Skip to main content

Medicinal Plants Against Vesicular Stomatitis Virus (VSV) Infections: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies

  • Living reference work entry
  • First Online:
Anti-Viral Metabolites from Medicinal Plants

Part of the book series: Reference Series in Phytochemistry ((RSP))

  • 44 Accesses

Abstract

Vesicular stomatitis virus (VSV) is a rhabdovirus, that is, an encapsulated negative-sense RNA virus. VSV could be spread from insects to mammals, attacking host cells and causing protein synthesis to stop and new virus particles to form. VSV is a virus that affects both wild ungulates and livestock. VSV causes permanent blisters on the tongue and other body parts, resulting in significant economic loss. New Jersey and Indiana serotypes of VSV are infectious in swine, equines, poultry, and bovines, causing symptoms similar to foot-and-mouth disease in cloven-hooved ruminants, such as lethargy, pyrexia, and anorexia. Mucosal vesicles and ulcers in the mouth are examples of oral illness, the most common clinical symptoms in humans. VSV that are infected can travel to the peripheral neurons and then infect the CNS, resulting in paralysis. Managing viral diseases has been challenging, and no widely licensed vaccines or treatments exist. The search for new antiviral agents to eradicate VSV is critical due to its public health and economic implications. Natural medicinal plants were used to fight infectious disorders and are suitable as a repository for discovering possible antivirus compounds. This chapter emphasizes medicinal plants and their constituents that possess activity against vesicular stomatitis virus. They are Allium sativum L., Melia azedarach L., Piper nigrum, Camellia sinensis (L.), Curcuma longa L., Eriosema montanum Baker f., Ipomoea bonariensis Hook, Calendula arvensis L., Boswellia serrata, Melaleuca alternifolia, Baccharis gaudichaudiana DC., Heisteria acuminata, Cunila spicata Benth., Nepeta nepetella, Dittrichia viscosa, Sanguisorba minor magnolii, and Eugenia malaccensis L.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

Abbreviations

AKBA:

Acetyl-11-keto-β-boswellic acid

CC50:

50% cytotoxic concentration

CDM:

1-Cinnamoyl-3,11-dihydroxymeliacarpin

Cir:

Cirsitakaoside

CPE:

Cytopathic effect

CPE:

Cytopathogenic effect

CS:

Calf serum

DADS:

Diallyl disulfide

DATS:

Diallyl trisulfide

DCCC:

Droplet counter-current chromatography

DMEM:

Dulbecco’s Modified Eagle’s Medium

DNA:

Deoxyribonucleic acid

EC:

Epicatechin

EGC:

Epigallocatechin 149

EGCG:

Epigallocatechin-3-gallate

EPTT:

Endpoint titration method

GCG:

Gallocatechin-3-O-gallate

HCV:

Hepatitis C virus

HPTLC:

High-performance thin-layer chromatography

Hsp90:

Heat-shock protein 90

HSV:

Herpes simplex virus

IAV:

Influenza A virus

IC50:

Half-maximal inhibitory concentration

LDH:

Lactate dehydrogenase

mCMV:

Murine cytomegalovirus

MNTD:

Maximal nontoxic dosage

MOI:

Multiplicity of infection

MTT:

3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide

PCR:

Polymerase chain reaction

PFU:

Plaque-forming units

PLP:

Pyridoxal phosphate

RNA:

Ribonucleic acid

TTO:

Tea tree oil

VSV:

Vesicular stomatitis virus

References

  1. Gisondi P, Piaserico S, Bordin C, Alaibac M, Girolomoni G, Naldi L (2020) Cutaneous manifestations of SARS-CoV-2 infection: a clinical update. J Eur Acad Dermatol Venereol 34:2499–2504. https://doi.org/10.1111/jdv.16774

  2. Kurokawa M, Shimizu T, Watanabe W, Shiraki K (2010) Development of new antiviral agents from natural products. The Open Antimicrobial Agents Journal 2:49–57. https://doi.org/10.2174/1876518101002020049

    Article  CAS  Google Scholar 

  3. Heinrich M, Gibbons S (2001) Ethnopharmacology in drug discovery: an analysis of its role and potential contribution. J Pharm Pharmacol 53:425–432. https://doi.org/10.1211/0022357011775712

    Article  PubMed  CAS  Google Scholar 

  4. Bachar SC, Mazumder K, Bachar R, Aktar A, Al Mahtab M (2021) A review of medicinal plants with antiviral activity available in Bangladesh and mechanistic insight into their bioactive metabolites on SARS-CoV-2, HIV and HBV. Front Pharmacol 12. https://doi.org/10.3389/fphar.2021.732891

  5. Sachan N, Chandra P, Pal D (2021) Chapter 16. Scaffold of pyrazole derivatives for enzyme inhibition. In: Pal D (ed) Pyrazole: preparation and uses. NOVA Science

    Google Scholar 

  6. Gurjar VK, Pal D, Patel AD (2021) Chapter 15. Recent advances in chemistry and synthesis of pyrazole derivatives as potential promising antimicrobial agents. In: Pal D (ed) Pyrazole: preparation and uses. NOVA Science

    Google Scholar 

  7. Pal DK, Mandal M, Senthilkumar GP, Padhiari A (2006) Antibacterial activity of Cuscuta reflexa stem and Corchorus olitorius seed. Fitoterapia 77:589–591. https://doi.org/10.1016/j.fitote.2006.06.015

    Article  PubMed  CAS  Google Scholar 

  8. Mohanta TK, Patra JK, Rath SK, Pal D, Thatoi HN (2007) Evaluation of antimicrobial activity and phytochemical screening of oils and nuts of Semicarpus anacardium L.f. Sci Res Essays 2:486–490

    Google Scholar 

  9. Pal D, Singh V, Pandey DD, Maurya RK (2014) Synthesis, characterization and antimicrobial evaluation of some 1, 2, 4-triazole derivatives. Int J Pharm Pharm Sci 6:213–216

    CAS  Google Scholar 

  10. Pal D, Tripathi R, Pandey DD, Mishra P (2014) Synthesis, characterization, antimicrobial, and pharmacological evaluation of some 2, 5-disubstituted sulfonyl amino 1,3,4-oxadiazole and 2-amino-disubstituted 1,3,4-thiadiazole derivatives. J Adv Pharm Technol Res 5:196–201. https://doi.org/10.4103/2231-4040.143040

    Article  PubMed  PubMed Central  Google Scholar 

  11. Rani P, Pal D, Hegde RR, Hashim SR (2016) Acetamides: chemotherapeutic agents for inflammation-associated cancers. J Chemother 28:255–265. https://doi.org/10.1179/1973947815y.0000000060

    Article  PubMed  CAS  Google Scholar 

  12. Saha S, Pal D, Kumar S (2017) Antifungal and antibacterial activities of phenyl and ortho hydroxyl phenyl linked imidazolyl triazolo hydroxamic acid derivatives. Inventi Rapid: Med Chem 1:1–8

    Google Scholar 

  13. Chandra P, Kishore K, Ghosh AK (2015) Assessment of antisecretory, gastroprotective, and in-vitro antacid potential of Daucus carota in experimental rats. Osong Public Health Res Perspect 6:329–335. https://doi.org/10.1016/j.phrp.2015.10.006

    Article  PubMed  PubMed Central  Google Scholar 

  14. Martin KW, Ernst E (2003) Herbal medicines for treatment of bacterial infections: a review of controlled clinical trials. J Antimicrob Chemother 51:241–246. https://doi.org/10.1093/jac/dkg087

    Article  PubMed  CAS  Google Scholar 

  15. Ayaz E, Alpsoy HC (2007) Garlic (Allium sativum) and traditional medicine. Turkiye Parazitol Derg 31:145–149

    PubMed  Google Scholar 

  16. Rahman K (2001) Historical perspective on garlic and cardiovascular disease. J Nutr 131:977S–979S. https://doi.org/10.1093/jn/131.3.977S

    Article  PubMed  CAS  Google Scholar 

  17. Wang L, Jiao H, Zhao J, Wang X, Sun S, Lin H (2017) Allicin alleviates reticuloendotheliosis virus-induced immunosuppression via ERK/mitogen-activated protein kinase pathway in specific pathogen-free chickens. Front Immunol 8:1856. https://doi.org/10.3389/fimmu.2017.01856

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  18. Zeng Y, Li Y, Yang J, Pu X, Du J, Yang X, Yang T, Yang S (2017) Therapeutic role of functional components in alliums for preventive chronic disease in human being. Evid Based Complement Alternat Med 2017:9402849. https://doi.org/10.1155/2017/9402849

    Article  PubMed  PubMed Central  Google Scholar 

  19. Rouf R, Uddin SJ, Sarker DK, Islam MT, Ali ES, Shilpi JA, Nahar L, Tiralongo E, Sarker SD (2020) Antiviral potential of garlic (Allium sativum) and its organosulfur compounds: a systematic update of pre-clinical and clinical data. Trends Food Sci Technol 104:219–234. https://doi.org/10.1016/j.tifs.2020.08.006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  20. Miron T, Rabinkov A, Mirelman D, Wilchek M, Weiner L (2000) The mode of action of allicin: its ready permeability through phospholipid membranes may contribute to its biological activity. Biochimica et Biophysica Acta (BBA). Biomembranes 1463:20–30. https://doi.org/10.1016/s0005-2736(99)00174-1

    Article  CAS  Google Scholar 

  21. Borlinghaus J, Albrecht F, Gruhlke MC, Nwachukwu ID, Slusarenko AJ (2014) Allicin: chemistry and biological properties. Molecules 19:12591–12618. https://doi.org/10.3390/molecules190812591

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  22. Shimon LJ, Rabinkov A, Shin I, Miron T, Mirelman D, Wilchek M, Frolow F (2007) Two structures of alliinase from Alliium sativum L.: apo form and ternary complex with aminoacrylate reaction intermediate covalently bound to the PLP cofactor. J Mol Biol 366:611–625. https://doi.org/10.1016/j.jmb.2006.11.041

    Article  PubMed  CAS  Google Scholar 

  23. Lawson LD, Gardner CD (2005) Composition, stability, and bioavailability of garlic products used in a clinical trial. J Agric Food Chem 53:6254–6261. https://doi.org/10.1021/jf050536+

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  24. Alche LE, Ferek GA, Meo M, Coto CE, Maier MS (2003) An antiviral meliacarpin from leaves of Melia azedarach L. Z Naturforsch C J Biosci 58:215–219. https://doi.org/10.1515/znc-2003-3-413

    Article  PubMed  CAS  Google Scholar 

  25. Carmen Méndez M, Aragão M, Fabiana E, Riet-Correa F, Juan Gimeno E (2002) Experimental intoxication by the leaves of Melia azedarach (Meliaceae) in cattle. Pesquisa Veterinária Brasileira 22:19–24. https://doi.org/10.1590/s0100-736x2002000100005

    Article  Google Scholar 

  26. Lee SM, Klocke JA, Barnby MA, Yamasaki RB, Balandrin MF (1991) Insecticidal constituents of Azadirachta indica and Melia azedarach (Meliaceae). In: Naturally occurring pest bioregulators. American Chemical Society, pp 293–304

    Chapter  Google Scholar 

  27. Monica B, Wachsman GM (1984) Actividad Antiviral asociada a una Fracción Polipeptídica obtenida de Extractos de Melia azedarach L. Acta Farmacéutica Bonaerense 3(1):27–31

    Google Scholar 

  28. Andrei G, Damonte E, de Torres R, Coto C (1988) Induction of a refractory state to viral infection in mammalian cells by a plant inhibitor isolated from leaves of Melia azedarach L. Antivir Res 9:221–231

    Article  PubMed  CAS  Google Scholar 

  29. Alche, LE, Ferek GA, Meob, M (2003) An antiviral meliacarpin from leaves of Melia azedarach L. Z Naturforsch C J Biosci 58(3–4):215–219. https://doi.org/10.1515/znc-2003-3-413.

  30. Manns D (1993) New monoterpenes from Cunila spicata. Planta Med 59:171–173. https://doi.org/10.1055/s-2006-959637

    Article  PubMed  CAS  Google Scholar 

  31. Blatter KRKBDBE Indian medicinal plants, Dehradun: International Books Distributors, 1987

    Google Scholar 

  32. Ravindran PN (2000) Black Pepper: Piper nigrum. Series: medicinal and aromatic plants – industrial profiles. Centre for Medicinal Plants Research, Kerala

    Google Scholar 

  33. da Silva JK, da Trindade R, Alves NS, Figueiredo PL, Maia JGS, Setzer WN (2017) Essential oils from neotropical piper species and their biological activities. Int J Mol Sci 18. https://doi.org/10.3390/ijms18122571

  34. Priya NCPSK (2017) Antiviral activities and cytotoxicity assay of seed extracts of Piper longum and Piper nigrum on human cell lines. Int J Pharm Sci Rev Res 44(1):197–202

    CAS  Google Scholar 

  35. Mahmood MS, Mártinez JL, Aslam A, Rafique A, Vinet R, Laurido C, Hussain I, Abbas RZ, Khan A, Ali S (2016) Antiviral effects of green tea (Camellia sinensis) against pathogenic viruses in human and animals (a mini-review). Afr J Tradit Complement Altern Med 13. https://doi.org/10.4314/ajtcam.v13i2.21

  36. Steinmann J, Buer J, Pietschmann T, Steinmann E (2013) Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea. Br J Pharmacol 168:1059–1073. https://doi.org/10.1111/bph.12009

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Suzuki Y, Miyoshi N, Isemura M (2012) Health-promoting effects of green tea. Proc Jpn Acad Ser B Phys Biol Sci 88:88–101. https://doi.org/10.2183/pjab.88.88

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Lee HJ, Lee YN, Youn HN, Lee DH, Kwak JH, Seong BL, Lee JB, Park SY, Choi IS, Song CS (2012) Anti-influenza virus activity of green tea by-products in vitro and efficacy against influenza virus infection in chickens. Poult Sci 91:66–73. https://doi.org/10.3382/ps.2011-01645

    Article  PubMed  CAS  Google Scholar 

  39. Kongpichitchoke T, Chiu MT, Huang TC, Hsu JL (2016) Gallic acid content in Taiwanese teas at different degrees of fermentation and its antioxidant activity by inhibiting PKCdelta activation: in vitro and in silico studies. Molecules 21. https://doi.org/10.3390/molecules21101346

  40. Wang H, Provan GJ, Helliwell K (2000) Tea flavonoids: their functions, utilisation and analysis. Trends Food Sci Technol 11:152–160. https://doi.org/10.1016/s0924-2244(00)00061-3

    Article  CAS  Google Scholar 

  41. Khan N, Afaq F, Saleem M, Ahmad N, Mukhtar H (2006) Targeting multiple signaling pathways by green tea polyphenol (-)-epigallocatechin-3-gallate. Cancer Res 66:2500–2505. https://doi.org/10.1158/0008-5472.CAN-05-3636

    Article  PubMed  CAS  Google Scholar 

  42. Thawonsuwan J, Kiron V, Satoh S, Panigrahi A, Verlhac V (2010) Epigallocatechin-3-gallate (EGCG) affects the antioxidant and immune defense of the rainbow trout, Oncorhynchus mykiss. Fish Physiol Biochem 36:687–697. https://doi.org/10.1007/s10695-009-9344-4

    Article  PubMed  CAS  Google Scholar 

  43. Xu J, Xu Z, Zheng W (2017) A review of the antiviral role of green tea catechins. Molecules 22. https://doi.org/10.3390/molecules22081337

  44. Kim HJ, Yoo HS, Kim JC, Park CS, Choi MS, Kim M, Choi H, Min JS, Kim YS, Yoon SW, Ahn JK (2009) Antiviral effect of Curcuma longa Linn extract against hepatitis B virus replication. J Ethnopharmacol 124:189–196. https://doi.org/10.1016/j.jep.2009.04.046

    Article  PubMed  Google Scholar 

  45. Govindarajan VS (1980) Turmeric—chemistry, technology, and quality. Crit Rev Food Sci Nutr 12:199–301. https://doi.org/10.1080/10408398009527278

    Article  PubMed  CAS  Google Scholar 

  46. Nelson KM, Dahlin JL, Bisson J, Graham J, Pauli GF, Walters MA (2017) The essential medicinal chemistry of curcumin. J Med Chem 60:1620–1637. https://doi.org/10.1021/acs.jmedchem.6b00975

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  47. Verma MK, Najar IA, Tikoo MK, Singh G, Gupta DK, Anand R, Khajuria RK, Sharma SC, Johri RK (2013) Development of a validated UPLC-qTOF-MS method for the determination of curcuminoids and their pharmacokinetic study in mice. Daru 21:11. https://doi.org/10.1186/2008-2231-21-11

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  48. Lee WH, Loo CY, Bebawy M, Luk F, Mason RS, Rohanizadeh R (2013) Curcumin and its derivatives: their application in neuropharmacology and neuroscience in the 21st century. Curr Neuropharmacol 11:338–378. https://doi.org/10.2174/1570159X11311040002

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  49. Wang Y-J, Pan M-H, Cheng A-L, Lin L-I, Ho Y-S, Hsieh C-Y, Lin J-K (1997) Stability of curcumin in buffer solutions and characterization of its degradation products. J Pharm Biomed Anal 15:1867–1876. https://doi.org/10.1016/s0731-7085(96)02024-9

    Article  PubMed  CAS  Google Scholar 

  50. Praditya D, Kirchhoff L, Bruning J, Rachmawati H, Steinmann J, Steinmann E (2019) Anti-infective properties of the golden spice curcumin. Front Microbiol 10:912. https://doi.org/10.3389/fmicb.2019.00912

    Article  PubMed  PubMed Central  Google Scholar 

  51. von Rhein C, Weidner T, Henss L, Martin J, Weber C, Sliva K, Schnierle BS (2016) Curcumin and Boswellia serrata gum resin extract inhibit chikungunya and vesicular stomatitis virus infections in vitro. Antivir Res 125:51–57. https://doi.org/10.1016/j.antiviral.2015.11.007

    Article  CAS  Google Scholar 

  52. Gillett J, Milne-Redhead E, Beentje HJ (1971) Flora of tropical East Africa. Crown Agents for Oversea Governments and Administrations London UK, pp. 1108

    Google Scholar 

  53. Ma W (1995) Polyphenols from Eriosema tuberosum. Phytochemistry 39:1049–1061. https://doi.org/10.1016/0031-9422(95)00052-9

    Article  PubMed  CAS  Google Scholar 

  54. Ojewole JA, Drewes SE, Khan F (2006) Vasodilatory and hypoglycaemic effects of two pyrano-isoflavone extractives from Eriosema kraussianum N. E. Br. [Fabaceae] rootstock in experimental rat models. Phytochemistry 67:610–617. https://doi.org/10.1016/j.phytochem.2005.11.019

    Article  PubMed  CAS  Google Scholar 

  55. Awouafack MD, Kouam SF, Hussain H, Ngamga D, Tane P, Schulz B, Green IR, Krohn K (2008) Antimicrobial prenylated dihydrochalcones from Eriosema glomerata. Planta Med 74:50–54. https://doi.org/10.1055/s-2007-993782

    Article  PubMed  CAS  Google Scholar 

  56. Vlietinck AJ, Van Hoof L, Totté J, Lasure A, Vanden Berghe D, Rwangabo PC, Mvukiyumwami J (1995) Screening of hundred Rwandese medicinal plants for antimicrobial and antiviral properties. J Ethnopharmacol 46:31–47. https://doi.org/10.1016/0378-8741(95)01226-4

    Article  PubMed  CAS  Google Scholar 

  57. Cos P, Hermans N, De Bruyne T, Apers S, Sindambiwe JB, Vanden Berghe D, Pieters L, Vlietinck AJ (2002) Further evaluation of Rwandan medicinal plant extracts for their antimicrobial and antiviral activities. J Ethnopharmacol 79:155–163. https://doi.org/10.1016/s0378-8741(01)00362-2

    Article  PubMed  CAS  Google Scholar 

  58. Sindambiwe JB, Calomme M, Cos P, Totté J, Pieters L, Vlietinck A, Vanden Berghe D (1999) Screening of seven selected Rwandan medicinal plants for antimicrobial and antiviral activities. J Ethnopharmacol 65:71–77. https://doi.org/10.1016/s0378-8741(98)00154-8

    Article  PubMed  CAS  Google Scholar 

  59. Mascolo N, Autore G, Capasso F, Menghini A, Fasulo MP (1987) Biological screening of Italian medicinal plants for anti-inflammatory activity. Phytother Res 1:28–31. https://doi.org/10.1002/ptr.2650010107

    Article  Google Scholar 

  60. Chemli R, Toumi A, Oueslati S, Zouaghi H, Boukef K, Balansard G (1990) Calendula arvensis L. impact of saponins on toxicity, hemolytic effect, and anti-inflammatory activity. J Pharm Belg 45:12–16

    PubMed  CAS  Google Scholar 

  61. Arora D, Rani A, Sharma A (2013) A review on phytochemistry and ethnopharmacological aspects of genus Calendula. Pharmacogn Rev 7:179–187. https://doi.org/10.4103/0973-7847.120520

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  62. Vidal-ollivier E, Babadjamian A, Faure R, Chemli R, Boukef K, Balansard G, Vincent EJ (1989) Two-dimensional NMR studies of triterpenoid glycosides. II-1H NMR assignment of Arvensoside A and B, Calenduloside C and D. Spectrosc Lett 22:579–584. https://doi.org/10.1080/00387018908053907

    Article  CAS  Google Scholar 

  63. Pizza C, Zhong-Liang Z, de Tommasi N (2004) Plant metabolites. Triterpenoid Saponins from Calendula arvensis. J Nat Prod 50:927–931. https://doi.org/10.1021/np50053a027

    Article  Google Scholar 

  64. De Tommasi N, Conti C, Stein ML, Pizza C (1991) Structure and in vitro antiviral activity of triterpenoid saponins from Calendula arvensis. Planta Med 57:250–253. https://doi.org/10.1055/s-2006-960084

    Article  PubMed  Google Scholar 

  65. Maupetit PJP (1984) New constituents in olibanum resinoid and essential oil. Perfumer Flavorist 9:19–37

    CAS  Google Scholar 

  66. Leung AY (1980) Encyclopedia of common natural ingredients used in food, drugs, and cosmetics. New York (USA) Wiley Interscience. pp. 2–6

    Google Scholar 

  67. Siddiqui MZ (2011) Boswellia serrata, a potential antiinflammatory agent: an overview. Indian J Pharm Sci 73:255–261. https://doi.org/10.4103/0250-474X.93507

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  68. el-Khadem H, el-Shafei ZM, el-Sekeily MA, Rahman MM (1972) Derivatives of boswellic acids. Planta Med 22:157–159. https://doi.org/10.1055/s-0028-1099599

    Article  PubMed  Google Scholar 

  69. Pardhy R, Bhattacharyya S (1978) Tetracyclic triterpene acids from the resin of Boswellia serrata Roxb. Indian J Chem 16:174–175

    Google Scholar 

  70. Abdel-Tawab M, Werz O, Schubert-Zsilavecz M (2011) Boswellia serrata. Clin Pharmacokinet 50:349–369. https://doi.org/10.2165/11586800-000000000-00000

    Article  PubMed  CAS  Google Scholar 

  71. Poeckel D, Werz O (2006) Boswellic acids: biological actions and molecular targets. Curr Med Chem 13:3359–3369. https://doi.org/10.2174/092986706779010333

    Article  PubMed  CAS  Google Scholar 

  72. Gupta SC, Patchva S, Aggarwal BB (2013) Therapeutic roles of curcumin: lessons learned from clinical trials. AAPS J 15:195–218. https://doi.org/10.1208/s12248-012-9432-8

    Article  PubMed  CAS  Google Scholar 

  73. Kimmatkar N, Thawani V, Hingorani L, Khiyani R (2003) Efficacy and tolerability of Boswellia serrata extract in treatment of osteoarthritis of knee—a randomized double blind placebo controlled trial. Phytomedicine 10:3–7. https://doi.org/10.1078/094471103321648593

    Article  PubMed  CAS  Google Scholar 

  74. Hussein G, Miyashiro H, Nakamura N, Hattori M, Kakiuchi N, Shimotohno K (2000) Inhibitory effects of sudanese medicinal plant extracts on hepatitis C virus (HCV) protease. Phytother Res 14:510–516. https://doi.org/10.1002/1099-1573(200011)14:7<510::aid-ptr646>3.0.co;2-b

    Article  PubMed  CAS  Google Scholar 

  75. Cureton DK, Massol RH, Saffarian S, Kirchhausen TL, Whelan SP (2009) Vesicular stomatitis virus enters cells through vesicles incompletely coated with clathrin that depend upon actin for internalization. PLoS Pathog 5:e1000394. https://doi.org/10.1371/journal.ppat.1000394

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  76. Chen TY, Chen DY, Wen HW, Ou JL, Chiou SS, Chen JM, Wong ML, Hsu WL (2013) Inhibition of enveloped viruses infectivity by curcumin. PLoS One 8:e62482. https://doi.org/10.1371/journal.pone.0062482

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  77. Shao Q, Huang J, Li J (2021) Intracellular replication inhibitory effects of tea tree oil on vesicular stomatitis virus and anti-inflammatory activities in vero cells. Front Vet Sci 8:759812. https://doi.org/10.3389/fvets.2021.759812

    Article  PubMed  PubMed Central  Google Scholar 

  78. Carson CF, Hammer KA, Riley TV (2006) Melaleuca alternifolia (tea tree) oil: a review of antimicrobial and other medicinal properties. Clin Microbiol Rev 19:50–62. https://doi.org/10.1128/CMR.19.1.50-62.2006

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  79. Grando TH, Baldissera MD, Gressler LT, de Sa MF, Bortoluzzi BN, Schafer AS, Ebling RC, Raffin RP, Santos RCV, Stefani LM, Vaucher R, Leal MLR, Monteiro SG (2016) Melaleuca alternifolia anthelmintic activity in gerbils experimentally infected by Haemonchus contortus. Exp Parasitol 170:177–183. https://doi.org/10.1016/j.exppara.2016.09.004

    Article  PubMed  CAS  Google Scholar 

  80. Krapcho P, Abad MJ, Bermejo P (2006) Baccharis (Compositae): a review update. ARKIVOC 2007:76–96. https://doi.org/10.3998/ark.5550190.0008.709

    Article  Google Scholar 

  81. Fullas F, Hussain RA, Chai HB, Pezzuto JM, Soejarto DD, Kinghorn AD (1994) Cytotoxic constituents of Baccharis gaudichaudiana. J Nat Prod 57:801–807. https://doi.org/10.1021/np50108a017

    Article  PubMed  CAS  Google Scholar 

  82. Budel JM, Duarte MR, Döll-Boscardin PM, Farago PV, Matzenbacher NI, Sartoratto A, Sales Maia BHLN (2012) Composition of essential oils and secretory structures ofBaccharis anomala, B. megapotamica and B. ochracea. J Essent Oil Res 24:19–24. https://doi.org/10.1080/10412905.2012.645634

    Article  CAS  Google Scholar 

  83. Romoff P, Fávero O, Soares M, Baraldi P, Correa A, Souza F (2007) Composition of essential oils from the leaves of six species of the Baccharis genus from “Campos de Altitude” of the Atlantic forest of São Paulo. Química Nova 31:727–730

    Google Scholar 

  84. Guo Y, Li Y, Xu J, Li N, Yamakuni T, Ohizumi Y (2007) Clerodane diterpenoids and flavonoids with NGF-potentiating activity from the aerial parts of Baccharis gaudichaudiana. Chem Pharm Bull (Tokyo) 55:1532–1534. https://doi.org/10.1248/cpb.55.1532

    Article  PubMed  CAS  Google Scholar 

  85. Li R, Morris-Natschke SL, Lee KH (2016) Clerodane diterpenes: sources, structures, and biological activities. Nat Prod Rep 33:1166–1226. https://doi.org/10.1039/c5np00137d

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  86. Gloria E, Barboza JJC, Núñez C (2009) Medicinal plants: a general review and a phytochemical and ethnopharmacological screening of the native Argentine Flora. Kurtziana 34

    Google Scholar 

  87. Visintini Jaime MF, Redko F, Muschietti LV, Campos RH, Martino VS, Cavallaro LV (2013) In vitro antiviral activity of plant extracts from Asteraceae medicinal plants. Virol J 10:245. https://doi.org/10.1186/1743-422x-10-245

    Article  PubMed  PubMed Central  Google Scholar 

  88. Wu Z, Raven PH, Hong D (1994) Flora of China. Science Press/Missouri Botanical Garden, Beijing/St. Louis

    Google Scholar 

  89. Hasanat A, Chowdhury TA, Kabir MSH, Chowdhury MS, Chy MNU, Barua J, Chakrabarty N, Paul A (2017) Antinociceptive activity of Macaranga denticulata Muell. Arg. (Family: Euphorbiaceae): in vivo and in silico studies. Medicines (Basel) 4. https://doi.org/10.3390/medicines4040088

  90. Deepti Yadav & Madan Mohan Gupta (2013) Isolation and HPTLC analysis of iridoids in Premna integrifolia, an important ingredient of Ayurvedic drug dashmool. JPC – J Planar Chromat – Modern TLC 26:260–266

    Article  Google Scholar 

  91. Shukla V, Phulara SC, Yadav D, Tiwari S, Kaur S, Gupta MM, Nazir A, Pandey R (2012) Iridoid compound 10-O-trans-p-coumaroylcatalpol extends longevity and reduces α synuclein aggregation in Caenorhabditis elegans. CNS Neurol Disord Drug Targets 11:984–992. https://doi.org/10.2174/1871527311211080007

    Article  PubMed  CAS  Google Scholar 

  92. Huang JY, Lu WJ, Tan X, Lu GS, Huang ZF (2015) Chemical constituents from Macaranga denticulata Root. Zhong Yao Cai 38:1671–1673

    PubMed  CAS  Google Scholar 

  93. van Baren CM, Muschietti LV, Leo Lira PD, Coussio JD, Bandoni AL (2001) Volatile constituents from aerial parts of Cunila spicata. J Essent Oil Res 13:351–353. https://doi.org/10.1080/10412905.2001.9712230

    Article  Google Scholar 

  94. Delgado G, Hernández J, Pereda-Miranda R (1989) Triterpenoid acids from Cunila lythrifolia. Phytochemistry 28:1483–1485. https://doi.org/10.1016/s0031-9422(00)97769-0

    Article  CAS  Google Scholar 

  95. Agostini G, Agostini F, Bertolazzi M, Echeverrigaray S, Souza-Chies TT (2010) Variation of the chemical composition of essential oils in Brazilian populations of Cunila menthoides Benth. (Lamiaceae). Biochem Syst Ecol 38:906–910. https://doi.org/10.1016/j.bse.2010.09.011

    Article  CAS  Google Scholar 

  96. Manns D, Hartmann R (1992) The constitution and configuration of Isocaryophyllen-13-al. Planta Med 58:442–444. https://doi.org/10.1055/s-2006-961509

    Article  PubMed  CAS  Google Scholar 

  97. Simões CM, Falkenberg M, Mentz LA, Schenkel EP, Amoros M, Girre L (1999) Antiviral activity of south Brazilian medicinal plant extracts. Phytomedicine 6:205–214. https://doi.org/10.1016/s0944-7113(99)80010-5

    Article  PubMed  Google Scholar 

  98. Venkateshappa SM, Sreenath K (2013) Potential medicinal plants of Lamiaceae. Am Int J Res Formal Appl Nat Sci 3:82–87

    Google Scholar 

  99. Bicchi C, Mashaly M, Sandra P (1984) Constituents of essential oil of Nepeta nepetella. Planta Med 50:96–98. https://doi.org/10.1055/s-2007-969632

    Article  PubMed  CAS  Google Scholar 

  100. González ME, Alarcón B, Carrasco L (1987) Polysaccharides as antiviral agents: antiviral activity of carrageenan. Antimicrob Agents Chemother 31:1388–1393. https://doi.org/10.1128/aac.31.9.1388

    Article  PubMed  PubMed Central  Google Scholar 

  101. Abad MJ, Guerra JA, Bermejo P, Irurzun A, Carrasco L (2000) Search for antiviral activity in higher plant extracts. Phytother Res 14:604–607. https://doi.org/10.1002/1099-1573(200012)14:8<604::aid-ptr678>3.0.co;2-l

    Article  PubMed  CAS  Google Scholar 

  102. Parvez IA, Yadav P, Nagaraj K (2012) Attenuation of P, S and coda waves in the NW-Himalayas, India. Int J Geosci 03:179–191. https://doi.org/10.4236/ijg.2012.31020

    Article  Google Scholar 

  103. Shtacher G, Kashman Y (1971) Chemical investigation of volatileconstituents of Inula viscosa Ait. Tetrahedron 27:1343–1349. https://doi.org/10.1016/s0040-4020(01)90885-3

    Article  CAS  Google Scholar 

  104. Lauro L, Rolih C (1990) Observations and research on an extract of Inula viscosa Ait. Boll Soc Ital Biol Sper 66:829–834

    PubMed  CAS  Google Scholar 

  105. Bouterfas K, Mehdadi Z, Latreche A, Aouad L (2014) Pouvoir antimicrobien des flavonoïdes extraits des feuilles de Marrubium vulgare L. en provenance du mont de Tessala (Algérie occidentale). Phytothérapie 12:6–14. https://doi.org/10.1007/s10298-014-0830-6

    Article  CAS  Google Scholar 

  106. Arif Hussain Bhat AA, Kumar B, Rather GM (2018) A comprehensive review on phytochemical constituents of genus Nepta. Asian J Res Chem Pharm Sci 6(1):12–19

    Google Scholar 

  107. Lackschewitz K (1991) Vascular plants of West-Central Montana-identification guidebook. Department of Agriculture, Forest Service, p 648

    Book  Google Scholar 

  108. Karkanis A, Vellios E, Thomaidis T, Bilalis D, Efthimiadou A, Travlos I (2014) Phytochemistry and biological properties of Burnet Weed (Sanguisorba spp.): a review. Notulae Scientia Biologicae 6:395–398. https://doi.org/10.15835/nsb649471

    Article  Google Scholar 

  109. Ranfa A, Maurizi A, Romano B, Bodesmo M (2013) The importance of traditional uses and nutraceutical aspects of some edible wild plants in human nutrition: the case of Umbria (Central Italy). Plant Biosys 148:297–306. https://doi.org/10.1080/11263504.2013.770805

    Article  Google Scholar 

  110. Vanzani P, Rossetto M, De Marco V, Sacchetti LE, Paoletti MG, Rigo A (2011) Wild Mediterranean plants as traditional food: a valuable source of antioxidants. J Food Sci 76:C46–C51. https://doi.org/10.1111/j.1750-3841.2010.01949.x

    Article  PubMed  CAS  Google Scholar 

  111. Elgersma A, Søegaard K, Jensen SK (2013) Fatty acids, α-tocopherol, β-carotene, and lutein contents in forage legumes, forbs, and a grass-clover mixture. J Agric Food Chem 61:11913–11920. https://doi.org/10.1021/jf403195v

    Article  PubMed  CAS  Google Scholar 

  112. Kartika H, Shido J, Nakamoto ST, Li QX, Iwaoka WT (2011) Nutrient and mineral composition of dried mamaki leaves (Pipturus albidus) and infusions. J Food Compos Anal 24:44–48. https://doi.org/10.1016/j.jfca.2010.03.027

    Article  CAS  Google Scholar 

  113. Kartika H, Li QX, Wall MM, Nakamoto ST, Iwaoka WT (2007) Major phenolic acids and total antioxidant activity in Mamaki leaves, Pipturus albidus. J Food Sci 72:S696–S701. https://doi.org/10.1111/j.1750-3841.2007.00530.x

    Article  PubMed  CAS  Google Scholar 

  114. Assaf H, Nafady A, Allam A, Hamed A, Kamel M (2020) Phytochemistry and biological activity of family “Urticaceae”: a review (1957–2019). J Adv Biomed Pharm Sci 0:0–0. https://doi.org/10.21608/jabps.2020.24043.1073

    Article  Google Scholar 

  115. Locher CP, Burch MT, Mower HF, Berestecky J, Davis H, Van Poel B, Lasure A, Vanden Berghe DA, Vlietinck AJ (1995) Anti-microbial activity and anti-complement activity of extracts obtained from selected Hawaiian medicinal plants. J Ethnopharmacol 49:23–32. https://doi.org/10.1016/0378-8741(95)01299-0

    Article  PubMed  CAS  Google Scholar 

  116. Roosita K, Kusharto CM, Sekiyama M, Fachrurozi Y, Ohtsuka R (2008) Medicinal plants used by the villagers of a Sundanese community in West Java, Indonesia. J Ethnopharmacol 115:72–81. https://doi.org/10.1016/j.jep.2007.09.010

    Article  PubMed  Google Scholar 

  117. Figueirôa EO, Nascimento da Silva LC, de Melo CML, Neves JKAL, da Silva NH, Pereira VRA, Correia MTS (2013) Evaluation of antioxidant, immunomodulatory, and cytotoxic action of fractions from Eugenia uniflora L. and Eugenia malaccensis L.: correlation with polyphenol and flavanoid content. Sci World J 2013(125027). https://doi.org/10.1155/2013/125027

  118. Rimando AM, Kalt W, Magee JB, Dewey J, Ballington JR (2004) Resveratrol, pterostilbene, and piceatannol in vaccinium berries. J Agric Food Chem 52:4713–4719. https://doi.org/10.1021/jf040095e

    Article  PubMed  CAS  Google Scholar 

  119. Burns J, Yokota T, Ashihara H, Lean ME, Crozier A (2002) Plant foods and herbal sources of resveratrol. J Agric Food Chem 50:3337–3340. https://doi.org/10.1021/jf0112973

    Article  PubMed  CAS  Google Scholar 

  120. Baur JA, Pearson KJ, Price NL, Jamieson HA, Lerin C, Kalra A, Prabhu VV, Allard JS, Lopez-Lluch G, Lewis K, Pistell PJ, Poosala S, Becker KG, Boss O, Gwinn D, Wang M, Ramaswamy S, Fishbein KW, Spencer RG, Lakatta EG, Le Couteur D, Shaw RJ, Navas P, Puigserver P, Ingram DK, de Cabo R, Sinclair DA (2006) Resveratrol improves health and survival of mice on a high-calorie diet. Nature 444:337–342. https://doi.org/10.1038/nature05354

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  121. Pallauf K, Rimbach G, Rupp PM, Chin D, Wolf IM (2016) Resveratrol and lifespan in model organisms. Curr Med Chem 23:4639–4680. https://doi.org/10.2174/0929867323666161024151233

    Article  PubMed  CAS  Google Scholar 

  122. Gao X, Xu YX, Janakiraman N, Chapman RA, Gautam∗ SC (2001) Immunomodulatory activity of resveratrol: suppression of lymphocyte proliferation, development of cell-mediated cytotoxicity, and cytokine production11Abbreviations: CTLs, cytotoxic T lymphocytes; LAK cells, lymphokine activated killer cells; IL-2, interleukin-2; IFN-γ, interferon-gamma; TNF-α, tumor necrosis factor-α NF-κB, nuclear factor kappa B; Con A, concanavalin A; HBSS, Hanks’ balanced salt solution; DTT, dithiothreitol; PMSF, phenylmethylsulfonyl fluoride; RT-PCR, reverse transcription-polymerase chain reaction; LPS, lipopolysaccharide; and EMSA, electrophoretic mobility shift assay. Biochem Pharmacol 62:1299–1308. https://doi.org/10.1016/s0006-2952(01)00775-4

  123. Saqib U, Kelley TT, Panguluri SK, Liu D, Savai R, Baig MS, Schurer SC (2018) Polypharmacology or promiscuity? Structural interactions of resveratrol with its bandwagon of targets. Front Pharmacol 9:1201. https://doi.org/10.3389/fphar.2018.01201

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  124. Yeung F, Hoberg JE, Ramsey CS, Keller MD, Jones DR, Frye RA, Mayo MW (2004) Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase. EMBO J 23:2369–2380. https://doi.org/10.1038/sj.emboj.7600244

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  125. Lin SC, Zhang X, Lehman CW, Pan HC, Wen Y, Chen SY (2021) A natural botanical product, resveratrol, effectively suppresses vesicular stomatitis virus infection in vitro. Plants (Basel) 10. https://doi.org/10.3390/plants10061231

Download references

Acknowledgments

The authors are thankful to Chancellor, Teerthanker Mahaveer University, Moradabad, for their motivation and for providing all necessary facilities in the laboratories of the University.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Chandra, P., Sachan, N., Pathak, R., Pal, D. (2022). Medicinal Plants Against Vesicular Stomatitis Virus (VSV) Infections: Ethnopharmacology, Chemistry, and Clinical and Preclinical Studies. In: Pal, D. (eds) Anti-Viral Metabolites from Medicinal Plants. Reference Series in Phytochemistry. Springer, Cham. https://doi.org/10.1007/978-3-030-83350-3_17-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83350-3_17-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83350-3

  • Online ISBN: 978-3-030-83350-3

  • eBook Packages: Springer Reference Chemistry and Mat. ScienceReference Module Physical and Materials ScienceReference Module Chemistry, Materials and Physics

Publish with us

Policies and ethics