Skip to main content

Anaerobic Biodegradation: The Anaerobic Digestion Process

  • Living reference work entry
  • First Online:
Handbook of Biodegradable Materials
  • 127 Accesses

Abstract

Our planet suffers from different types of pollution and the destruction of ecosystems due to the rapid proliferation of industrial units and demography, leading to significant organic waste production. On the other hand, fossil fuels progress toward depletion spreading an energy deficit over several nations. Thus, we need biotechnology that combines management, treatment, and energy generation but respects the environment. Anaerobic biodegradation is among the current biotechnologies that are gaining momentum to meet the previous requirements. It is a microbial process in an oxygen-free environment. We can currently distinguish several types of procedures in anaerobic biodegradation. First, we have anaerobic digestion, which makes anaerobic biodegradation unique because it combines organic conversion matter into green energy in an anaerobic context. This chapter will discuss the different roles of anaerobic biodegradation as a new treatment, management, and generation of green energy. On the other hand, we present the various concepts of anaerobic digestion as models, metabolic pathways, evaluation techniques, and the microbial applications of this solution. We also discussed the significant parameters that disturb this process to make it more efficient. Finally, we will highlight the energetic and economic importance of this biotechnology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Abbreviations

C1:

One carbon

C3:

Three carbon

CH4:

Methane

CO2:

Carbon dioxide

GDP:

Gross domestic product

NO2:

Nitrogen dioxide

TS:

Total solid

VS:

Volatile solid

References

  1. Högselius P, Kaijser A (2019) Energy dependence in historical perspective: The geopolitics of smaller nations. Energy Policy 127:438–444. https://doi.org/10.1016/j.enpol.2018.12.025

    Article  Google Scholar 

  2. Afilal M elamin, Elasri O, Merzak Z (2014) Organic waste characterization and evaluation of its potential biogas. J Mater Env Sci 5:1160–1169

    Google Scholar 

  3. Taoufik M, Fekri A (2021) GIS-based multi-criteria analysis of offshore wind farm development in Morocco. Energy Convers Manag X 11:100103. https://doi.org/10.1016/j.ecmx.2021.100103

    Article  Google Scholar 

  4. Lewis J, Severnini E (2020) Short- and long-run impacts of rural electrification: Evidence from the historical rollout of the U.S. power grid. J Dev Econ 143:102412. https://doi.org/10.1016/j.jdeveco.2019.102412

  5. Rentschler J, Kornejew M, Bazilian M (2017) Fossil fuel subsidy reforms and their impacts on firms. Energy Policy 108:617–623. https://doi.org/10.1016/j.enpol.2017.06.036

    Article  Google Scholar 

  6. Ludwig C, Hellweg S, Stucki S (2003) Municipal Solid Waste Management. Springer Berlin/Heidelberg

    Book  Google Scholar 

  7. Mushtaq J, Dar AQ, Ahsan N (2020) Spatial–temporal variations and forecasting analysis of municipal solid waste in the mountainous city of north-western Himalayas. SN Appl Sci 2:1161. https://doi.org/10.1007/s42452-020-2975-x

    Article  Google Scholar 

  8. Munawar E, Yunardi Y, Lederer J, Fellner J (2018) The development of landfill operation and management in Indonesia. J Mater Cycles Waste Manag 20:1128–1142. https://doi.org/10.1007/s10163-017-0676-3

    Article  Google Scholar 

  9. Arifin B, Bono A, Janaun J (2006) The transformation of chicken manure into mineralized organic fertilizer. J Sustain Sci Manag 1:58–63

    CAS  Google Scholar 

  10. Ganoulis J (2012) Risk analysis of wastewater reuse in agriculture. Int J Recycl Org Waste Agric 1:1–9

    Google Scholar 

  11. Anupoju GR, Ahuja S, Gandu B, et al (2015) Biogas from Poultry Litter: A Review on Recent Technological Advancements. In: Ravindra P (ed) Advances in Bioprocess Technology. Springer International Publishing, Cham, pp 133–147

    Chapter  Google Scholar 

  12. Dunkley CS, Dunkley KD (2013) Greenhouse Gas Emissions from Livestock and Poultry. Agric Food Anal Bacteriol 3:17–29

    Google Scholar 

  13. Megonigal JP, Hines ME, Visscher PT (2014) Anaerobic Metabolism: Linkages to Trace Gases and Aerobic Processes. In: Treatise on Geochemistry. Elsevier, pp 273–359

