA, Thibault J, Tezel FH (2010) Simulation and validation of ethanol removal from water in an adsorption packed bed: isotherm and mass transfer parameter determination in batch studies. Can J Chem Eng. https://doi.org/10.1002/cjce.20337

    ArticleĀ  Google ScholarĀ 

  • Joss A, Zabczynski S, Gƶbel A, Hoffmann B, Lƶffler D, McArdell CS, Ternes TA, Thomsen A, Siegrist H (2006) Biological degradation of pharmaceuticals in municipal wastewater treatment: proposing a classification scheme. Water Res 40(8):1686ā€“1696. https://doi.org/10.1016/j.watres.2006.02.014

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Julien F, Baudu M, Mazet M (1998) Relationship between chemical and physical surface properties of activated carbon. Water Res 32(11):3414ā€“3424. https://doi.org/10.1016/s0043-1354(98)00109-2

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Karimi S, TavakkoliYaraki M, Karri RR (2019) A comprehensive review of the adsorption mechanisms and factors influencing the adsorption process from the perspective of bioethanol dehydration. Renew Sustain Energy Rev 107:535ā€“553. https://doi.org/10.1016/j.rser.2019.03.025

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Karri RR, Jayakumar N, Sahu J (2017) Modelling of fluidised-bed reactor by differential evolution optimization for phenol removal using coconut shells based activated carbon. J Mol Liq 231:249ā€“262. https://doi.org/10.1016/j.molliq.2017.02.003

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Khalili NR, Campbell M, Sandi G, Golaś J (2000) Production of micro- and mesoporous activated carbon from paper mill sludge. Carbon 38(14):1905ā€“1915. https://doi.org/10.1016/s0008-6223(00)00043-9

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Lankford PW, Eckenfelder WW (1990) Toxicity reduction in industrial effluents. Van Nostrand Reinhold, New York, USA

    Google ScholarĀ 

  • Le-Minh N, Sivret EC, Shammay A, Stuetz RM (2018) Factors affecting the adsorption of gaseous environmental odors by activated carbon: a critical review. Crit Rev Environ Sci Technol 48(4):341ā€“375. https://doi.org/10.1080/10643389.2018.1460984

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Li Q, Qi Y, Gao C (2015) Chemical regeneration of spent powdered activated carbon used in decolorization of sodium salicylate for the pharmaceutical industry. J Clean Prod 86:424ā€“431. https://doi.org/10.1016/j.jclepro.2014.08.008

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Meidl JA (1997) Responding to changing conditions: how powdered activated carbon systems can provide the operational flexibility necessary to treat contaminated groundwater and industrial wastes. Carbon 35(9):1207ā€“1216

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Morgenroth E (2008) Biofilm reactors. In: Henze M, van Loosdrecht MCM, Ekama GA, Brdjanovic D (eds) Biological wastewater treatment, principles, modelling and design. IWA Publishing, pp 493ā€“511

    Google ScholarĀ 

  • Muā€™azu N, Jarrah N, Zubair M, Alagha O (2017) Removal of phenolic compounds from water using sewage sludge-based activated carbon adsorption: a review. Int J Environ Res Public Health 14(10):1094. https://doi.org/10.3390/ijerph14101094

  • Oladipo AA, Ifebajo AO, Nisar N, Ajayi OA (2017) High-performance magnetic chicken bone-based biochar for efficient removal of rhodamine-B dye and tetracycline: competitive sorption analysis. Water Sci Techno: J Int Assoc Water Pollut Res 76(2):373ā€“385. https://doi.org/10.2166/wst.2017.209

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Oladipo AA, Gazi M (2015) Microwaves initiated synthesis of activated carbon-based composite hydrogel for simultaneous removal of copper (II) ions and direct red 80 dye: a multi-component adsorption system. J Taiwan Inst Chem Eng 47:125ā€“136. https://doi.org/10.1016/j.jtice.2014.09.027

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Pam AA, Abdullah AH, Tan YP, Zainal Z (2018) Batch and fixed bed adsorption of Pb(II) from aqueous solution using EDTA modified activated carbon derived from palm kernel shell. BioResources 13(1). https://doi.org/10.15376/biores.13.1.1235-1250

  • Radic D, Stanojevic M, Obradovic M, Jovovic A (2017) Thermal analysis of physical and chemical changes occurring during regeneration of activated carbon. Therm Sci 21(2):1067ā€“1081. https://doi.org/10.2298/tsci150720048r

    ArticleĀ  Google ScholarĀ 

  • Rafique RF, Min Z, Son G, Lee SH (2015) Removal of cadmium ion using micellar-enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes: adsorption isotherm study for micelle onto ACF. Desalin Water Treat 57(17):7780ā€“7788. https://doi.org/10.1080/19443994.2015.1057538

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rafique RF, Lee S (2014) Micellar enhanced ultrafiltration (MEUF) and Activated carbon fiber (ACF) hybrid processes for the removal of cadmium from an aqueous solution. Korean Chem Eng Res 52(6):775ā€“780. https://doi.org/10.9713/kcer.2014.52.6.775

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Rafique RF, Chowdhury ZZ, Moon J, Lee S (2018) Application of micellar enhanced ultrafiltration (MEUF) and activated carbon fiber (ACF) hybrid processes for the removal of nickel from an aqueous solution. Int J Eng Technol 10:112ā€“120

    ArticleĀ  Google ScholarĀ 

  • Razi MA, Al-Gheethi A, Al-Qaini M, Yousef A (2018) Efficiency of activated carbon from palm kernel shell for treatment of greywater. Arab J Basic Appl Sci 25(3):103ā€“110. https://doi.org/10.1080/25765299.2018.1514142

    ArticleĀ  Google ScholarĀ 

  • Reza MS, Yun CS, Afroze S, Radenahmad N, Bakar MSA, Saidur R, Taweekun J, Azad AK (2020) Preparation of activated carbon from biomass and itsā€™ applications in water and gas purification, a review. Arab J Basic Appl Sci 27(1):208ā€“238. https://doi.org/10.1080/25765299.2020.1766799

    ArticleĀ  Google ScholarĀ 

  • Regti A, Laamari MR, Stiriba S-E, El Haddad M (2017) Potential use of activated carbon derived from Persea species under alkaline conditions for removing cationic dye from wastewaters. J Assoc Arab Univ Basic Appl Sci 24:10ā€“18. https://doi.org/10.1016/j.jaubas.2017.01.003

    ArticleĀ  Google ScholarĀ 

  • Sher MI, Arbuckle WB, Shen Z (2000) Oxygen uptake rate inhibition with PACTTM sludge. J Hazard Mater 73(2):129ā€“142

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Shi Q, Zhang J, Zhang C, Li C, Zhang B, Hu W, Xu J, Zhao R (2010) Preparation of activated carbon from cattail and its application for dyes removal. J Environ Sci 22(1):91ā€“97. https://doi.org/10.1016/s1001-0742(09)60079-6

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Silva M (2004) Preliminary feasibility study for the use of an adsorption/bio-regeneration system for molinate removal from effluents. Water Res. https://doi.org/10.1016/s0043-1354(04)00151-4

    ArticleĀ  PubMedĀ  Google ScholarĀ 

  • Snoeyink VL, Summers RS (1999) Adsorption of organic compounds. In: Letterman RD (ed) Water quality and treatment, 5th edn. McGraw-Hill, New York, NY

    Google ScholarĀ 

  • Suthersan SS (1999) Pump and treat systems. In: Suthersan SS, Raton B (eds) Remediation engineering: design concepts. CRC Press, LLC

    Google ScholarĀ 

  • Sun N, Okoye C, Niu CH, Wang H (2007) Adsorption of water and ethanol by biomaterials. Int J Green Energy 4(6):623ā€“634. https://doi.org/10.1080/15435070701665396

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Tan K, Hameed B (2017) Insight into the adsorption kinetics models for the removal of contaminants from aqueous solutions. J Taiwan Inst Chem Eng 74:25ā€“48. https://doi.org/10.1016/j.jtice.2017.01.024

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Thomas WJ, Crittenden B (1998) Adsorption technology and design. Elsevier Science and Technology Books. ISBN 0750619597

    Google ScholarĀ 

  • Veil JA (2011) Produced water management options and technologies. Produced water: Environmental risks and advances in mitigation technologies. Springer, New York, pp 537ā€“571

    ChapterĀ  Google ScholarĀ 

  • Vinitnantharat S, Baral A, Ishibashi Y, Ha SR (2001) Quantitative bioregeneration of granular activated carbon loaded with phenol and 2,4-dichlorophenol. Environ Technol 22(3):339ā€“344. https://doi.org/10.1080/09593332208618288

    ArticleĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Worch E (2008) Fixed-bed adsorption in drinking water treatment: a critical review on models and parameter estimation. J Water Supply: Res Technol AQUA 57(3):171ā€“183

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Worch E (2009) Adsorptionsverfahren in der Trinkwasseraufbereitung. Wien Mitt 212:207ā€“230

    Google ScholarĀ 

  • WWAP/UN-Water (2018) The United Nations world water development report 2018: nature-based solutions for water. 7, Place de Fontenoy, 75352 Paris 07 SP, France

    Google ScholarĀ 

  • Yonge DR, Keinath TM, Poznanska K, Jiang ZP (1985) Single-solute irreversible adsorption on granular activated carbon. Environ Sci Technol 19(8):690ā€“694. https://doi.org/10.1021/es00138a006

    ArticleĀ  ADSĀ  PubMedĀ  CASĀ  Google ScholarĀ 

  • Yonge DR, Keinath TM (1986) The effects of non-ideal competition on multi-component adsorption equilibria. J Water Pollut Control Fed 58:77ā€“81

    CASĀ  Google ScholarĀ 

  • Yousef R, Qiblawey H, El-Naas MH (2020) Adsorption as a process for produced water treatment: a review. Processes 8(12):1657. https://doi.org/10.3390/pr8121657

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zbair M, Ainassaari K, Drif A, Ojala S, Bottlinger M, PirilƤ M, Keiski RL, Bensitel M, Brahmi R (2017) Toward new benchmark adsorbents: preparation and characterization of activated carbon from argan nut shell for bisphenol A removal. Environ Sci Pollut Res 25(2):1869ā€“1882. https://doi.org/10.1007/s11356-017-0634-6

    ArticleĀ  CASĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zaira Zaman Chowdhury .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Barua, A. et al. (2022). Fundamentals of Adsorption Process onto Carbon, Integration with Biological Process for Treating Industrial Waste Water: Future Perspectives and Challenges. In: Roy, S., Garg, A., Garg, S., Tran, T.A. (eds) Advanced Industrial Wastewater Treatment and Reclamation of Water. Environmental Science and Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-83811-9_11

Download citation

Publish with us

Policies and ethics