Skip to main content

Seed Amino Acids, Macronutrients, Micronutrients, Sugars, and Other Compounds

  • Chapter
  • First Online:
Soybean Seed Composition

Abstract

Like other seed composition traits organic and amino acids, macronutrients, macronutrients, and sugars’ contents vary considerably in soybean seeds depending on the genotype, biotic, and abiotic factors. In this chapter, we first summarized the role of organic and amino acids, macronutrients, macronutrients, sugars, and other compounds in seed development as well as the effects of biotic and abiotic factors on seed development. Finally, we summarized QTL mapping data for amino acids, macronutrients, macronutrients, and sugars’ contents and candidate genes for these seed composition traits for the past two decades (2000–2020). These findings will help breeders and farmers to develop soybean cultivars with high contents of amino acids and desired combinations of sugars and beneficial mineral nutrients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdul-Baki, A.A., and J.D. Anderson. 1973. Vigor determination in soybean seed by multiple criteria. Crop Science 13 (6): 630–633.

    Article  Google Scholar 

  • Akond, A., S. Liu, L. Schoener, J.A. Anderson, S.K. Kantartzi, K. Meksem, Q. Song, D. Wang, Z. Wen, D.A. Lightfoot, and M.A. Kassem. 2013. A SNP-Based Genetic Linkage Map of Soybean Using the SoySNP6K Illumina Infinium BeadChip Genotyping Array. Plant Genetics, Genomics, and Biotechnology 1(3): 80–89. https://doi.org/10.5147/jpgs.2013.0090.

  • Akond, M., S. Liu, S.K. Kantartzi, K. Meksem, N. Bellaloui, D.A. Lightfoot, J. Yuan, D. Wang, J. Anderson, D.A. Lightfoot, and M.A. Kassem. 2015. A SNP genetic linkage map based on the ‘Hamilton’ by ‘Spencer’ recombinant inbred line (RIL) population of soybean [Glycine max (L.) Merr.] identified QTL for seed isoflavone contents. Plant Breeding 134(5): 580–588. https://doi.org/10.1111/pbr.12298.

  • Akond, M., J. Yuan, S. Liu, S.K. Kantartzi, K. Meksem, N. Bellaloui, D.A. Lightfoot, and M.A. Kassem. 2018. Detection of QTL underlying seed quality components in soybean [Glycine max (L.) Merr.]. Canadian Journal of Plant Science 98: 881–888. https://doi.org/10.1139/cjps-2017-0204.

    Article  CAS  Google Scholar 

  • Altenbach, S.B., K.W. Pearson, F.W. Leung, and S.S.M. Sun. 1987. Cloning and sequence analysis of a cDNA encoding a Brazil nut protein exceptionally rich in methionine. Plant Mol. Biol. 8: 239–250.

    Google Scholar 

  • Altshuler, D., M.J. Daly, and E.S. Lander. 2008. Genetic mapping in human disease. Science 322: 881–888.

    Google Scholar 

  • Ambrocio, Z., S.K. Kantartzi, K. Meksem, and M.A. Kassem1. 2016. Influence of Drought Stress on Several Root Traits and their Correlation with Seed Protein and Oil Contents in Soybean. Atlas Journal of Biology 2016: 267–273. https://doi.org/10.5147/ajb.2016.0140.

  • Amir, R., and Y. Hacham. 2008. Methionine metabolism in plants. In A missing link between soils, crops, and nutrition. Joseph Jez (ed.). pp. 235–249. Published by American Society of Agronomy, Crops Science Society of America, and Soil Science Society of America. ISBN 9780891181866.

    Google Scholar 

  • Amir, R., T. Han, and F. Ma. 2012. Bioengineering approaches to improve the nutritional values of seeds by increasing their methionine content. Molecular Breeding 29: 915–924.

    Google Scholar 

  • Arendt, E.K., and E. Zannini. 2013. Cereal grains for the food and beverage industries. Food Science Technology and Nutrition 409–438.

    Google Scholar 

  • Ashraf, M., and M.R. Foolad. 2007. Roles of glycine betaine and proline in improving plant abiotic stress resistance. Env. and Exp. Botany 59: 206–216. https://doi.org/10.1016/j.envexpbot.2005.12.006.

  • Ashraf, M., and P.J.C. Harris. 2004. Potential biochemical indicators of salinity tolerance in plants. Plant Sci 166: 3–16. http://dx.doi.org/10.1016/j.plantsci.2003.10.024.

  • Aviles-Gaxiola, S., C. Chuck-Hernandez, and S.O. Saldivar. 2017. Inactivation methods of trypsin inhibitor in legumes: A review. Journal of Food Science 83: 17–29.

    Google Scholar 

  • Ball, R.A., L.C. Purcell, and E.D. Vories. 2000. Optimizing soybean plant population for a short-season production system in the Southern USA. Crop Sci. 40: 757–764. https://doi.org/10.2135/cropsci2000.403757x.

  • Bellaloui, N., and A.M. Gillen. 2010. Soybean seed protein, oil, fatty acids, N, and S partitioning as affected by node position and cultivar differences. Agricultural Sciences 1: 110–118.

    Article  CAS  Google Scholar 

  • Bellaloui, N., and A. Mengistu. 2008. Seed composition is influenced by irrigation regimes and cultivar differences in soybean. Irrigation Science 26: 261–268. https://doi.org/10.1007/s00271-007-0091-y.

    Article  Google Scholar 

  • Bellaloui, N., R.M. Zablotowicz, K.N. Reddy, and C.A. Abel. 2008. Nitrogen metabolism and seed composition as influenced by glyphosate application in glyphosate-resistant soybean. Journal of Agricultural and Food Chemistry 56: 2765–2772. https://doi.org/10.1021/jf703615m.

    Article  CAS  PubMed  Google Scholar 

  • Bellaloui, N., H.K. Abbas, A.M. Gillen, and C.A. Abel. 2009a. Effect of glyphosate-boron application on seed composition and nitrogen metabolism in glyphosate-resistant soybean. Journal of Agricultural and Food Chemistry 57: 9050–9056. https://doi.org/10.1021/jf901801z.

  • Bellaloui, N., J.E. Hanks, D.K. Fisher, and A. Mengistu. 2009b. Soybean seed composition is influenced by within-field variability in soil nutrients. Crop Management 8 (1): 1–12. https://doi.org/10.1094/CM-2009-1203-01-RS.

  • Bellaloui N., K.N. Reddy, R.M. Zablotowicz, H.K. Abbas, and C.A. Abel. 2009c. Effects of glyphosate application on seed iron and root ferric (III) reductase in soybean cultivars. Agricultural and Food Chemistry 57 (20): 9569–9574. https://doi.org/10.1021/jf902175y.

  • Bellaloui, N., J.R. Smith, J.D. Ray, and A.M. Gillen. 2009d. Effect of maturity on seed composition in the early soybean production system as measured on near-isogenic soybean lines. Crop Science 49: 608–620. https://doi.org/10.2135/cropsci2008.04.0192.

  • Bellaloui, N., H.A. Bruns, A.M. Gillen, H.K. Abbas, R.M. Zablotowicz, A. Mengistu, and R.L. Paris. 2010a. Soybean seed protein, oil, fatty acids, and mineral composition as influenced by soybean-corn rotation. Agricultural Sciences 1 (3): 102–109.

    Google Scholar 

  • Bellaloui, N., J.R. Smith, A.M. Gillen, and J.D. Ray. 2010b. Effect of maturity on seed sugars as measured on near-isogenic soybean (Glycine max) lines. Crop Science 50: 1978–1987. https://doi.org/10.2135/cropsci2009.10.0596.

  • Bellaloui, N., K.N. Reddy, A.M. Gillen, and C.A. Abel. 2010c. Nitrogen metabolism and seed composition as influenced by foliar B application in soybean. Plant and Soil 336:143–155. https://doi.org/10.1007/s11104-010-0455-6.

  • Bellaloui, N., J.R. Smith, A.M. Gillen, and J.D. Ray. 2011. Effects of maturity, genotypic background, and temperature on seed mineral composition in near-isogenic soybean lines in the early soybean production system. Crop Science 51: 1161–1171. https://doi.org/10.2135/cropsci2010.04.0187.

    Article  Google Scholar 

  • Bellaloui, N., A. Mengistu, and L.H.S. Zobiole. 2012a. Phomopsis seed infection effects on soybean seed phenol, lignin, and isoflavones in maturity group V genotypes differing in phomopsis resistance. Journal of Crop Improvement 26: 693–710. https://doi.org/10.1080/15427528.2012.671236.

    Article  CAS  Google Scholar 

  • Bellaloui, N., A. Mengistu, D.K. Fisher, and C.A. Abel. 2012b. Soybean seed composition constituents as affected by drought and Phomopsis in phomopsis susceptible and resistant genotypes. Journal of Crop Improvement 26: 428–453. https://doi.org/10.1080/15427528.2011.651774.

    Article  CAS  Google Scholar 

  • Bellaloui, N., J.R. Smith, A.M. Gillen, D.K. Fisher, and A. Mengistu. 2012c. Effect of shade on seed protein, oil, fatty acids, and minerals in soybean lines varying in seed germinability in the Early Soybean Production System. American Journal of Plant Sciences 3: 84–95. https://doi.org/10.4236/ajps.2012.31008.

    Article  CAS  Google Scholar 

  • Bellaloui, N., A. Mengistu, E.R. Walker, and L.D. Young. 2014a. Soybean seed composition as affected by seeding rates and row spacing. Crop Science 54: 1782–1795.

    Article  Google Scholar 

  • Bellaloui, N., A. Mengistu, M.A. Kassem, C.A. Abel, and L.H.S. Zobiole. 2014b. Role of boron nutrient in nodule growth and nitrogen fixation in soybean genotypes under water stress conditions. In Advances in biology and ecology of nitrogen fixation, ed. T. Ohyama. IntechOpen. https://doi.org/10.5772/56994.

    Chapter  Google Scholar 

  • Bellaloui, N., L. Khandaker, M. Akond, S.K. Kantartzi, K. Meksem, A. Mengistu, and M.A. Kassem. 2015a. Identification of QTLs underlying seed macronutrients accumulation in ‘MD96-5722’ by ‘Spencer’ recombinant inbred lines of soybean. Atlas Journal of Biology 3 (2): 224–235. https://doi.org/10.5147/ajb.v3i2.34.

    Article  Google Scholar 

  • Bellaloui, N., L. Khandaker, M. Akond, S.K. Kantartzi, K. Meksem, A. Mengistu, D.A. Lightfoot, and M.A. Kassem. 2015b. Identification of QTL underlying seed micronutrients accumulation in ‘MD 96-5722’ by ‘Spencer’ recombinant inbred lines of soybean. Atlas Journal of Plant Biology 1 (3): 39–49. https://doi.org/10.5147/ajpb.v1i3.112.

    Article  Google Scholar 

  • Bellaloui, N., Y. Hu, A. Mengistu, H.K. Abbas, M.A. Kassem, and M. Tigabu. 2016. Elevated atmospheric carbon dioxide and temperature affect seed composition, mineral nutrition, and 15N and 13C dynamics in soybean genotypes under controlled environments. Atlas Journal of Plant Biology 2016: 56–65. https://doi.org/10.5147/ajpb.2016.0157.

    Article  Google Scholar 

  • Bellaloui, N., A. Mengistu, H.K. Abbas, and M.A. Kassem. 2017. Effects of drought and elevated atmospheric carbon dioxide on seed nutrition and 15N and 13C natural abundance isotopes in soybean under controlled environments. In Soybean – The basis of yield, biomass and productivity, ed. M. Kasai. IntechOpen. https://doi.org/10.5772/67511.

    Chapter  Google Scholar 

  • Bellaloui, N., H.A. Bruns, H.K. Abbas, D.K. Fisher, and A. Mengistu. 2020a. Effects of harvest-aids on seed nutrition in soybean under midsouth USA conditions. Plants 9: 1007. https://doi.org/10.3390/plants9081007.

    Article  CAS  PubMed Central  Google Scholar 

  • Bellaloui, N., A.M. McClure, A. Mengistu, and H.K. Abbas. 2020b. The influence of agricultural practices, the environment, and cultivar differences on soybean seed protein, oil, sugars, and amino acids. Plants 9: 378. https://doi.org/10.3390/plants9030378.

    Article  CAS  PubMed Central  Google Scholar 

  • Benitez, E.R., M. Hajika, T. Yamada, K. Takahashi, N. Oki, N. Yamada, T. Nakamura, and K. Kanamaru. 2010. A major QTL controlling seed cadmium accumulation in soybean. Crop Science 50: 1728–1734. https://doi.org/10.2135/cropsci2009.11.0664.

    Article  CAS  Google Scholar 

  • Berk, Z. 1992. Technology of Production of Edible Flours and Protein Products from Soybeans. FAO Agricultural Services Bulletin No. 97, Rome, 178.

    Google Scholar 

  • Bianchi-Hall, C.M., T.E. Carter, M.A. Baileyd, M.A.R. Miane, T.W. Ruftya, D.A. Ashleye, H.R. Boermae, C. Arellanoc, R.S. Husseye, and W.A. Parrotte. 2000. Aluminum Tolerance Associated with Quantitative Trait Loci Derived from Soybean PI 416937 in Hydroponics. Crop Science 40(2): 538–545. http://doi.org/10.2135/cropsci2000.402538x.

  • Blackman, S.A., R.L. Obendorf, and A.C. Leopold. 1992. Maturation proteins and sugars in desiccation tolerance of developing soybean seeds. Plant Physiology 100: 225–230.

    Google Scholar 

  • Bohnert, H.J., and R.G. Jensen. 1996. Strategies for engineering water-stress tolerance in plants. Trends in Biotechnology 14: 89–97; http://dx.doi.org/10.1016/0167-7799(96)80929-2.

    Google Scholar 

  • Bolanos, L., E. Esteban, C. de Lorenzo, M. Fernández-Pascual, M.R. deFelipe, A. Garate, and I. Bonilla. 1994. Essentiality of boron for symbiotic dinitrogen fixation in pea (Pisum sativum) rhizobium nodules. Plant Physiology 104: 85–90.

    Google Scholar 

  • Bolanos, L., N.J. Brewin, and I. Bonilla. 1996. Effects of boron on rhizobium-legume cell—surface interactions and node development. Plant Physiology 110: 1249–1256.

    Google Scholar 

  • Bolon, Y.T., B. Joseph, S.B. Cannon, M.A. Graham, B.W. Diers, A.D. Farmer, G.D. May, G.J. Muehlbauer, J.E. Specht, Z.J. Tu, N. Weeks, W.W. Xu, R.C. Shoemaker, and C.P. Vance. 2010. Complementary genetic and genomic approaches help characterize the linkage group I seed protein QTL in soybean. BMC Plant Biology 10: 41. https://doi.org/10.1186/1471-2229-10-41.

  • Borisjuk, L., H. Rolletschek, R. Radchuk, W. Weschke, U. Wobus, and H. Weber. 2004. Seed development and differentiation: a role for metabolic regulation. Plant Biology 6 (4): 375–386. https://doi.org/10.1055/s-2004-817908.

  • Brown, P.H., N. Bellaloui, M.A. Wimmer, E.S. Bassil, J. Ruiz, H. Hu, H. Pfeffer, F. Dannel, and V. Romheld. 2002. Boron in plant biology. Plant Biology 4: 205–223.

    Google Scholar 

  • Brummer, E.C., G.L. Graef, J. Orf, J.R. Wilcox and R.C. Shoemaker. 1997. Mapping QTL for seed protein and oil content in eight soybean populations. Crop Science 37 (2): 370–378.

    Google Scholar 

  • Cabarello, B. 2002. Global patterns of child health: the role of nutrition. Annals of Nutrition and Metabolism 46: 3–7.

    Google Scholar 

  • Carter, T.E., P.I. DeSouza, and L.C. Purcell. 1999. Recent advances in breeding for drought and aluminum resistance in soybean p. 106–125. In H. Kauffman (ed.) Proceedings of the World Soybean Research Conference, VI, Chicago. 4–7 Aug. 1999. National Soybean Research Lab., Urbana, IL.

    Google Scholar 

  • Castillo, E.M., B.O. de Lumen, P.S. Reyes, and H.Z. de Lumen. 1990. Raffinose synthase and galactinol synthase in developing seeds and leaves of legumes. Journal of Agricultural and Food Chemistry 38: 351–355.

    Google Scholar 

  • Catoni, E., M. Desimone, M. Hilpert, D. Wipf, R. Kunze, A. Schneider, U. Flügge, K. Schumacher, and W.B. Frommer. 2003. Expression pattern of a nuclear encoded mitochondrial arginine ornithine translocator gene from Arabidopsis. BMC Plant Biology 3: 1. https://doi.org/10.1186/1471-2229-3-1.

  • Chardon, F., B. Virlon, L. Moreau, M. Falque, J. Joets, L. Decousset, A. Murigneux, and A. Charcosset. 2004. Genetic architecture of flowering time in maize as inferred from quantitative trait loci meta-analysis and synteny conservation with the rice genome. Genetics 168: 2169–2185.

    Google Scholar 

  • Chen, G., H. Liang, Q. Zhao, A.M. Wu, and B. Wang. 2020. Exploiting MATE efflux proteins to improve flavonoid accumulation in Camellia sinensis in silico. International Journal of Biological Macromolecules 143 (15): 732–743. https://doi.org/10.1016/j.ijbiomac.2019.10.028.

    Article  CAS  PubMed  Google Scholar 

  • Chrispeels, M.J., and N.V. Raikhelb. 1991. Lectins, lectin genes, and their role in plant defense. The Plant Cell 3: 1–9.

    Google Scholar 

  • Cicek, M. 2001. Genetic marker analysis of three major carbohydrates in soybean seeds. PhD Dissertation, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA.

    Google Scholar 

  • Cooper, A.J. 1983. Biochemistry of sulfur-containing amino acids. Annual Review of Biochemistry 52: 187–222.

    Google Scholar 

  • Cu, J., V. Vu, L.H. Allen, and G. Bowes. 1987. Drought stress and elevated CO2 effects on soybean ribulose bisphosphate carboxylase activity and canopy photosynthetic rates. Plant Physiology 83: 573–578.

    Google Scholar 

  • Dell, B., L. Huang, and R.W. Bell. 2002. Boron in plant reproduction. In Boron in plant and animal nutrition, eds. Golbrach, H.E., B. Rerkasem, M.A. Wimmer, P.H. Brown, M. Thellier, and R.W. Bell, 103–117. New York: Kluwer Academic/Pledum.

    Google Scholar 

  • DeYoung, B.J., K.L. Bickle, K.J. Schrage, P. Muskett, K. Patel, and S.E. Clark. 2006. The CLAVATA1-related BAM1, BAM2 and BAM3 receptor kinase-like proteins are required for meristem function in Arabidopsis. The Plant Journal 45 (1): 1–16. https://doi.org/10.1111/j.1365-313X.2005.02592.x.

    Article  CAS  PubMed  Google Scholar 

  • Dhungana, S.K., K.P. Kulkarni, C.W. Park, H. Jo, J.T. Song, D.H. Shin, and J.D. Lee. 2017. Mapping quantitative trait loci controlling soybean seed starch content in an interspecific cross of ‘Williams 82’ (Glycine max) and ‘PI 366121’ (Glycine soja). Plant Breeding 136: 379–385. https://doi.org/10.1111/pbr.12480.

    Article  CAS  Google Scholar 

  • Dinkins, R.D., M.S.S. Reddy, C.A. Meurer, B. Yan, H. Trick, F. Thibaud-Nissen, J.J. Finer, W.A. Parrott, and G.B. Collins. 2001. Increased sulfur amino acids in soybean plants overexpressing the maize 15 kDa zein protein. In Vitro Cellular and Developmental Biology - Plant 37: 742–747.

    Google Scholar 

  • Donnelly, P. 2008. Progress and challenges in genome-wide association studies in humans. Nature 456: 728–731.

    Google Scholar 

  • Dordas, C. 2006. Foliar boron application improves seed set, seed yield, and seed quality of alfalfa. Agronomy Journal 98: 907–913.

    Google Scholar 

  • Dure, L., M. Crouch, J. Harada, T.D. Ho, J. Mundy, R. Quatrano, T. Thomas, and Z.R. Sung. 1989. Common amino acid sequence domains among the Lea proteins of higher plants. Plant Molecular Biology 12: 475–486.

    Google Scholar 

  • Duressa, D., K. Soliman, and D. Chen. 2010. Identification of aluminum responsive genes in Al-tolerant soybean line PI 416937. International Journal of Plant Genomics. Article ID 164862, 13 pages. https://doi.org/10.1155/2010/164862.

  • Fang, C., Y. Ma, S. Wu, Z. Liu, Z. Wang, R. Yang, G. Hu, Z. Zhou, H. Yu, M. Zhang, Y. Pan, G. Zhou, H. Ren, W. Du, H. Yan, Y. Wang, D. Han, Y. Shen, S. Liu, T. Liu, J. Zhang, H. Qin, J. Yuan, X. Yuan, F. Kong, B. Liu, J. Li, Z. Zhang, Gg Wang, B. Zhu, and Z. Tian. 2017. Genome-wide association studies dissect the genetic networks underlying agronomical traits in soybean. Genome Biology 18: 161. https://doi.org/10.1186/s13059-017-1289-9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Farquhar, G.D., and T.D. Sharkey. 1982. Stomatal conductance and photosynthesis. Annual Review of Plant Physiology 33: 317–345.

    Google Scholar 

  • Fehr, W.R. 1987. Principles of cultivar development—Volume 1, Theory and Technique. New York: Macmillan Publishing Company.

    Google Scholar 

  • Feng, C.B., M. Morsy, E. Giannocaro, B. Zhang, and P.Y. Chen. 2005. Soybean seed sugar content and quantitative trait loci mapping. In Plant nutrition for food security, human health and environmental protection, ed. C.J. Li, 438–439. Beijing: Tsinghua University Press.

    Google Scholar 

  • Fletcher, R.J., I.P. Bell, and J.P. Lambert. 2004. Public health aspects of food fortification: A question of balance. The Proceedings of the Nutrition Society 63: 605–614.

    Article  CAS  PubMed  Google Scholar 

  • Frazer, K.A., S.S. Murray, N.J. Schork, and E.J. Topol. 2009. Human genetic variation and its contribution to complex traits. Nature Reviews Genetics 10: 241–251.

    Google Scholar 

  • Gao, Y., R.M. Biyashev, M.A. Saghai Maroof, N.M. Glover, D.M. Tucker, and G.R. Buss. 2008. Validation of low-phytate QTLs and evaluation of seedling emergence of low-phytate soybeans. Crop Science 48: 1355–1364. https://doi.org/10.2135/cropsci2007.11.0633.

    Article  Google Scholar 

  • Gong, Q.C., H.X. Yu, X.R. Mao, H.D. Qi, Y. Shi, W. Xiang, Q.S. Chen, and Z.M. Qi. 2018. Meta-analysis of soybean amino acid QTLs and candidate gene mining. Journal of Integrative Agriculture 17 (5): 1074–1084. https://doi.org/10.1016/S2095-3119(17)61783-0.

    Article  CAS  Google Scholar 

  • Gonzalez, E.M., A.J. Gordon, C.L. James, and C. Arrese-lgor. 1995. The role of sucrose synthase in the response of soybean nodulesto drought. Journal of Experiment Botany 46: 1515–1523.

    Google Scholar 

  • Grant, D., R.T. Nelson, S.B. Cannon, and R.C. Shoemaker. 2010. SoyBase, the USDA-ARS soybean genetics and genomics database. Nucleic Acids Research 38 (suppl 1): D843–D846. https://doi.org/10.1093/nar/gkp798.

  • Gregory, P.J., J.S.I. Ingram, and M. Brklacich. 2005. Climate change and food security. Philosophical Transactions of the Royal Society B 360: 2139–2148. https://doi.org/10.1098/rstb.2005.1745.

  • von Groll, U., D. Berger, and T. Altmann. 2002. The subtilisin-like serine protease SDD1 mediates cell-to-cell signaling during Arabidopsis stomatal development. The Plant Cell 14: 1527–1539.

    Google Scholar 

  • Guleria, S., S. Sharma, B.S. Gill, and S.K. Munshi. 2008. Distribution and biochemical composition of large and small seeds of soybean (Glycine max L.). Journal of the Science of Food and Agriculture 88: 269–272.

    Google Scholar 

  • Hanitzsch, M., D. Schnitzer, T. Seidel, D. Golldack, and K.J. Dietz. 2007. Transcript level regulation of the vacuolar H+-ATPase subunit isoforms VHA-a, VHA-E and VHA-G in Arabidopsis thaliana. Molecular Membrane Biology 24 (5–6): 507–518. https://doi.org/10.1080/09687680701447393.

    Article  CAS  PubMed  Google Scholar 

  • Hare, P.D., and W.A. Cress. 1997. Implications of stress-induced proline accumulation in plants. Plant Growth Regulation 21 (2): 79–102.

    Google Scholar 

  • Haun, W., A. Coffman, B.M. Clasen, Z.L. Demorest, A. Lowy, E. Ray, A. Retterath, T. Stoddard, A. Juillerat, F. Cedrone, L. Mathis, D.F. Voytas, and F. Zhang. 2014. Improved soybean oil quality by targeted mutagenesis of the fatty acid desaturase 2 gene family. Plant Biotechnology Journal 12: 934–940.

    Google Scholar 

  • Hay R., and J. Porter. 2006. The physiology of crop yield (2nd ed.). Oxford: Blackwell.

    Google Scholar 

  • Hayat, S., Q. Hayat, M.N. Alyemeni, A.S. Wani, J. Pichtel, and A. Ahmad. 2012. Role of proline under changing environments. Plant Signaling and Behavior 7 (11): 1456–1466. https://doi.org/10.4161/psb.21949.

  • Heagle, A.S., J.E. Miller, and W.A. Pursley. 1998. Influence of ozone stress on soybean response to carbon dioxide enrichment: III. Yield and seed quality. Crop Science 38: 128–134.

    Google Scholar 

  • Heinemann, R.J.B., P.L. Fagundes, E.A. Pinto, M.V.C. Penteado, and U.M. Lanfer-Marquez. 2005. Comparative study of nutrient composition of commercial brown, parboiled and milled rice from Brazil. Journal of Food Composition and Analysis 18: 287–296.

    Article  CAS  Google Scholar 

  • Hitsuda, K., K. Toriyama, G.V. Subbarao, and O. Ito. 2008. Sulfur management for soybean production. In A missing link between soils, crops, and nutrition. ed. Joseph Jez, 235–249. Published by American Society of Agronomy, Crops Science Society of America, and Soil Science Society of America. ISBN 9780891181866.

    Google Scholar 

  • Hitz, W.D., T.J. Carlson, P.S. Kerr, and S.A. Sebastian. 2002. Biochemical and molecular characterization of a mutation that confers a decreased raffinosaccharide and phytic acid phenotype on soybean seeds. Plant Physiology 128: 650–660.

    Google Scholar 

  • Imsande, J. 2001. Selection of soybean mutants with increased concentrations of seed methionine and cysteine. Crop Science 41: 510–515.

    Google Scholar 

  • Ingenbleek, Y., and H. Kimura. 2013. Nutritional essentiality of sulfur in health and disease. Nutrition Reviews 71 (7): 413–432. https://doi.org/10.1111/nure.12050.

    Article  PubMed  Google Scholar 

  • Iuchi, S., H. Koyama, A. Iuchi, Y. Kobayashi, S. Kitabayashi, Y. Kobayashi, T. Ikka, T. Hirayama, K. Shinozaki, and M. Kobayashi. 2007. Zinc finger protein STOP1 is critical for proton tolerance in Arabidopsis and coregulates a key gene in aluminum tolerance. PNAS 104 (23): 9900–9905. https://doi.org/10.1073/pnas.0700117104.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jackson, A.A., J.C. Shaw, A. Barber, and M.H. Golden. 1981. Nitrogen metabolism in preterm infants fed human donor breast milk: the possible essentiality of glycine. Pediatric Research 15: 1454–1461.

    Google Scholar 

  • Jaureguy, L.M. 2009. Identification of molecular markers associated with seed size, protein and sugar content in soybean. MS Thesis, University of Arkansas, Fayetteville, AR, USA.

    Google Scholar 

  • Jaureguy, L.M., P. Chen, and A.M. Scaboo. 2011. Heritability and correlations among food-grade traits in soybean. Plant Breeding 130: 647–652. https://doi.org/10.1111/j.1439-0523.2011.01887.x.

    Article  Google Scholar 

  • Jegadeesan, S., K. Yu, V. Poysa, E. Gawalko, M.J. Morrison, C. Shi, and E. Cober. 2010. Mapping and validation of simple sequence repeat markers linked to a major gene controlling seed cadmium accumulation in soybean [Glycine max (L.) Merr]. Theoretical and Applied Genetics 121: 283–294.

    Article  CAS  PubMed  Google Scholar 

  • Kaidar-Person, O., B. Person, S. Szomstein, and R.J. Rosenthal. 2008. Nutritional deficiencies in morbidly obese patients: a new form of malnutrition? Part A: Vitamins. Obesity Surgery 18 (7): 870–876. https://doi.org/10.1007/s11695-007-9349-y.

  • Kaler, A.S., A.P. Dhanapal, J.D. Ray, C.A. King, F.B. Fritschi, and L.C. Purcell. 2017. Genome-wide association mapping of carbon isotope and oxygen isotope ratios in diverse soybean genotypes. Crop Science 57 (6): 3085–3100. https://doi.org/10.2135/cropsci2017.03.0160.

    Article  CAS  Google Scholar 

  • Khandaker, L., M. Akond, S. Liu, S.K. Kantartzi, K. Meksem, N. Bellaloui, D.A. Lightfoot, and M.A. Kassem. 2015. Mapping of QTL associated with seed amino acids content in ‘MD 96-5722’ by ‘Spencer’ RIL population of soybean using SNP markers. Food and Nutrition Sciences 6: 974–984. https://doi.org/10.4236/fns.2015.611101.

    Article  CAS  Google Scholar 

  • Kilo, V., and D.A. Lightfoot. 1996. Genetic analysis of resistance to manganese toxicity in soybean using molecular markers Soybean. Genetics Newsletter 23: 155–157.

    Google Scholar 

  • Kim, H.K., S.T. Kang, J.H. Cho, M.G. Choung, and D.Y. Suh. 2005. Quantitative trait loci associated with oligosaccharide and sucrose contents on soybean (Glycine max L.). Journal of Plant Bioloy 48 (1): 106–112.

    Article  CAS  Google Scholar 

  • Kim, H., S. Kang, and K. Oh. 2006. Mapping of putative quantitative trait loci controlling the total oligosaccharide and sucrose content of Glycine max seeds. Journal of Plant Research 119 (5): 533–538.

    Article  CAS  PubMed  Google Scholar 

  • King, K.E., N. Lauter, SFu Lin, M.P. Scott, and R.C. Shoemaker. 2013. Evaluation and QTL mapping of phosphorus concentration in soybean seed. Euphytica 189: 261–269. https://doi.org/10.1007/s10681-012-0797-7.

    Article  CAS  Google Scholar 

  • Koch, K. 2004. Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Current Opinion in Plant Biology 7: 235–246.

    Google Scholar 

  • Kortt, A.A., J.B. Caldwell, G.G. Lilley, and T.J.V. Higgins. 1991. Amino acid and cDNA sequence of a methionine-rich 2S protein from sunflower seed (Helianthus annuus L.). European Journal of Biochemistry 195: 329–334.

    Google Scholar 

  • Krishnan, H.B. 2005. Engineering Soybean for Enhanced Sulfur Amino Acid Content. Crop Science 45: 454–461.

    Google Scholar 

  • Krishnan, H.B. 2008. Improving the sulfur-containing amino acids of soybean to enhance its nutritional value in animal feed. In A missing link between soils, crops, and nutrition. Joseph Jez (ed.). pp. 235–249. Published by American Society of Agronomy, Crops Science Society of America, and Soil Science Society of America. ISBN 9780891181866.

    Google Scholar 

  • Krishnan, H.B., and J.M. Jez. 2018. Review: The promise and limits for enhancing sulfur–containing amino acid content of soybean seed. Plant Science 272: 14–21. https://doi.org/10.1016/j.plantsci.2018.03.030.

    Article  CAS  PubMed  Google Scholar 

  • Kwanyuen, P., V.R. Pantalone, J.W. Burton, and R.F. Wilson. 1997. A new approach to genetic alteration of soybean protein composition and quality. Journal of the American Oil Chemists Society 74: 983–987. https://doi.org/10.1007/s11746-997-0015-2.

  • La, T., E. Large, E. Taliercio, Q. Song, J.D. Gillman, D. Xu, H.T. Nguyen, G. Shannon, and A. Scaboo. 2019. Characterization of Select Wild Soybean Accessions in the USDA Germplasm Collection for Seed Composition and Agronomic Traits. Crop Science 59 (1): 233–251. https://doi.org/10.2135/cropsci2017.08.0514.

  • Lander, E.S., and D. Botstein. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199. https://doi.org/10.1093/genetics/121.1.185.

  • Lee, J.S., S.M. Kim, and S. Kang. 2016. Fine mapping of quantitative trait loci for sucrose and oligosaccharide contents in soybean [Glycine max (L.) Merr.] using 180 K Axiom® SoyaSNP genotyping platform. Euphytica 208: 195–203. https://doi.org/10.1007/s10681-015-1622-x.

    Article  CAS  Google Scholar 

  • Lee. J., Y.S. Hwang, S.T. Kim, W.B. Yoon, W.Y. Han, I.K. Kang, and M.G. Choung. 2017. Seed coat color and seed weight contribute differential responses of targeted metabolites in soybean seeds. Food Chemistry 214: 248–258.

    Google Scholar 

  • Lewis, M.W., M.E. Leslie, E.H. Fulcher, L. Darnielle, P.N. Healy, J.Y. Youn, and S.J. Liljegren. 2010. The SERK1 receptorlike kinase regulates organ separation in Arabidopsis flowers. The Plant Journal 62: 817–828.

    Google Scholar 

  • Li, L.G., Z.Y. He, G.K. Pandey, T. Tsuchiya, and S. Luan. 2002. Functional cloning and characterization of a plant efflux carrier for multi-drug and heavy metal detoxification. The Journal of Biological Chemistry 277: 5360–5368.

    Article  CAS  PubMed  Google Scholar 

  • Li, M.W., N.B. Muñoz, C.F. Wong, F.L. Wong, K.S. Wong, J.W.H. Wong, X. Qi, K.P. Li, M.S. Ng, and H.M. Lam. 2016. QTLs regulating the contents of antioxidants, phenolics, and flavonoids in soybean seeds share a common genomic region. Frontiers in Plant Science. https://doi.org/10.3389/fpls.2016.00854.

  • Li, X., R. Tian, S. Kamala, H. Du, W. Li, Y. Kong, and C. Zhang. 2018. Identification and verification of pleiotropic QTL controlling multiple amino acid contents in soybean seed. Euphytica 214: 93. https://doi.org/10.1007/s10681-018-2170-y.

    Article  CAS  Google Scholar 

  • Long, S.P., E.A. Ainsworth, A. Rogers, and D.R. Ort. 2004. Rising atmospheric carbon dioxide: Plants FACE the future. Annu. Rev. Plant Biol. 55: 591–628.

    Google Scholar 

  • Lu, K., L. Li, X. Zheng, Z. Zhang, T. Mou, and Z. Hu. 2008. Quantitative trait loci controlling Cu, Ca, Zn, Mn and Fe content in rice grains. Journal of Genetics 87: 305–310.

    Article  PubMed  Google Scholar 

  • Mackay, T.F.C., E.A. Stone, and J.F. Ayroles. 2009. The genetics of quantitative traits: challenges and prospects. Nature Reviews Genetics 10: 565–577. https://doi.org/10.1038/nrg2612.

    Google Scholar 

  • Malle, S., M. Morrison, and F. Belzile. 2020. Identification of loci controlling mineral element concentration in soybean seeds. Preprint available at Research Square. Under Review in BMC Plant Biology. https://doi.org/10.21203/rs.3.rs-22007/v2.

  • Maughan, P.J., M.A.S. Maroof, and G.R. Buss. 2000. Identification of quantitative trait loci controlling sucrose content in soybean (Glycine max). Molecular Breeding 6 (1): 105–111.

    Article  CAS  Google Scholar 

  • Maupin, L.M., M.L. Rosso, and K.M. Rainey. 2011. Environmental Effects on Soybean with Modified Phosphorus and Sugar Composition. Crop Science 51 (2): 642–650. https://doi.org/10.2135/cropsci2010.07.0396.

  • Mayoral, M.L., D. Atsmon, D. Shimshi, and Z. GRoMET-Elhanan. 1981. Effect of water stress on enzyme activities in wheat and related wild species: carboxylase activity, electron transport and photophosphorylation in isolated chloroplasts. Aust J Plant Physiol. 8: 385–393.

    Google Scholar 

  • Mazur, B., E. Krebbers, S. Tingey. 1999. Gene Discovery and Product Development for Grain Quality Traits. Science 285 (5426): 372–375. https://doi.org/10.1126/science.285.5426.372.

  • Nable, R.O., R.L. Houtz, and G.M. Cheniae. 1988. Early inhibition of photosynthesis during development of Mn toxicity in tobacco. Plant Physiol. 86: 1136–1142.

    Google Scholar 

  • Ning, L., P. Sun, Q. Wang, D. Ma, Z. Hu, D. Zhang, G. Zhang, H. Cheng, and D. Yu. 2015. Genetic architecture of biofortification traits in soybean (Glycine max L. Merr.) revealed through association analysis and linkage mapping. Euphytica 204: 353–369. https://doi.org/10.1007/s10681-014-1340-9.

    Article  Google Scholar 

  • Obendorf, R.L. 1997. Oligosaccharides and galactosyl cyclitols in seed desiccation tolerance. Seed Sci. Res 7: 63–74.

    Google Scholar 

  • Olhoft, P.M., L.E. Flagel, C.M. Donovan, and D.A. Somers. 2003. Efficient soybean transformation using hygromycin B selection in the cotyledonary-node method. Planta 216 (5): 723–735.

    Google Scholar 

  • Oltmans, S.E., W.R. Fehr, G.A. Welke, and S.R. Cianzio. 2004. Inheritance of low-phytate phosphorus in soybean. Crop Science 44: 433–435. https://doi.org/10.2135/cropsci2004.4330.

    CAS  Google Scholar 

  • Orazaly, M., P. Chen, B. Zhang, and A. Zeng. 2014. Quantitative Trait Loci Mapping for Seed Calcium Content of Soybean. Crop Science 54 (2): 500–506. https://doi.org/10.2135/cropsci2013.01.0026.

  • Orazaly, M., P. Chen, B. Zhang, L. Florez-Palacios, and A. Zeng. 2018. Confirmation of SSR markers and QTL for seed calcium content and hardness of soybean. Journal of Crop Improvement 32 (1): 71–89. https://doi.org/10.1080/15427528.2017.1398701.

    Article  CAS  Google Scholar 

  • Panthee, D.R., P. Kwanyuen, C.E. Sams, D.R. West, A.M. Saxton, and V.R. Pantalone. 2004. Quantitative trait loci for β-conglycinin (7S) and glycinin (11S) fractions of soybean storage protein. J Am. Oil Chem Society 81 (11): 1005–1012. https://doi.org/10.1007/s11746-004-1014-4.

  • Panthee, D.R., V.R. Pantalone, A.M. Saxton, D.R. West, and C.E. Sams. 2006a. Genomic regions associated with amino acid composition in soybean. Molecular Breeding 17: 79–89.

    Article  CAS  Google Scholar 

  • Panthee, D.R., V.R. Pantalone, C.E. Sams, A.M. Saxton, D.R. West, J.H. Orf, and A.S. Killam. 2006b. Quantitative trait loci controlling sulfur containing amino acids, methionine and cysteine, in soybean seeds. Theoretical and Applied Genetics 112: 546–553.

    Article  CAS  PubMed  Google Scholar 

  • Pao, S.S., I.A.N.T. Paulsen, and M.H. Saier. 1998. Major facilitator superfamily. Microbiology 62: 1–34.

    CAS  Google Scholar 

  • Patil, G., T.D. Vuong, S. Kale, B. Valliyodan, R. Deshmukh, C. Zhu, X. Wu, Y. Bai, D. Yungbluth, F. Lu, S. Kumpatla, J.G. Shannon, R.K. Varshney, and H.T. Nguyen. 2018. Dissecting genomic hotspots underlying seed protein, oil, and sucrose content in an interspecific mapping population of soybean using high-density linkage mapping. Plant Biotechnology Journal 16: 1939–1953. https://doi.org/10.1111/pbi.12929.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Patrick, J.W., and C.E. Offler. 2001. Compartmentation of transport and transfer events in developing seeds. J Exp Bot 52: 551–564.

    Google Scholar 

  • Pfarr, M.D., M.J. Kazula, J.E. Miller-Garvin, and S.L. Naeve. 2018. Amino acids balance is affected by protein concentration in soybean. Crop Science 58: 2050–2062. https://doi.org/10.2135/cropsci2017.11.0703.

    Article  CAS  Google Scholar 

  • Philip, J.W., and R.B. Martin. 2005. Biofortifying crops with essential mineral elements. Trends in Plant Science 10: 586–593.

    Article  CAS  Google Scholar 

  • Potrykus, I. 2003. Nutritional improvement of rice to reduce malnutrition in developing countries. p. 401–406. In I.K. Vasil (ed.) Plant biotechnology 2002 and beyond. Kluwer Academic Publishers, Dordrecht, The Netherlands.

    Google Scholar 

  • Prasad, P., V. Vara, L.H. Allen, and K.J. Boote. 2005. Crop responses to elevated carbon dioxide and interaction with temperature: grain legumes. J. Crop Improv. 13: 113–155.

    Google Scholar 

  • Qi, Z.M., Q. Wu, X. Han, Y.N. Sun, X.Y. Du, C.Y. Liu, H.W. Jiang, G.H. Hu, and Q.S. Chen. 2011. Soybean oil content QTL mapping and integratingwith meta-analysis method for mining genes. Euphytica 179: 499–514. https://doi.org/10.1007/s10681-011-0386-1.

  • Qi, X.P., M.W. Li, M. Xie, X. Liu, M. Ni, G. Shao, C. Song, A.K.Y. Yim, Y. Tao, F.L. Wong, S. Isobe, C.F. Wong, K.S. Wong, C. Xu, C. Li, Y. Wang, R. Guan, F. Sun, G. Fan, Z. Xiao, F. Zhou, T.H. Phang, X. Liu, S.W. Tong, T.F. Chan, S.M. Yiu, S. Tabata, J. Wang, X. Xu, and H. Lam. 2014. Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nature Communications 5: 4340. https://doi.org/10.1038/Ncomms5340.

    Article  CAS  PubMed  Google Scholar 

  • Qiu, H., Z. Li, Y. Yu, S. Gao, X. Ma, Y. Zheng, F. Meng, Y. Hou, Y. Wang, and S. Wang. 2015. Mining and analysis of genes related to sulfur–containing amino acids in soybean based on meta–QTL. Chinese Journal of Oil Crop Sciences 37 (2): 141–147. https://doi.org/10.7505/j.issn.1007-9084.2015.02.003.

    Google Scholar 

  • Rainbird, R.M., J.H. Thorne, and R.W.F. Hardy. 1984. Role of amides, amino acids, and ureides in the nutrition of developing soybean seeds. Plant Physiology 74: 329–334.

    Google Scholar 

  • Ramakrishnan, U. 2002. Prevalence of micronutrient malnutrition worldwide. Nutrition Reviews 60 (S5): S46–S52. https://doi.org/10.1301/00296640260130731.

  • Ramamurthy, R.K., J. Jedlicka, G.L. Graef, and B.M. Waters. 2014. Identification of new QTLs for seed mineral, cysteine, and methionine concentrations in soybean [Glycine max (L.) Merr.]. MolecularBreeding 34: 431–445. https://doi.org/10.1007/s11032-014-0045-z.

    Article  CAS  Google Scholar 

  • Redondo-Cuenca, A., M.J. Villanueva-Suárez, M.D. Rodríguez-Sevilla, and I. Mateos-Aparicio. 2007. Chemical composition and dietary fibre of yellow and green commercial soybeans (Glycine max). Food Chemistry 101: 1216–1222.

    Google Scholar 

  • Reeds, P.J. 2000. Dispensable and indispensable amino acids for humans. Journal of Nutrition 130: 1835S–1840S.

    Google Scholar 

  • Reich, R.C., E.J. Kamprath, and L.A. Nelson. 1981. Soil and management factors correlated with soybean yields in the southeastern U.S. Coastal Plain. Agron. J. 73: 90–95.

    Google Scholar 

  • Rhodes, D., and A.D. Hanson. 1993. Quaternary ammonium and tertiary sulfonium compounds in higher plants. Annual Review of Plant Physiology and Plant Molecular Biology 44: 357–384. https://dx.doi.org/10.1146/annurev.pp.44.060193.002041.

  • Rogers, A., E.A. Ainsworth, and A.D.B. Leakey. 2009. Update on legumes and elevated CO2: Will elevated carbon dioxide concentration amplify the benefits of nitrogen fixation in legumes? Plant Physiol. 151: 1009–1016.

    Google Scholar 

  • Salari, M.W., P.O. Ongom, R. Thapa, H.T. Nguyen, T.D. Vuong, and K.M. Rainey. 2020. Mapping QTL controlling soybean seed sucrose and oligosaccharides in a single family of soybean nested association mapping (SoyNAM) population. Plant Breeding 00: 1–13. https://doi.org/10.1111/pbr.12883.

    Google Scholar 

  • Saldivar, X., Y.J. Wang, P. Chen, and A. Hou. 2011. Changes in chemical composition during soybean seed development. Food Chemistry 124: 1369–1375.

    Google Scholar 

  • Saravitz, D.M., M.D. Pharr, and T.E. Carter. 1987. Galactinol Synthase Activity and Soluble Sugars in Developing Seeds of Four Soybean Genotypes. Plant Physiology 83: 185–189.

    Google Scholar 

  • Scaboo, A.M., V.R. Pantalone, D.R. Walker, H.R. Boerma, D.R. West, F.R. Walker, and C.E. Sams. 2009. Confirmation of molecular markers and agronomic traits associated with seed phytate content in two soybean RIL populations. Crop Science 49: 426–432. https://doi.org/10.2135/cropsci2007.11.0614.

    Article  CAS  Google Scholar 

  • Sebastian, S.A., P.S. Kerr, R.W. Pearlstein, and W.D. Hitz. 2000. Soybean germplasm with novel genes for improved digestibility. In JK Drackley, ed, Soy in Animal Nutrition. Federation of Animal Science Societies, Savoy, IL, pp 56–74.

    Google Scholar 

  • Shah, K., J. Vervoort, and S.C. de Vries. 2001. Role of threonines in the Arabidopsis thaliana somatic embryogenesis receptor kinase 1 activation loop in phosphorylation. Journal of Biological Chemistry 276: 41263–41269.

    Google Scholar 

  • Shewry, P.R., J.A. Napier, and A.S. Tatham. 1995. Seed storage proteins: structure and biosynthesis. The Plant Cell 7: 945–956.

    Google Scholar 

  • Silva, D.C.G., N. Yamanaka, R.L. Brogin, C.A.A. Arias, A.L. Nepomuceno, A.O. Di Mauro, S.S. Pereira, L.M. Nogueira, A.L.L. Passianotto, and R.V. Abdelnoor. 2008. Molecular mapping of two loci that confer resistance to Asian rust in soybean. Theor Appl Genet 117:57–63. https://doi.org/10.1007/s00122-008-0752-0.

  • Somers, D.A., D.A. Samac, and P.M. Olhoft. 2003. Recent advances in legume transformation. Plant Physiol. 131: 892–899.

    Google Scholar 

  • Sonah, H., L. O’Donoughue, E. Cober, I. Rajcan, and F. Belzile. 2015. Indentification of loci governing eight agronomic traits using a GBS-GWAS approach and validation by QTL mapping in soya bean. Plant Biotech Journal 13: 211–221. https://doi.org/10.1111/pbi.12249.

  • Spaeth, S.C., and T.R. Sinclair. 1984. Soybean seed growth. I. Timing of growth of individual seeds. Agronomy Journal 76:123–217. https://doi.org/10.2134/agronj1984.00021962007600010030x.

  • Stombaugh, S.K., J.H. Orf, H.G. Jung, K. Chase, K.G. Lark, and D.A. Somers. 2004. Quantitative trait loci associated with cell wall polysaccharides in soybean seed. Crop Science 44: 2101–2106.

    Article  CAS  Google Scholar 

  • Streit, L.G., L.R. Beach, J.C. Register, R. Jung, and W.R. Fehr. 2001. Association of the Brazil nut protein gene and Kunitz trypsin inhibitor alleles with soybean protease inhibitor activity and agronomic traits. Crop Sci. 41: 1757–1760.

    Google Scholar 

  • Sun, W.Q., T.C. Irving, and A.C. Leopold. 1994. The role of sugar, vitrification and membrane phase transition in seed desiccation tolerance. Physiologia Plantarum 90: 621–628.

    Google Scholar 

  • Taiz, L. and E. Zeiger. 1998. Mineral nutrition. In Plant Physiology (ed.). Sinauer Associates Inc., P.O. Box 407, Sunderland, MA 01375, USA.

    Google Scholar 

  • Takahashi, M., Y. Uematsu, K. Kashiwaba, K. Yagasaki, M. Hajika, R. Matsunaga, K Komatsu, and M. Ishimoto. 2003. Accumulation of high levels of free amino acids in soybean seeds through integration of mutations conferring seed protein deficiency. Planta 217 (4): 577–586.

    Google Scholar 

  • Taub, D., B. Miller, and H. Allen. 2008. Effects of elevated CO2 on the protein concentration of food crops: A meta-analysis. Global Ch. Biol. 14: 565–575.

    Google Scholar 

  • Temperly, R.T., and R. Borges. 2006. Tillage and crop rotation impact on soybean grain yield and composition. Agronomy Journal 98: 999–1004.

    Google Scholar 

  • Thakur, M., and A.D. Sharma. 2005. Salt-stress-induced proline accumulation in germinating embryos: Evidence suggesting a role of proline in seed germination. Journal of Arid Environments 62 (3): 517–523.

    Google Scholar 

  • Thomas, J.M.G., K.J. Boote, L.H. Allen, M. Gallo-Meagher, and J.M. Davis. 2003. Elevated temperature and carbon dioxide effects on soybean seed composition and transcript abundance. Crop Sci. 43: 1548–1557.

    Google Scholar 

  • Thilakarathna, M.S., and M.N. Raizada. 2017. A meta-analysis of the effectiveness of diverse rhizobia inoculants on soybean traits under field conditions. Soil Biology and Biochemistry 105: 177–196.

    Article  CAS  Google Scholar 

  • Townsend, J.A., and L.A. Thomas. 1994. Factors which influence the Agrobacterium-mediated transformation of soybean. J. Cell. Biochem. Suppl. 18A: 78.

    Google Scholar 

  • Ufaz, S., and G. Galili. 2008. Improving the Content of Essential Amino Acids in Crop Plants: Goals and Opportunities. Plant Phys. 147: 954–961. https://dx.doi.org/10.1104/pp.108.118091.

  • Vaughn, J.N., R.L. Nelson, Q. Song, P.B. Cregan, and Z. Li. 2014. The genetic architecture of seed composition in soybean is refined by genome-wide association scans across multiple populations. G3-Genes Genomes Genetics 4: 2282–2294. https://doi.org/10.1534/g3.114.013433.

    Article  Google Scholar 

  • Vollmann, J., T. Losak, M. Pachner, D. Watanabe, L. Musilova, and J. Hlusek. 2015. Soybean cadmium concentration: Validation of a QTL affecting seed cadmium accumulation for improved food safety. Euphytica 203: 177–184. https://doi.org/10.1007/s10681-014-1297-8.

    Article  CAS  Google Scholar 

  • Walker, D.R., A.M. Scaboo, V.R. Pantalone, J.R. Wilcox, and H.R. Boerma. 2006. Genetic mapping of loci associated with seed phytic acid content in CX1834-1-2 soybean. Crop Science 46 (1): 390–397. https://doi.org/10.2135/cropsci2005.0245.

    Article  CAS  Google Scholar 

  • Wang, T.L., C. Domoney, C.L. Hedley, R. Casey, and M.A. Grusak. 2003. Can we improve the nutritional quality of legume seeds? Plant Physiol. 131: 886–891.

    Google Scholar 

  • Wang, X., G.L. Jiang, M. Green, R.A. Scott, Q. Song, D.L. Hyten, and P.B. Cregan. 2014a. Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Molecular Genetics and Genomics 289 (5): 935–949.

    Article  CAS  PubMed  Google Scholar 

  • Wang, Y., P. Chen, and B. Zhang. 2014b. Quantitative trait loci analysis of soluble sugar contents in soybean. Plant Breeding 133: 493–498. https://doi.org/10.1111/pbr.12178.

    Article  CAS  Google Scholar 

  • Wang, X., G.L. Jiang, Q. Song, P.B. Cregan, R.A. Scott, J. Zhang, Y. Yen, and M. Brown. 2015. Quantitative trait locus analysis of seed sulfur-containing amino acids in two recombinant inbred line populations of soybean. Euphytica 201 (2): 293–305. https://doi.org/10.1007/s10681-014-1223-0.

    Article  CAS  Google Scholar 

  • Warrington, C.V., H. Abdel-Haleem, D.L. Hyten, P.B. Cregan, J.H. Orf, A.S. Killam, N. Bajjalieh, Z. Li, and H.R. Boerma. 2015. QTL for seed protein and amino acids in the Benning × Danbaekkong soybean population. Theoretical and Applied Genetics 128 (5): 839–850. https://doi.org/10.1007/s00122-015-2474-4.

    Article  CAS  PubMed  Google Scholar 

  • Weber, H., L. Borisjuk, and U. Wobus. 1997. Sugar import and metabolism during seed development. Trends in Plant Science 2 (5): 169–174.

    Google Scholar 

  • Welch, R.M. 1999. Importance of seed mineral nutrient reserves in crop growth and development. In: Rengel Z, ed. Mineral nutrition of crops. Fundamental mechanisms and implications. New York: Food Products Press, 205–226.

    Google Scholar 

  • Welch, R.M., and R.D. Graham. 2004. Breeding for micronutrients in staple food crops from a human nutrition perspective. Journal of Experimental Botany 55 (396: 353–364. https://doi.org/10.1093/jxb/erh064.

  • Weschke, W., R. Panitz, S. Gubatz, Q. Wang, R. Radchuk, H. Weber, and U. Wobus. 2003. The role of invertases and hexose transporters in controlling sugar ratios in maternal and filial tissues of barley caryopses during early development. Plant Journal 33: 395–411.

    Google Scholar 

  • WHO. 2019. https://www.who.int/mediacentre/factsheets/fs311/en/. Accessed on December 22, 2019.

  • Wijewardana, C., K.R. Reddy, and N. Bellaloui. 2019. Soybean seed physiology, quality, and chemical composition under soil moisture stress. Food Chemistry 278: 92–100. https://doi.org/10.1016/j.foodchem.2018.11.0.35.

  • Wilcox, J., G. Premachandra, K. Yound, and V. Raboy. 2000. Isolation of high seed inorganic P, low-phytate soybean mutants. Crop Sci 40: 1601–1605.

    Google Scholar 

  • Wobus, U., and H. Weber. 1999. Sugars as signal molecules in plant seed development. Biol Chem 390: 937–944.

    Google Scholar 

  • Wolf, R.B., J.F. Cavins, R. Kleiman, and L.T. Black. 1982. Effect of temperature on soybean seed constituents: Oil, protein, moisture, fatty acids, amino acids and sugars. Journal of the American Oil Chemists’ Society 59 (5): 230–232.

    Google Scholar 

  • Womack, M., and W.C. Rose. 1947. The role of proline, hydroxyproline, and glutamic acid in growth. Journal of Biological Chemistry 171: 37–50.

    Google Scholar 

  • Wu, Z., J. Zhao, R. Gao, G. Hu, J. Gai, G. Xu, and H. Xing. 2011. Molecular cloning, characterization and expression analysis of two members of the Pht1 family of phosphate transporters in Glycine max. PLoS One 6: 1–12.

    Google Scholar 

  • Yancey, P.H. 1994. Compatible and counteracting solutes In: Strange K ed. Cellular and Molecular Physiology of Cell Volume Regulation. Boca Raton, FL: CRC Press 1994: 81–109.

    Google Scholar 

  • Yazdi-Samadi, B., R.W. Rinne, and R.D. Seif. 1977. Components of developing soybean seeds: Oil, protein, sugars, starch, organic acids, and amino acids. Agronomy Journal 69: 481–486.

    Google Scholar 

  • Yu, C.H., Lee, J.S., Lee, L., Kim, S.H., Lee, S.S., and Kang, S.A. 2004. Nutritional Factors Related to Bone Mineral Density in the Different Age Groups of Korean Men. Korean J Nutr 37 (2): 132–142.

    Google Scholar 

  • Zeng, A., P. Chen, A. Shi, D. Wang, B. Zhang, M. Orazaly, L. Florez-Palacios, K. Brye, Q. Song, and P. Cregan. 2012. Identification of Quantitative Trait Loci for Sucrose Content in Soybean Seed. Crop Science 54 (2): 554–564. https://doi.org/10.2135/cropsci2013.01.0036.

  • Zeng, P., P. Chen, A. Shi, D. Wang, B. Zhang, M. Orazaly, L. Florez-Palacios, K. Brye, Q. Song, and P. Cregan. 2014. Identification of quantitative trait loci for sucrose content in soybean seed. Crop Science 54 (2): 554–564.

    Article  CAS  Google Scholar 

  • Zeng, A., P. Chen, B. Zhang, M. Orazaly, L. Florez-Palacios, and K.R. Brye. 2015. Identification and confirmation of quantitative trait loci for stachyose content in soybean seed. Plant Breeding 134 (2): 178–185. https://doi.org/10.1111/pbr.12246.

    Article  CAS  Google Scholar 

  • Zhang, P., J.M. Jaynes, I. Potrykus, W. Gruissem, and J. Puonti-Kaerlas. 2002. Transfer and expression of an artificial storage protein (ASP1) gene in cassava: Towards improving nutritive value of storage proteins. p. 425–427. In I.K. Vasil (ed.) Plant biotechnology 2002 and beyond. Kluwer Academic Publishing.

    Google Scholar 

  • Zhang, B., P. Chen, C.Y. Chen, D. Wang, A. Shi, A. Hou, and T. Ishibashi. 2008. Quantitative trait loci mapping of seed hardness in soybean. Crop Science 48: 1341–1349.

    Article  Google Scholar 

  • Zhang, B., P. Chen, A. Shi, A. Hou, T. Ishibashi, and D. Wang. 2009. Putative quantitative trait loci associated with calcium content in soybean seed. Journal of Heredity 100 (2): 263–269. https://doi.org/10.1093/jhered/esn096.

    Article  CAS  Google Scholar 

  • Zhang, J., X. Wang, Y. Lu, S.J. Bhusal, Q. Song, P.B. Cregan, Y. Yen, M. Brown, and G.L. Jiang. 2018. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Molecular Plant 11 (3): 460–472. https://doi.org/10.1016/j.molp.2017.12.016.

  • Zhang, J., X. Wang, Y. Lu, S.J. Bhusal, Q. Song, P.B. Cregan, Y. Yen, M. Brown, and G.L. Jiang. 2018a. Genome-wide scan for seed composition provides insights into soybean quality improvement and the impacts of domestication and breeding. Molecular Plant 11 (3): 460–472. https://doi.org/10.1016/j.molp.2017.12.016.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, X., W. Wang, N. Guo, Y. Zhang, Y. Bu, J. Zhao, and H. Xing. 2018b. Combining QTL-seq and linkage mapping to fine map a wild soybean allele characteristic of greater plant height. BMC Genomics 19: 226. https://doi.org/10.1186/s12864-018-4582-4.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Moulay Abdelmajid Kassem .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kassem, M.A. (2021). Seed Amino Acids, Macronutrients, Micronutrients, Sugars, and Other Compounds. In: Kassem, M.A. (eds) Soybean Seed Composition. Springer, Cham. https://doi.org/10.1007/978-3-030-82906-3_3

Download citation

Publish with us

Policies and ethics