    Google Scholar 

  14. Lu Z, Imlay JA (2021) When anaerobes encounter oxygen: mechanisms of oxygen toxicity, tolerance and defence. Nat Rev Microbiol. https://doi.org/10.1038/s41579-021-00583-y

  15. Frings J, Schink B (1994) Fermentation of phenoxyethanol to phenol and acetate by a homoacetogenic bacterium. Arch Microbiol 162:199–204

    Article  CAS  Google Scholar 

  16. Häggblom MM, Rivera MD, Young LY (1993) Influence of alternative electron acceptors on the anaerobic biodegradability of chlorinated phenols and benzoic acids. Appl Environ Microbiol 59:1162–1167. https://doi.org/10.1128/aem.59.4.1162-1167.1993

    Article  Google Scholar 

  17. El Asri O, Afilal ME, Laiche H, Elfarh L (2020) Evaluation of physicochemical, microbiological, and energetic characteristics of four agricultural wastes for use in the production of green energy in Moroccan farms. Chem Biol Technol Agric 7:21. https://doi.org/10.1186/s40538-020-00187-3

    Article  CAS  Google Scholar 

  18. Angelidaki I, Karakashev D, Batstone DJ, et al (2011) Biomethanation and Its Potential. In: Rosenzweig A, Ragsdale S (eds) Methods in Enzymology. Elsevier, pp 327–351

    Google Scholar 

  19. Braun R (2007) Anaerobic digestion: a multi-faceted process for energy, environmental management and rural development. In: Ranalli P (ed) Improvement of Crop Plants for Industrial End Uses. Springer Netherlands, Dordrecht, pp 335–416

    Chapter  Google Scholar 

  20. Gavala HN, Angelidaki I, Ahring BK (2003) Kinetics and Modeling of Anaerobic Digestion Process. In: Ahring BK, Angelidaki I, de Macario EC, et al (eds) Biomethanation I. Springer Berlin/Heidelberg, pp 57–93

    Chapter  Google Scholar 

  21. Lyberatos G, Skiadas IV (1999) Modelling of anaerobic digestion-a Review. Glob NEST J 1:63–76

    Google Scholar 

  22. Hill DT (1982) A Comprehensive Dynamic Model for Animal Waste Methanogenesis. Trans ASAE 25:1374–1380. https://doi.org/10.13031/2013.33730

    Article  Google Scholar 

  23. Batstone DJ, Keller J, Newell RB, Newland M (2000) Modelling anaerobic degradation of complex wastewater. I: model development. Bioresour Technol 75:67–74. https://doi.org/10.1016/S0960-8524(00)00018-3

    Article  CAS  Google Scholar 

  24. Angelidaki I, Ellegaard L, Ahring BK (1993) A mathematical model for dynamic simulation of anaerobic digestion of complex substrates: Focusing on ammonia inhibition. Biotechnol Bioeng 42:159–166. https://doi.org/10.1002/bit.260420203

    Article  CAS  Google Scholar 

  25. De Vrieze J, Raport L, Willems B, et al (2015) Inoculum selection influences the biochemical methane potential of agro-industrial substrates: BMP tests of different substrates with different inocula. Microb Biotechnol 8:776–786. https://doi.org/10.1111/1751-7915.12268

    Article  CAS  Google Scholar 

  26. Nopharatana A, Pullammanappallil PC, Clarke WP (2007) Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Manag 27:595–603

    Article  CAS  Google Scholar 

  27. Batstone DJ, Keller J, Angelidaki I, et al (2002) The IWA Anaerobic Digestion Model No 1 (ADM1). Water Sci Technol 45:65–73

    Article  CAS  Google Scholar 

  28. Van Aarle IM, Perimenis A, Lima-Ramos J, et al (2015) Mixed inoculum origin and lignocellulosic substrate type both influence the production of volatile fatty acids during acidogenic fermentation. Biochem Eng J 103:242–249. https://doi.org/10.1016/j.bej.2015.07.016

    Article  CAS  Google Scholar 

  29. Ramsay IR, Pullammanappallil PC (2001) Protein degradation during anaerobic wastewater treatment: derivation of stoichiometry. Biodegradation 12:247–257. https://doi.org/10.1023/A:1013116728817

    Article  CAS  Google Scholar 

  30. Wagner AO, Lins P, Malin C, et al (2013) Impact of protein-, lipid- and cellulose-containing complex substrates on biogas production and microbial communities in batch experiments. Sci Total Environ 458–460:256–266. https://doi.org/10.1016/j.scitotenv.2013.04.034

    Article  CAS  Google Scholar 

  31. Rodríguez J, Kleerebezem R, Lema JM, van Loosdrecht MCM (2006) Modeling product formation in anaerobic mixed culture fermentations. Biotechnol Bioeng 93:592–606. https://doi.org/10.1002/bit.20765

    Article  CAS  Google Scholar 

  32. Winter J, Schindler F, Wildenauer FX (1987) Fermentation of alanine and glycine by pure and syntrophic cultures of Clostridium sporogenes. FEMS Microbiol Lett 45:153–161. https://doi.org/10.1111/j.1574-6968.1987.tb02351.x

    Article  CAS  Google Scholar 

  33. Banks CJ, Zotova EA, Heaven S (2010) Biphasic production of hydrogen and methane from waste lactose in cyclic-batch reactors. J Clean Prod 18:S95–S104. https://doi.org/10.1016/j.jclepro.2010.04.018

    Article  CAS  Google Scholar 

  34. Mata-Alvarez J (2003) Biomethanization of the Organic Fraction of Municipal Solid Wastes, Alliance House. IWA Publishing, London, UK

    Google Scholar 

  35. Kotsyurbenko OR (2005) Trophic interactions in the methanogenic microbial community of low-temperature terrestrial ecosystems. FEMS Microbiol Ecol 53:3–13. https://doi.org/10.1016/j.femsec.2004.12.009

    Article  CAS  Google Scholar 

  36. Batstone DJ, Picioreanu C, van Loosdrecht MCM (2006) Multidimensional modelling to investigate interspecies hydrogen transfer in anaerobic biofilms. Water Res 40:3099–3108. https://doi.org/10.1016/j.watres.2006.06.014

    Article  CAS  Google Scholar 

  37. Sasaki D, Hori T, Haruta S, et al (2011) Methanogenic pathway and community structure in a thermophilic anaerobic digestion process of organic solid waste. J Biosci Bioeng 111:41–46. https://doi.org/10.1016/j.jbiosc.2010.08.011

    Article  CAS  Google Scholar 

  38. Chynoweth D, Pullammanappallil P (1996) Anaerobic digestion of municpal solid wastes. In: Microbiology of solid waste, A. C. Palmisano and M. A. Barlaz. Boca Raton, Florida, USA

    Google Scholar 

  39. Bauer F, Persson T, Hulteberg C, Tamm D (2013) Biogas upgrading – technology overview, comparison and perspectives for the future. Biofuels Bioprod Biorefining 7:499–511. https://doi.org/10.1002/bbb.1423

    Article  CAS  Google Scholar 

  40. Ahlberg-Eliasson K, Nadeau E, Levén L, Schnürer A (2017) Production efficiency of Swedish farm-scale biogas plants. Biomass Bioenergy 97:27–37. https://doi.org/10.1016/j.biombioe.2016.12.002

    Article  CAS  Google Scholar 

  41. Budzianowski WM (2016) A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renew Sustain Energy Rev 54:1148–1171. https://doi.org/10.1016/j.rser.2015.10.054

    Article  Google Scholar 

  42. Awe OW, Zhao Y, Nzihou A, et al (2017) A Review of Biogas Utilisation, Purification and Upgrading Technologies. Waste Biomass Valorization 8:267–283. https://doi.org/10.1007/s12649-016-9826-4

    Article  CAS  Google Scholar 

  43. Abatzoglou N, Boivin S (2009) A review of biogas purification processes. Biofuels Bioprod Biorefining 3:42–71. https://doi.org/10.1002/bbb.117

    Article  CAS  Google Scholar 

  44. Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: A review. Bioresour Technol 99:4044–4064. https://doi.org/10.1016/j.biortech.2007.01.057

    Article  CAS  Google Scholar 

  45. Osorio F, Torres JC (2009) Biogas purification from anaerobic digestion in a wastewater treatment plant for biofuel production. Renew Energy 34:2164–2171. https://doi.org/10.1016/j.renene.2009.02.023

    Article  CAS  Google Scholar 

  46. Tippayawong N, Thanompongchart P (2010) Biogas quality upgrade by simultaneous removal of CO2 and H2S in a packed column reactor. Energy 35:4531–4535. https://doi.org/10.1016/j.energy.2010.04.014

    Article  CAS  Google Scholar 

  47. Horikawa MS, Rossi F, Gimenes ML, et al (2004) Chemical absorption of H2S for biogas purification. Braz J Chem Eng 21:415–422. https://doi.org/10.1590/S0104-66322004000300006

    Article  CAS  Google Scholar 

  48. O’Brien M (1991) Catalytic Oxidation of Sulfides in Biogas. In: Ventilation Air and Wastewater Streams from Anaerobic Digesters. Proceedings 1991 Food Industry Environmental Conference, USA

    Google Scholar 

  49. Wellinger A, Lindberg A (2009) Biogas upgrading technologies – developments and innovations. Switzerland

    Google Scholar 

  50. Nuchdang S, Phalakornkule C (2012) Anaerobic digestion of glycerol and co-digestion of glycerol and pig manure. J Environ Manage 101:164–172. https://doi.org/10.1016/j.jenvman.2012.01.031

    Article  CAS  Google Scholar 

  51. El Asri O, Afilal ME (2017) Comparison of the experimental and theoretical production of biogas by monosaccharides, disaccharides, and amino acids. Int J Environ Sci Technol. https://doi.org/10.1007/s13762-017-1570-1

  52. Esposito G (2012) Bio-Methane Potential Tests To Measure The Biogas Production From The Digestion and Co-Digestion of Complex Organic Substrates. Open Environ Eng J 5:1–8. https://doi.org/10.2174/1874829501205010001

    Article  CAS  Google Scholar 

  53. Periyasamy Elaiyaraju (2012) Biogas production from co-digestion of orange peel waste and jatropha de-oiled cake in an anaerobic batch reactor. Afr J Biotechnol 11:. https://doi.org/10.5897/AJB11.2622

  54. Juntarasiri P, Nijsunkij S, Buatick T, et al (2011) Enhancing Biogas Production from Padauk Angsana Leave and Wastewater Feedstock through Alkaline and Enzyme Pretreatment. Energy Procedia 9:207–215. https://doi.org/10.1016/j.egypro.2011.09.022

    Article  CAS  Google Scholar 

  55. Tian X, Wang C, Trzcinski AP, et al (2015) Insights on the solubilization products after combined alkaline and ultrasonic pre-treatment of sewage sludge. J Environ Sci 29:97–105. https://doi.org/10.1016/j.jes.2014.07.024

    Article  CAS  Google Scholar 

  56. Walker M, Zhang Y, Heaven S, Banks C (2009) Potential errors in the quantitative evaluation of biogas production in anaerobic digestion processes. Bioresour Technol 100:6339–6346. https://doi.org/10.1016/j.biortech.2009.07.018

    Article  CAS  Google Scholar 

  57. Labatut RA, Angenent LT, Scott NR (2011) Biochemical methane potential and biodegradability of complex organic substrates. Bioresour Technol 102:2255–2264. https://doi.org/10.1016/j.biortech.2010.10.035

    Article  CAS  Google Scholar 

  58. Komemoto K, Lim YG, Nagao N, et al (2009) Effect of temperature on VFA’s and biogas production in anaerobic solubilization of food waste. Waste Manag 29:2950–2955. https://doi.org/10.1016/j.wasman.2009.07.011

    Article  CAS  Google Scholar 

  59. Cioabla A, Ionel I, Dumitrel G-A, Popescu F (2012) Comparative study on factors affecting anaerobic digestion of agricultural vegetal residues. Biotechnol Biofuels 5:39. https://doi.org/10.1186/1754-6834-5-39

    Article  Google Scholar 

  60. Angelidaki I, Ellegaard L, Ahring BK (2003) Applications of the Anaerobic Digestion Process. In: Ahring BK, Ahring BK, Angelidaki I, et al (eds) Biomethanation II. Springer Berlin/Heidelberg, pp 1–33

    Google Scholar 

  61. Yadvika, Santosh, Sreekrishnan TR, et al (2004) Enhancement of biogas production from solid substrates using different techniques––a review. Bioresour Technol 95:1–10. https://doi.org/10.1016/j.biortech.2004.02.010

    Article  CAS  Google Scholar 

  62. Kalyuzhnyi SV (1997) Batch anaerobic digestion of glucose and its mathematical modeling. II. Description, verification and application of model. Bioresour Technol 59:249–258. https://doi.org/10.1016/S0960-8524(96)00125-3

    Article  CAS  Google Scholar 

  63. Zhou J, Zhang R, Liu F, et al (2016) Biogas production and microbial community shift through neutral pH control during the anaerobic digestion of pig manure. Bioresour Technol 217:44–49. https://doi.org/10.1016/j.biortech.2016.02.077

    Article  CAS  Google Scholar 

  64. Fricke K, Santen H, Wallmann R, et al (2007) Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Manag 27:30–43. https://doi.org/10.1016/j.wasman.2006.03.003

    Article  CAS  Google Scholar 

  65. Khalid A, Arshad M, Anjum M, et al (2011) The anaerobic digestion of solid organic waste. Waste Manag 31:1737–1744

    Article  CAS  Google Scholar 

  66. Angelidaki I, Ahring BK (1993) Thermophilic anaerobic digestion of livestock waste: the effect of ammonia. Appl Microbiol Biotechnol 38:. https://doi.org/10.1007/BF00242955

  67. Hilton BL, Oleszkiewicz Jan A (1988) Sulfide-Induced Inhibition of Anaerobic Digestion. J Environ Eng 114:1377–1391. https://doi.org/10.1061/(ASCE)0733-9372(1988)114:6(1377)

    Article  CAS  Google Scholar 

  68. Harada H, Uemura S, Momonoi K (1994) Interaction between sulfate-reducing bacteria and methane-producing bacteria in UASB reactors fed with low strength wastes containing different levels of sulfate. Water Res 28:355–367. https://doi.org/10.1016/0043-1354(94)90273-9

    Article  CAS  Google Scholar 

  69. Hulshoff Pol LW, Lens PN, Stams AJM, Lettinga G (1998) Anaerobic treatment of sulphate-rich wastewaters. Biodegradation 9:213–224. https://doi.org/10.1023/A:1008307929134

    Article  CAS  Google Scholar 

  70. Jha P, Biswas AK, Lakaria BL, et al (2014) Predicting Total Organic Carbon Content of Soils from Walkley and Black Analysis. Commun Soil Sci Plant Anal 45:713–725. https://doi.org/10.1080/00103624.2013.874023

    Article  CAS  Google Scholar 

  71. Tanimu MI, Mohd Ghazi TI, Harun MR, Idris A (2015) Effects of feedstock carbon to nitrogen ratio and organic loading on foaming potential in mesophilic food waste anaerobic digestion. Appl Microbiol Biotechnol 99:4509–4520. https://doi.org/10.1007/s00253-015-6486-4

    Article  CAS  Google Scholar 

  72. Iacovidou E, Ohandja D-G, Voulvoulis N (2012) Food waste co-digestion with sewage sludge – Realising its potential in the UK. J Environ Manage 112:267–274. https://doi.org/10.1016/j.jenvman.2012.07.029

    Article  Google Scholar 

  73. Budiyono, Widiasa IN, Johari S, Sunarso (2010) The Influence of Total Solid Contents on Biogas Yield from Cattle Manure Using Rumen Fluid Inoculum. Energy Res J 1:6–11

    Google Scholar 

  74. Weiland P (2010) Biogas production: current state and perspectives. Appl Microbiol Biotechnol 85:849–860. https://doi.org/10.1007/s00253-009-2246-7

    Article  CAS  Google Scholar 

  75. Hamilton DW (2012) Anaerobic Digestion of Animal Manures: Methane Production Potential of Waste Materials, Cooperative Extension Service. Division of Agricultural Sciences and Natural Resources, USA

    Google Scholar 

  76. Ohemeng-Ntiamoah J, Datta T (2017) Evaluating Analytical Methods for the Characterization of Lipids, Proteins and Carbohydrates in Organic Substrates for Anaerobic Co-Digestion. Bioresour Technol. https://doi.org/10.1016/j.biortech.2017.09.154

  77. Cirne DG, Paloumet X, Björnsson L, et al (2007) Anaerobic digestion of lipid-rich waste—Effects of lipid concentration. Renew Energy 32:965–975. https://doi.org/10.1016/j.renene.2006.04.003

    Article  CAS  Google Scholar 

  78. Cui R, Jahng D (2006) Enhanced Methane Production from Anaerobic Digestion of Disintegrated and Deproteinized Excess Sludge. Biotechnol Lett 28:531–538. https://doi.org/10.1007/s10529-006-0012-9

    Article  CAS  Google Scholar 

  79. Mulka R, Szulczewski W, Szlachta J, Prask H (2016) The influence of carbon content in the mixture of substrates on methane production. Clean Technol Environ Policy 18:807–815. https://doi.org/10.1007/s10098-015-1057-z

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ouahid El Asri .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

El Asri, O. (2022). Anaerobic Biodegradation: The Anaerobic Digestion Process. In: Ali, G.A.M., Makhlouf, A.S.H. (eds) Handbook of Biodegradable Materials. Springer, Cham. https://doi.org/10.1007/978-3-030-83783-9_4-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83783-9_4-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83783-9

  • Online ISBN: 978-3-030-83783-9

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics