Skip to main content

Environmental Factors Affecting Isoflavone Contents

  • Chapter
  • First Online:
Soybean Seed Composition
  • 380 Accesses

Abstract

It is well established that isoflavone contents vary considerably in seeds, roots, leaves, and other plant parts depending on the genotype, environmental factors, growth conditions, and seed developmental stages. In this chapter, we summarized the effects of environmental and growth conditions including temperature, light, rainfall, seed storage, seed size, water availability, growing season, soil conditions, presence or absence of elicitors, nitrogen application, irrigation, row spacing, and other environmental factors on isoflavone contents. Few other studies showed that isoflavones accumulate in soybean seeds due to biotic stresses from pathogen infections from bacteria, fungi, and viruses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Akond, M., S. Liu, S.K. Kantartzi, K. Meksem, N. Bellaloui, D.A. Lightfoot, J. Yuan, D. Wang, J. Anderson, D.A. Lightfoot, and M.A. Kassem. 2015. A SNP genetic linkage map based on the ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population of soybean [Glycine max (L.) Merr.] identified QTL for seed isoflavone contents. Plant Breeding 134 (5): 580–588. https://doi.org/10.1111/pbr.12298.

    Article  CAS  Google Scholar 

  • Al-Tawaha, A.M., and P. Seguin. 2006. Seeding date, row spacing, and weed effects on soybean isoflavone concentrations and other seed characteristics. Canadian Journal of Plant Science 86: 1079–1087.

    Article  CAS  Google Scholar 

  • Al-Tawaha, A.M., P. Seguin, D.L. Smith, and C. Beaulieu. 2005. Biotic elicitors as a means of increasing isoflavone concentration of soybean seeds. Annals of Applied Biology 146: 303–310.

    Article  Google Scholar 

  • Anaele, A.O., and U.R. Bishnoi. 1992. Effects of tillage, weed control method and row spacing on soybean yield and certain soil properties. Soil and Tillage Research 23: 333–340. https://doi.org/10.1016/0167-1987(92)90079-Q.

    Article  Google Scholar 

  • Baker, J.T., L.H. Allen, K.J. Boote, and N.B. Pickering. 1997. Rice responses to drought under carbon dioxide enrichment. 2. Photosynthesis and evapotranspiration. Global Change Biology 3: 129–138.

    Article  Google Scholar 

  • Bellaloui, N., Y. Hu, A. Mengistu, H.K. Abbas, M.A. Kassem, and M. Tigabu. 2016. Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral nutrition, and 15N and 13C dynamics in soybean genotypes under controlled environments. Atlas Journal of Plant Biology 2016: 56–65. https://doi.org/10.5147/ajpb.2016.0157.

    Article  Google Scholar 

  • Bennett, J.O., O. Yu, L.G. Heatherly, and B. Krishnan. 2004. Accumulation of genistein and daidzein, soybean isoflavones implicated in promoting human health, is significantly elevated by irrigation. Journal of Agricultural and Food Chemistry 52: 7574–7579.

    Article  CAS  Google Scholar 

  • Caldwell, C.R., S.J. Britz, and R.M. Mirecki. 2005. Effect of temperature, elevated carbon dioxide, and drought during seed development on the isoflavone content of dwarf soybean (Glycine max (L.) Merrill) grown in controlled environments. Journal of Agricultural and Food Chemistry 53: 1125–1129.

    Article  CAS  Google Scholar 

  • Campbell, W.J., L.H. Allen, and G. Bowes. 1990. Response of soybean canopy photosynthesis to CO2 concentration, light, and temperature. Journal of Experimental Botany 41: 427–433.

    Article  CAS  Google Scholar 

  • Carrera, C.S., and J.L. Dardanelli. 2015. Changes in the relationship between temperature during the seed-filling period and soybean seed isoflavones under water-deficit conditions. Journal of Agronomy and Crop Science. https://doi.org/10.1111/jac.12147.

  • Challinor, A. 2009. Towards the development of adaptation options using climate and crop yield forecasting at seasonal to multi-decadal timescales. Environmental Science & Policy 12: 453–465.

    Article  Google Scholar 

  • Challinor, A.J., and T.R. Wheeler. 2008a. Use of a crop model ensemble to quantify CO2 stimulation of water-stressed and well-watered crops. Agricultural and Forest Meteorology 148: 1062–1077.

    Article  Google Scholar 

  • Challinor, A.J., and T.R. Wheeler. 2008b. Crop yield reduction in the tropics under climate change: Processes and uncertainties. Agricultural and Forest Meteorology 148: 3433–4356. https://doi.org/10.1016/j.agrformet.2007.09.015.

  • Chi, H.Y., J.S. Roh, J.T. Kim, S.J. Lee, M.J. Kim, S.J. Hahn, and I.M. Chung. 2005. Light quality on nutritional composition and isoflavones content in soybean sprouts. Korean Journal of Crop Science 50: 415–418.

