Skip to main content

Ankle Osteochondral Pathologies and Treatment

  • Chapter
  • First Online:
Joint Function Preservation

Abstract

Osteochondral lesions of the talus are common in track and field. Ankle instability is an important risk factor. Prevention strategies may reduce the incidence of these injuries which may endanger the career of even top-level athletes. An accurate prompt evaluation and appropriate management are mandatory. When conservative treatment fails, dedicated surgical procedures are effective with the possibility of functional restoration. A specific rehabilitation program must be followed to ease the biological repair processes and lessen the risk of recurrences or persistence of symptoms.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bruns J, Rosenbach B. Pressure distribution at the ankle joint. Clin Biomech Bristol Avon. 1990;5:153–61.

    Article  CAS  Google Scholar 

  2. van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJA. Osteochondral defects in the ankle: why painful? Knee Surg Sports Traumatol Arthrosc. 2010;18:570–80.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Wodicka R, Ferkel E, Ferkel R. Osteochondral lesions of the ankle. Foot Ankle Int. 2016;37:1023–34.

    Article  PubMed  Google Scholar 

  4. Self BP, Paine D. Ankle biomechanics during four landing techniques. Med Sci Sports Exerc. 2001;33:1338–44.

    Article  PubMed  CAS  Google Scholar 

  5. Hintermann B, Boss A, Schäfer D. Arthroscopic findings in patients with chronic ankle instability. Am J Sports Med. 2002;30:402–9.

    Article  PubMed  Google Scholar 

  6. Berndt AL, Harty M. Transchondral fractures (osteochondritis dissecans) of the talus. J Bone Joint Surg Am. 1959;41-A:988–1020.

    Article  PubMed  CAS  Google Scholar 

  7. Ferkel RD, Dierckman BD, Phisitkul P. Arthroscopy of the foot and the ankle. Mann’s surgery foot ankle e-book expert consult - Online. Amsterdam: Elsevier Health Sciences; 2013. p. 1723–828.

    Google Scholar 

  8. Shelton M, Pedowitz W. Injuries to the talar dome, subtalar joint, and mid-foot. In: Disorder foot ankle med surgery management. 2nd ed. Philadelphia: Saunders; 1991. p. 2274–92.

    Google Scholar 

  9. Leontaritis N, Hinojosa L, Panchbhavi VK. Arthroscopically detected intra-articular lesions associated with acute ankle fractures. J Bone Joint Surg Am. 2009;91:333–9.

    Article  PubMed  Google Scholar 

  10. Ortiz C, Wagner E, Fernandez G. Athletic injuries. In: Foot ankle sports orthopedics. New York: Springer; 2017. p. 421–6.

    Google Scholar 

  11. Bauer M, Jonsson K, Lindén B. Osteochondritis dissecans of the ankle. A 20-year follow-up study. J Bone Joint Surg Br. 1987;69:93–6.

    Article  PubMed  CAS  Google Scholar 

  12. Canosa J. Mirror image osteochondral defects of the talus and distal tibia. Int Orthop. 1994;18:395–6.

    Article  PubMed  CAS  Google Scholar 

  13. Chapman CB, Mann JA. Distal tibial osteochondral lesion treated with osteochondral allografting: a case report. Foot Ankle Int. 2005;26:997–1000.

    Article  PubMed  Google Scholar 

  14. Gianakos AL, Yasui Y, Hannon CP, Kennedy JG. Current management of talar osteochondral lesions. World J Orthop. 2017;8:12–20.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Mologne TS, Ferkel RD. Arthroscopic treatment of osteochondral lesions of the distal tibia. Foot Ankle Int. 2007;28:865–72.

    Article  PubMed  Google Scholar 

  16. Vannini F, Costa GG, Caravelli S, Pagliazzi G, Mosca M. Treatment of osteochondral lesions of the talus in athletes: what is the evidence? Joints. 2016;4:111–20.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Ramsey PL, Hamilton W. Changes in tibiotalar area of contact caused by lateral talar shift. J Bone Joint Surg Am. 1976;58:356–7.

    Article  PubMed  CAS  Google Scholar 

  18. Thordarson DB, Motamed S, Hedman T, Ebramzadeh E, Bakshian S. The effect of fibular malreduction on contact pressures in an ankle fracture malunion model. J Bone Joint Surg Am. 1997;79:1809–15.

    Article  PubMed  CAS  Google Scholar 

  19. DIGiovanni BF, Fraga CJ, Cohen BE, Shereff MJ. Associated injuries found in chronic lateral ankle instability. Foot Ankle Int. 2000;21:809–15.