    Google Scholar 

  • Duke, S.O., A.M. Rimando, P.F. Pace, K.N. Reddy, and R.J. Smeda. 2003. Isoflavone, glyphosate, and aminomethylphosphonic acid levels in seeds of glyphosate-treated, glyphosate-resistant soybean. Journal of Agricultural and Food Chemistry 51 (1): 340–344. https://doi.org/10.1021/jf025908i.

    Article  CAS  PubMed  Google Scholar 

  • Dwivedi, S.L., H.D. Upadhyaya, I.M. Chung, P. De Vita, S. Garcia-Lara, D. Guajardo-Flores, J.A. Gutiérrez-Uribe, S.O. Serna-Saldívar, G. Rajakumar, K.L. Sahrawat, J. Kumar, and R. Ortiz. 2016. Exploiting phenylpropanoid derivatives to enhance the nutraceutical values of cereals and legumes. Frontiers in Plant Science 7: 763. https://doi.org/10.3389/fpls.2016.00763.

    Article  Google Scholar 

  • Goes-Favoni, S.P., M.C. Carrao-Panizzi, and A. Beleia. 2010. Changes of isoflavone in soybean cotyledons soaked in different volumes of water. Food Chemistry 19: 1605–1612.

    Article  Google Scholar 

  • Gutierrez-Gonzalez, J.J., S.K. Guttikonda, L.S.P. Tran, D.L. Aldrich, R. Zhong, O. Yu, H.T. Nguyen, and D.A. Sleper. 2010a. Differential expression of isoflavone biosynthetic genes in soybean during water deficits. Plant Cell Physiology 51 (6): 936–948. https://doi.org/10.1093/pcp/pcq065.

    Article  CAS  PubMed  Google Scholar 

  • Gutierrez-Gonzalez, J.J., X.L. Wu, J.D. Gillman, J.D. Lee, R. Zhong, O. Yu, J.G. Shannon, H.T. Nguyen, and D.A. Sleper. 2010b. Intricate environment-modulated genetic networks control isoflavone accumulation in soybean seeds. BMC Plant Biology 10: 105–120. https://doi.org/10.1186/1471-2229-10-105.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hay, R., and J. Porter. 2006. The physiology of crop yield. 2nd ed. Oxford: Blackwell.

    Google Scholar 

  • Hwang, Y.H. 2004. Present status and future developmental direction of soy-related industries in Korea. Korea Soybean Digest 21: 28–44.

    Google Scholar 

  • Jeong, P.H., D.H. Shin, and Y.S. Kim. 2008. Effects of germination and osmopriming treatment on enhancement of isoflavone contents in various soybean cultivars and cheonggukjang (fermented unsalted soybean paste). Journal of Food Science 73: H187–H194.

    Article  CAS  Google Scholar 

  • Kim, J.J., S.H. Kim, S.J. Hahn, and I.M. Chung. 2005. Changing soybean isoflavone composition and concentrations under two different storage conditions over three years. Food Research International 38 (2005): 435–444.

    Article  CAS  Google Scholar 

  • Kim, E.H., P. Seguin, J.E. Lee, C.G. Yoon, H.K. Song, J.K. Ahn, and I.M. Chung. 2011. Elevated ultraviolet-B radiation reduces concentrations of isoflavones and phenolic compounds in soybean seeds. Journal of Agronomy and Crop Science 197: 75–80. https://doi.org/10.1111/j.1439-037X.2010.00444.x.

    Article  CAS  Google Scholar 

  • Kimball, B.A., P.J. Pinter, R.L. Garcia, R.L. LaMorte, G.W. Wall, D.J. Hunsaker, G. Wechsung, F. Wechsung, and T. Kartschall. 1995. Productivity and water use of wheat under free-air CO2 enrichment. Global Change Biology 1: 429–442.

    Article  Google Scholar 

  • Kirakosyan, A., P. Kaufman, R.L. Nelson, M.J. Kasperbauer, J.A. Duke, E. Seymour, S.C. Chang, S. Warber, and S. Bolling. 2006. Isoflavone levels in five soybean (Glycine max) genotype are alter by phytochrome-mediated light treatment. Journal of Agricultural and Food Chemistry 54: 54–58.

    Article  CAS  Google Scholar 

  • Lee, S.J., J.K. Ahn, S.H. Kim, J.T. Kim, S.J. Hahn, M.Y. Jung, and I.M. Chung. 2003a. Variation in isoflavone of soybean cultivars with location and storage duration. Journal of Agricultural and Food Chemistry 51: 3382–3389.

    Article  CAS  Google Scholar 

  • Lee, S.J., W. Yan, J.K. Ahn, and I.M. Chung. 2003b. Effects of year, site, genotype and their interactions on various soybean isoflavones. Field Crops Research 81: 181–192.

    Article  Google Scholar 

  • Lee, S.J., J.K. Ahn, T.D. Khanh, S.C. Chun, S.L. Kim, H.M. Ro, H.K. Song, and I.M. Chung. 2007. Comparison of isoflavone concentrations in soybean (Glycine max (L.) Merrill) sprouts grown under two different light conditions. Journal of Agricultural and Food Chemistry 55: 9415–9421.

    Article  CAS  Google Scholar 

  • Lee, S.J., J.J. Kim, H.I. Moon, J.K. Ahn, S.C. Chun, W.S. Jung, O.K. Le, and I.M. Chung. 2008. Analysis of isoflavones and phenolic compounds in Korean soybean [Glycine max (L.) Merr.] seeds of different seed weights. Journal of Agricultural and Food Chemistry 56 (8): 2751–2758. https://doi.org/10.1021/jf073153f.

    Article  CAS  PubMed  Google Scholar 

  • Long, S.P., E.A. Ainsworth, A. Rogers, and D.R. Ort. 2004. Rising atmospheric carbon dioxide: Plants FACE the future. Annual Review of Plant Biology 55: 591–628.

    Article  CAS  Google Scholar 

  • Long, S.P., E.A. Ainsworth, A.D.B. Leakey, J. Nosberger, and D.R. Ort. 2006. Food for thought: Lower-than-expected crop yield stimulation with rising CO2 concentrations. Science 312 (5782): 1918–1921. https://doi.org/10.1126/science.1114722.

    Article  CAS  Google Scholar 

  • Lozovaya, V.V., A.V. Lygin, A.V. Ulanov, R.L. Nelson, J. Dayde, and J.M. Widhohm. 2005. Effect of temperature and soil moisture status during seed development on soybean seed isoflavone concentration and composition. Crop Science 45: 1934–1940. https://doi.org/10.2135/cropsci2004.0567.

    Article  CAS  Google Scholar 

  • Mapope, N., and F.D. Dakora. 2013. Role of flavonoid and isoflavonoid molecules in symbiotic functioning and host-plant defense in the Leguminosae. In The chemistry for sustainable development in Africa, ed. A. Gurib-Fakim and J.N. Eloff, 33–48. Berlin/Heidelberg: Springer.

    Chapter  Google Scholar 

  • Morrison, J., E.R. Cober, M.F. Saleem, N.B. McLaughlin, J. Fregeau-Reid, B.L. Ma, W. Yan, and L. Woodrow. 2008. Changes in isoflavone concentration with 58 years of genetic improvement of short-season soybean cultivars in Canada. Crop Science 48 (6): 2201–2208.

    Article  Google Scholar 

  • Ndakidemi, P.A., and F.D. Dakora. 2003. Legume seed flavonoids and nitrogenous metabolites as signals and protectants in early seedling development. Functional Plant Biology 30: 729–745. https://doi.org/10.1071/FP03042.

    Article  PubMed  Google Scholar 

  • Ouertani, K., E. Washington, P. Lage, S.K. Kantartzi, D.A. Lightfoot, and M.A. Kassem. 2011. Comparison of early and conventional soybean production systems for yield and other agronomic traits. Atlas Journal of Plant Biology 1 (1): 1–5. https://doi.org/10.5147/ajpb.2011.0008.

    Article  Google Scholar 

  • Phommalth, S., Y.S. Jeong, Y.H. Kim, K.H. Dhakal, and Y.H. Hwang. 2008. Effects of light treatment on isoflavone content of germinated soybean seeds. Journal of Agricultural and Food Chemistry 56: 10123–10128.

    Article  Google Scholar 

  • Polley, H.W. 2002. Implications of atmospheric and climatic change for crop yield and water use efficiency. Crop Science 42: 131–140.

    Article  Google Scholar 

  • Prasad, P., V. Vara, L.H. Allen, and K.J. Boote. 2005. Crop responses to elevated carbon dioxide and interaction with temperature: Grain legumes. Journal of Crop Improvement 13: 113–155.

    Article  CAS  Google Scholar 

  • Ragin, B., M. Akond, S.K. Kantartzi, K. Meksem, H. Herrera, C. Akbay, D.A. Lightfoot, and M.A. Kassem. 2014. Effect of row spacing on seed isoflavone contents in soybean [Glycine max (L.) Merr.]. American Journal of Plant Science 5: 4003–4010. https://doi.org/10.4236/ajps.2014.526418.

    Article  CAS  Google Scholar 

  • Rahman, M., M. Hossain, M. Anwar, and A.S. Juraimi. 2011. Plant density influence on yield and nutritional quality of soybean seed. Asian Journal of Plant Sciences 10: 125–132. https://doi.org/10.3923/ajps.2011.125.132.

    Article  Google Scholar 

  • Rasolohery, C.A., M. Berger, A.V. Lygin, V.V. Lozovaya, R.L. Nelson, and J. Daydé. 2008. Effect of temperature and water availability during late maturation of the soybean seed on germ and cotyledon isoflavone content and composition. Journal of Science and Food Agriculture 88 (2): 218–228.

    Article  CAS  Google Scholar 

  • Rubiales, D., S. Fondevilla, W. Chen, L. Gentzbittel, T.J.V. Higgins, M.A. Castillejo, K.B. Singh, and N. Rispail. 2015. Achievements and challenges in legume breeding for pest and disease resistance. Critical Reviews in Plant Science 34 (1–3): 195–236. https://doi.org/10.1080/07352689.2014.898445.

    Article  CAS  Google Scholar 

  • Sharma, S., and D.R. Thakur. 2014. Biochemical basis for bruchid resistance in cowpea, chickpea and soybean genotypes. American Journal of Food Technology 9: 318–324. https://doi.org/10.3923/ajft.2014.318.324.

    Article  CAS  Google Scholar 

  • Shi, H., P.K. Nam, and M.A. Yinfa. 2010. Comprehensive profiling of isoflavones, phytosterols, tocopherols, minerals, crude protein, lipid, and sugar during soybean (Glycine max) germination. Journal of Agricultural and Food Chemistry 58: 4970–4976. https://doi.org/10.1021/jf100335j.

    Article  CAS  PubMed  Google Scholar 

  • Stafford, H.A. 1997. Roles of flavonoids in symbiotic and defense functions in legume roots. The Botanical Review 63 (1): 27–39.

    Article  Google Scholar 

  • Subramanian, S., G. Stacey, and O. Yu. 2007. Distinct, crucial roles of flavonoids during legume nodulation. Trends in Plant Science 12 (7): 282–285. https://doi.org/10.1016/j.tplants.2007.06.006.

    Article  CAS  PubMed  Google Scholar 

  • Taub, D., B. Miller, and H. Allen. 2008. Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis. Global Change Biology 14: 565–575.

    Article  Google Scholar 

  • Thomas, J.M.G., K.J. Boote, L.H. Allen, M. Gallo-Meagher, and J.M. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Science 43: 1548–1557.

    Article  Google Scholar 

  • Treutte, D. 2006. Significance of flavonoids in plant resistance: A review. Environmental Chemistry Letters 4: 147–157. https://doi.org/10.1007/s10311-006-0068-8.

    Article  CAS  Google Scholar 

  • Tsukamoto, C., S. Shimada, K. Igita, S. Kudou, M. Kokubun, K. Okubo, and K. Kitamura. 1995. Factors affecting isoflavone content in soybean seeds: Changes in isoflavones, saponins, and composition of fatty acids at different temperatures during seed development. Journal of Agricultural and Food Chemistry 43 (5): 1184–1192. https://doi.org/10.1021/jf00053a012.

    Article  CAS  Google Scholar 

  • Vyn, T.J., X. Yin, T.W. Bruulsema, C.J.C. Jackson, I. Rajcan, and S.M. Brouder. 2002. Potassium fertilization effects on isoflavone concentrations in soybean [Glycine max (L.) Merr.]. Journal of Agricultural and Food Chemistry 50 (12): 3501–3506.

    Article  CAS  Google Scholar 

  • Wang, C., M. Sherrard, S. Pagadala, R. Wixon, and R.A. Scott. 2000. Isoflavone content among maturity group 0 to II soybeans. Journal of the American Oil Chemists’ Society 77 (5): 483–487.

    Article  CAS  Google Scholar 

  • Yendrek, C.R., R.P. Koester, and E.A. Ainsworth. 2015. A comparative analysis of transcriptomic, biochemical, and physiological responses to elevated ozone identifies species-specific mechanisms of resilience in legume crops. Journal of Experimental Botany 66 (22): 7101–7112.

    Article  CAS  Google Scholar 

  • Yin, X., and T.J. Vyn. 2005. Relationships of isoflavone, oil, and protein in seed with yield of soybean. Agronomy Journal 97 (5): 1314–1321.

    Article  CAS  Google Scholar 

  • Yuan, J.P., Y.B. Liu, J. Peng, J.H. Wang, and X. Liu. 2009. Changes of isoflavone profile in the hypocotyls and cotyledons of soybeans during dry heating and germination. Journal of Agricultural and Food Chemistry 57: 9002–9010.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay Abdelmajid Kassem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kassem, M.A. (2021). Environmental Factors Affecting Isoflavone Contents. In: Kassem, M.A. (eds) Soybean Seed Composition. Springer, Cham. https://doi.org/10.1007/978-3-030-82906-3_9

Download citation

Publish with us

Policies and ethics