    Article  PubMed  CAS  Google Scholar 

  20. Ferkel RD, Chams RN. Chronic lateral instability: arthroscopic findings and long-term results. Foot Ankle Int. 2007;28:24–31.

    Article  PubMed  Google Scholar 

  21. Gregush RV, Ferkel RD. Treatment of the unstable ankle with an osteochondral lesion: results and long-term follow-up. Am J Sports Med. 2010;38:782–90.

    Article  PubMed  Google Scholar 

  22. Talusan PG, Milewski MD, Toy JO, Wall EJ. Osteochondritis dissecans of the talus: diagnosis and treatment in athletes. Clin Sports Med. 2014;33:267–84.

    Article  PubMed  Google Scholar 

  23. Canale ST, Belding RH. Osteochondral lesions of the talus. J Bone Joint Surg Am. 1980;62:97–102.

    Article  PubMed  CAS  Google Scholar 

  24. O’Farrell TA, Costello BG. Osteochondritis dissecans of the talus. The late results of surgical treatment. J Bone Joint Surg Br. 1982;64:494–7.

    Article  PubMed  Google Scholar 

  25. Astrand J, Skripitz R, Skoglund B, Aspenberg P. A rat model for testing pharmacologic treatments of pressure-related bone loss. Clin Orthop Relat Res. 2003;(409):296–305.

    Google Scholar 

  26. Dürr HD, Martin H, Pellengahr C, Schlemmer M, Maier M, Jansson V. The cause of subchondral bone cysts in osteoarthrosis: a finite element analysis. Acta Orthop Scand. 2004;75:554–8.

    Article  PubMed  Google Scholar 

  27. Johansson L, Edlund U, Fahlgren A, Aspenberg P. Bone resorption induced by fluid flow. J Biomech Eng. 2009;131:094505.

    Article  PubMed  Google Scholar 

  28. Schmalzried TP, Akizuki KH, Fedenko AN, Mirra J. The role of access of joint fluid to bone in periarticular osteolysis. A report of four cases. J Bone Joint Surg Am. 1997;79:447–52.

    Article  PubMed  CAS  Google Scholar 

  29. Schachter AK, Chen AL, Reddy PD, Tejwani NC. Osteochondral lesions of the talus. J Am Acad Orthop Surg. 2005;13:152–8.

    Article  PubMed  Google Scholar 

  30. Erban WK, Kolberg K. [Simultaneous mirror image osteochondrosis dissecans in identical twins]. ROFO Fortschr Geb Rontgenstr Nuklearmed. 1981;135:357.

    Google Scholar 

  31. Woods K, Harris I. Osteochondritis dissecans of the talus in identical twins. J Bone Joint Surg Br. 1995;77:331.

    Article  PubMed  CAS  Google Scholar 

  32. Stattin E-L, Wiklund F, Lindblom K, Onnerfjord P, Jonsson B-A, Tegner Y, et al. A missense mutation in the aggrecan C-type lectin domain disrupts extracellular matrix interactions and causes dominant familial osteochondritis dissecans. Am J Hum Genet. 2010;86:126–37.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  33. Loomer R, Fisher C, Lloyd-Smith R, Sisler J, Cooney T. Osteochondral lesions of the talus. Am J Sports Med. 1993;21:13–9.

    Article  PubMed  CAS  Google Scholar 

  34. van Dijk CN, Reilingh ML, Zengerink M, van Bergen CJA. The natural history of osteochondral lesions in the ankle. Instr Course Lect. 2010;59:375–86.

    PubMed  Google Scholar 

  35. De Lee J. Fractures and dislocations of the foot. In: Surgery foot ankle. 6th ed. Maryland Heights, MO: Mosby; 1991. p. 1465–518.

    Google Scholar 

  36. Canale ST, Kelly FB. Fractures of the neck of the talus. Long-term evaluation of seventy-one cases. J Bone Joint Surg Am. 1978;60:143–56.

    Article  PubMed  CAS  Google Scholar 

  37. Dipaola JD, Nelson DW, Colville MR. Characterizing osteochondral lesions by magnetic resonance imaging. Arthroscopy. 1991;7:101–4.

    Article  PubMed  CAS  Google Scholar 

  38. Reis ND, Zinman C, Besser MI, Shifrin LZ, Folman Y, Torem S, et al. High-resolution computerised tomography in clinical orthopaedics. J Bone Joint Surg Br. 1982;64:20–4.

    Article  PubMed  CAS  Google Scholar 

  39. Ferkel R, Sgaglione N, Del Pizzo W. Arthroscopic treatment of osteochondral lesions of the talus: technique and results. Orthop Trans. 1990;14:172–3.

    Google Scholar 

  40. Anderson IF, Crichton KJ, Grattan-Smith T, Cooper RA, Brazier D. Osteochondral fractures of the dome of the talus. J Bone Joint Surg Am. 1989;71:1143–52.

    Article  PubMed  CAS  Google Scholar 

  41. Cheng JC, Ferkel RD. The role of arthroscopy in ankle and subtalar degenerative joint disease. Clin Orthop Relat Res. 1998;(349):65–72.

    Google Scholar 

  42. van Dijk PAD, van Dijk CN. Osteochondral lesions of the talus. In: Sports injuries of the foot and ankle: a focus on advanced surgical techniques. New York: Springer; 2009. p. 133–9.

    Google Scholar 

  43. Amendola A, Panarella L. Osteochondral lesions: medial versus lateral, persistent pain, cartilage restoration options and indications. Foot Ankle Clin. 2009;14:215–27.

    Article  PubMed  Google Scholar 

  44. Hannon CP, Smyth NA, Murawski CD, Savage-Elliott I, Deyer TW, Calder JDF, et al. Osteochondral lesions of the talus: aspects of current management. Bone Joint J. 2014;96-B:164–71.

    Article  PubMed  CAS  Google Scholar 

  45. Dombrowski ME, Yasui Y, Murawski CD, Fortier LA, Giza E, Haleem AM, et al. Conservative management and biological treatment strategies: proceedings of the international consensus meeting on cartilage repair of the ankle. Foot Ankle Int. 2018;39:9S–15S.

    Article  PubMed  Google Scholar 

  46. Looze CA, Capo J, Ryan MK, Begly JP, Chapman C, Swanson D, et al. Evaluation and management of osteochondral Lesions of the talus. Cartilage. 2017;8:19–30.

    Article  PubMed  Google Scholar 

  47. Tol JL, Struijs PA, Bossuyt PM, Verhagen RA, van Dijk CN. Treatment strategies in osteochondral defects of the talar dome: a systematic review. Foot Ankle Int. 2000;21:119–26.

    Article  PubMed  CAS  Google Scholar 

  48. Zengerink M, Struijs PAA, Tol JL, van Dijk CN. Treatment of osteochondral lesions of the talus: a systematic review. Knee Surg Sports Traumatol Arthrosc. 2010;18:238–46.

    Article  PubMed  Google Scholar 

  49. Loveday D, Clifton R, Robinson A. Interventions for treating osteochondral defects of the talus in adults. Cochrane Database Syst Rev. 2010;CD008104.

    Google Scholar 

  50. Donnenwerth MP, Roukis TS. Outcome of arthroscopic debridement and microfracture as the primary treatment for osteochondral lesions of the talar dome. Arthroscopy. 2012;28:1902–7.

    Article  PubMed  Google Scholar 

  51. Verhagen RAW, Struijs PAA, Bossuyt PMM, van Dijk CN. Systematic review of treatment strategies for osteochondral defects of the talar dome. Foot Ankle Clin. 2003;8:233–42. viii–ix

    Article  PubMed  Google Scholar 

  52. Lambers KTA, Dahmen J, Reilingh ML, van Bergen CJA, Stufkens SAS, Kerkhoffs GMMJ. No superior surgical treatment for secondary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc. 2018;26:2158–70.

    Article  PubMed  Google Scholar 

  53. Dahmen J, Lambers KTA, Reilingh ML, van Bergen CJA, Stufkens SAS, Kerkhoffs GMMJ. No superior treatment for primary osteochondral defects of the talus. Knee Surg Sports Traumatol Arthrosc. 2018;26:2142–57.

    Article  PubMed  Google Scholar 

  54. van Eekeren ICM, van Bergen CJA, Sierevelt IN, Reilingh ML, van Dijk CN. Return to sports after arthroscopic debridement and bone marrow stimulation of osteochondral talar defects: a 5- to 24-year follow-up study. Knee Surg Sports Traumatol Arthrosc. 2016;24:1311–5.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Canata GL, Casale V. Arthroscopic debridement of osteochondral lesions of the talus. In: Cartilage lesions ankle. New York: Springer; 2015. p. 27–36.

    Google Scholar 

  56. Chuckpaiwong B, Berkson EM, Theodore GH. Microfracture for osteochondral lesions of the ankle: outcome analysis and outcome predictors of 105 cases. Arthroscopy. 2008;24:106–12.

    Article  PubMed  Google Scholar 

  57. Giannini S, Vannini F. Operative treatment of osteochondral lesions of the talar dome: current concepts review. Foot Ankle Int. 2004;25:168–75.

    Article  PubMed  Google Scholar 

  58. van Bergen CJA, de Leeuw PAJ, van Dijk CN. Treatment of osteochondral defects of the talus. Rev Chir Orthop Reparatrice Appar Mot. 2008;94:398–408.

    Article  PubMed  Google Scholar 

  59. van Dijk CN, van Bergen CJA. Advancements in ankle arthroscopy. J Am Acad Orthop Surg. 2008;16:635–46.

    Article  PubMed  Google Scholar 

  60. Murawski CD, Foo LF, Kennedy JG. A review of arthroscopic bone marrow stimulation techniques of the talus: the good, the bad, and the causes for concern. Cartilage. 2010;1:137–44.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Hannon CP, Bayer S, Murawski CD, Canata GL, Clanton TO, Haverkamp D, et al. Debridement, curettage, and bone marrow stimulation: proceedings of the international consensus meeting on cartilage repair of the ankle. Foot Ankle Int. 2018;39:16S–22S.

    Article  PubMed  Google Scholar 

  62. Han SH, Lee JW, Lee DY, Kang ES. Radiographic changes and clinical results of osteochondral defects of the talus with and without subchondral cysts. Foot Ankle Int. 2006;27:1109–14.

    Article  PubMed  Google Scholar 

  63. Lee K, Park H, Cho H, Seon J. Comparison of arthroscopic microfracture for osteochondral lesions of the talus with and without subchondral cyst. Am J Sports Med. 2015;43:1951–6.

    Article  PubMed  Google Scholar 

  64. Pereira H, Vuurberg G, Spennacchio P, Batista J, D’Hooghe P, Hunt K, et al. Surgical treatment paradigms of ankle lateral instability, osteochondral defects and impingement. Adv Exp Med Biol. 2018;1059:85–108.

    Article  PubMed  CAS  Google Scholar 

  65. Taranow WS, Bisignani GA, Towers JD, Conti SF. Retrograde drilling of osteochondral lesions of the medial talar dome. Foot Ankle Int. 1999;20:474–80.

    Article  PubMed  CAS  Google Scholar 

  66. Kono M, Takao M, Naito K, Uchio Y, Ochi M. Retrograde drilling for osteochondral lesions of the talar dome. Am J Sports Med. 2006;34:1450–6.

    Article  PubMed  Google Scholar 

  67. Kumai T, Takakura Y, Higashiyama I, Tamai S. Arthroscopic drilling for the treatment of osteochondral lesions of the talus. J Bone Joint Surg Am. 1999;81:1229–35.

    Article  PubMed  CAS  Google Scholar 

  68. Chew KTL, Tay E, Wong YS. Osteochondral lesions of the talus. Ann Acad Med Singap. 2008;37:63–8.

    PubMed  Google Scholar 

  69. Canata G, Casale V. Arthroscopic debridement and bone marrow stimulation for talar osteochondral lesions: current concepts. J ISAKOS. 2017;2:2–7.

    Article  Google Scholar 

  70. Reilingh ML, Murawski CD, DiGiovanni CW, Dahmen J, Ferrao PNF, Lambers KTA, et al. Fixation techniques: proceedings of the international consensus meeting on cartilage repair of the ankle. Foot Ankle Int. 2018;39:23S–7S.

    Article  PubMed  Google Scholar 

  71. Kerkhoffs GMMJ, Reilingh ML, Gerards RM, de Leeuw PAJ. Lift, drill, fill and fix (LDFF): a new arthroscopic treatment for talar osteochondral defects. Knee Surg Sports Traumatol Arthrosc. 2016;24:1265–71.

    Article  PubMed  CAS  Google Scholar 

  72. Rothrauff BB, Murawski CD, Angthong C, Becher C, Nehrer S, Niemeyer P, et al. Scaffold-based therapies: proceedings of the international consensus meeting on cartilage repair of the ankle. Foot Ankle Int. 2018;39:41S–7S.

    Article  PubMed  Google Scholar 

  73. Gobbi A, Scotti C, Peretti GM. Scaffolding as treatment for osteochondral defects in the ankle. In: Arthroscopy: basic to advanced. New York: Springer; 2016. p. 1003–12.

    Chapter  Google Scholar 

  74. Shimozono Y, Yasui Y, Ross AW, Kennedy JG. Osteochondral lesions of the talus in the athlete: up to date review. Curr Rev Musculoskelet Med. 2017;10:131–40.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Hurley ET, Murawski CD, Paul J, Marangon A, Prado MP, Xu X, et al. Osteochondral autograft: proceedings of the international consensus meeting on cartilage repair of the ankle. Foot Ankle Int. 2018;39:28S–34S.

    Article  PubMed  Google Scholar 

  76. Hangody L, Vásárhelyi G, Hangody LR, Sükösd Z, Tibay G, Bartha L, et al. Autologous osteochondral grafting--technique and long-term results. Injury. 2008;39(Suppl 1):S32–9.

    Article  PubMed  Google Scholar 

  77. Ramponi L, Yasui Y, Murawski CD, Ferkel RD, DiGiovanni CW, Kerkhoffs GMMJ, et al. Lesion size is a predictor of clinical outcomes after bone marrow stimulation for osteochondral lesions of the talus: a systematic review. Am J Sports Med. 2017;45:1698–705.

    Article  PubMed  Google Scholar 

  78. Scranton PE, Frey CC, Feder KS. Outcome of osteochondral autograft transplantation for type-V cystic osteochondral lesions of the talus. J Bone Joint Surg Br. 2006;88:614–9.

    Article  PubMed  Google Scholar 

  79. Shimozono Y, Hurley ET, Myerson CL, Kennedy JG. Good clinical and functional outcomes at mid-term following autologous osteochondral transplantation for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2018;26:3055–62.

    Article  PubMed  Google Scholar 

  80. Paul J, Sagstetter A, Kriner M, Imhoff AB, Spang J, Hinterwimmer S. Donor-site morbidity after osteochondral autologous transplantation for lesions of the talus. J Bone Joint Surg Am. 2009;91:1683–8.

    Article  PubMed  CAS  Google Scholar 

  81. Ferreira C, Vuurberg G, Oliveira JM, Espregueira-Mendes J, Pereira H, Reis RL, et al. Good clinical outcome after osteochondral autologous transplantation surgery for osteochondral lesions of the talus but at the cost of a high rate of complications: a systematic review. J ISAKOS Joint Disord Orthop Sports Med. 2016;1:184–91.

    Article  Google Scholar 

  82. Smyth NA, Murawski CD, Adams SB, Berlet GC, Buda R, Labib SA, et al. Osteochondral allograft: proceedings of the international consensus meeting on cartilage repair of the ankle. Foot Ankle Int. 2018;39:35S–40S.

    Article  PubMed  Google Scholar 

  83. Gerards RM, van Eekeren ICM, van Dijk CN. Rehabilitation and return-to-sports activity after debridement and bone marrow stimulation of osteochondral talar defects. In: Cartilage lesions ankle. New York: Springer; 2015. p. 87–98.

    Google Scholar 

  84. Saxena A, Eakin C. Articular talar injuries in athletes: results of microfracture and autogenous bone graft. Am J Sports Med. 2007;35:1680–7.

    Article  PubMed  Google Scholar 

  85. Seijas R, Alvarez P, Ares O, Steinbacher G, Cuscó X, Cugat R. Osteocartilaginous lesions of the talus in soccer players. Arch Orthop Trauma Surg. 2010;130:329–33.

    Article  PubMed  Google Scholar 

  86. Ogilvie-Harris DJ, Sarrosa EA. Arthroscopic treatment of osteochondritis dissecans of the talus. Arthroscopy. 1999;15:805–8.

    Article  PubMed  CAS  Google Scholar 

  87. Lee K-B, Bai L-B, Chung J-Y, Seon J-K. Arthroscopic microfracture for osteochondral lesions of the talus. Knee Surg Sports Traumatol Arthrosc. 2010;18:247–53.

    Article  PubMed  Google Scholar 

  88. Zengerink M, Szerb I, Hangody L, Dopirak RM, Ferkel RD, van Dijk CN. Current concepts: treatment of osteochondral ankle defects. Foot Ankle Clin. 2006;11:331–59. vi

    Article  PubMed  Google Scholar 

  89. Nieminen MT, Rieppo J, Töyräs J, Hakumäki JM, Silvennoinen J, Hyttinen MM, et al. T2 relaxation reveals spatial collagen architecture in articular cartilage: a comparative quantitative MRI and polarized light microscopic study. Magn Reson Med. 2001;46:487–93.

    Article  PubMed  CAS  Google Scholar 

  90. de Noronha M, Refshauge KM, Herbert RD, Kilbreath SL, Hertel J. Do voluntary strength, proprioception, range of motion, or postural sway predict occurrence of lateral ankle sprain? Br J Sports Med. 2006;40:824–8. discussion 828

    Article  PubMed  PubMed Central  Google Scholar 

  91. Kobayashi T, Yoshida M, Yoshida M, Gamada K. Intrinsic predictive factors of noncontact lateral ankle sprain in collegiate athletes: a case-control study. Orthop J Sports Med. 2013;1:2325967113518163.

    Article  PubMed  PubMed Central  Google Scholar 

  92. de Noronha M, França LC, Haupenthal A, Nunes GS. Intrinsic predictive factors for ankle sprain in active university students: a prospective study. Scand J Med Sci Sports. 2013;23:541–7.

    PubMed  Google Scholar 

  93. Kobayashi T, Tanaka M, Shida M. Intrinsic risk factors of lateral ankle sprain: a systematic review and meta-analysis. Sports Health. 2016;8:190–3.

    Article  PubMed  Google Scholar 

  94. Hagen M, Asholt J, Lemke M, Lahner M. The angle-torque-relationship of the subtalar pronators and supinators in male athletes: a comparative study of soccer and handball players. Technol Health Care. 2016;24:391–9.

    Article  PubMed  Google Scholar 

  95. Kaminski TW, Needle AR, Delahunt E. Prevention of lateral ankle sprains. J Athl Train. 2019;54:650–61.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Brunner R, Friesenbichler B, Casartelli NC, Bizzini M, Maffiuletti NA, Niedermann K. Effectiveness of multicomponent lower extremity injury prevention programmes in team-sport athletes: an umbrella review. Br J Sports Med. 2019;53:282–8.

    Article  PubMed  Google Scholar 

  97. Vuurberg G, Hoorntje A, Wink LM, van der Doelen BFW, van den Bekerom MP, Dekker R, et al. Diagnosis, treatment and prevention of ankle sprains: update of an evidence-based clinical guideline. Br J Sports Med. 2018;52:956.

    Article  PubMed  Google Scholar 

  98. Foss KDB, Thomas S, Khoury JC, Myer GD, Hewett TE. A school-based neuromuscular training program and sport-related injury incidence: a prospective randomized controlled clinical trial. J Athl Train. 2018;53:20–8.

    Article  PubMed  Google Scholar 

  99. Taylor JB, Ford KR, Nguyen A-D, Terry LN, Hegedus EJ. Prevention of lower extremity injuries in basketball: a systematic review and Meta-analysis. Sports Health. 2015;7:392–8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Schiftan GS, Ross LA, Hahne AJ. The effectiveness of proprioceptive training in preventing ankle sprains in sporting populations: a systematic review and meta-analysis. J Sci Med Sport. 2015;18:238–44.

    Article  PubMed  Google Scholar 

  101. LaBella CR, Huxford MR, Grissom J, Kim K-Y, Peng J, Christoffel KK. Effect of neuromuscular warm-up on injuries in female soccer and basketball athletes in urban public high schools: cluster randomized controlled trial. Arch Pediatr Adolesc Med. 2011;165:1033–40.

    Article  PubMed  Google Scholar 

  102. McGuine TA, Keene JS. The effect of a balance training program on the risk of ankle sprains in high school athletes. Am J Sports Med. 2006;34:1103–11.

    Article  PubMed  Google Scholar 

  103. Eils E, Schröter R, Schröder M, Gerss J, Rosenbaum D. Multistation proprioceptive exercise program prevents ankle injuries in basketball. Med Sci Sports Exerc. 2010;42:2098–105.

    Article  PubMed  Google Scholar 

  104. Hupperets MDW, Verhagen EALM, van Mechelen W. Effect of unsupervised home based proprioceptive training on recurrences of ankle sprain: randomised controlled trial. BMJ. 2009;339:b2684.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Luigi Canata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 ISAKOS

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Canata, G.L., Casale, V., Corbo, V.R., Vascellari, A. (2022). Ankle Osteochondral Pathologies and Treatment. In: Gobbi, A., Lane, J.G., Longo, U.G., Dallo, I. (eds) Joint Function Preservation. Springer, Cham. https://doi.org/10.1007/978-3-030-82958-2_31

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-82958-2_31

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-82957-5

  • Online ISBN: 978-3-030-82958-2

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics