Skip to main content

Lithology

  • Chapter
  • First Online:
The Ioffe Drift

Part of the book series: Springer Geology ((SPRINGERGEOL))

Abstract

The uppermost seismic unit of the Ioffe Drift partially recovered by five sediment cores is mainly composed of alternating foraminiferal and nanno-foraminiferal high-calcareous oozes with a minor contribution of foram-nannofossil and nannofossil oozes. The major characteristics and possible diagnostic criteria of the Ioffe Drift calcareous contourites were studied on the basis of a detailed investigation of grain-size distribution, color reflectance, magnetic susceptibility and the chemical and mineral composition of the drift sediments. The analysis of this large dataset revealed the main sources of the biogenic sedimentary material and the mechanisms of the material’s transport and deposition. The variability patterns of the studied parameters suggest erosion-depositional changes in bottom-current activity. The end-member modeling revealed unusually high contribution of EM2 mainly controlled by the sortable silt (SS) content. Most cores show significant correlation between SS content in fractions <63 µm and mean SS particle size thus confirming the influence of bottom-currents on the sedimentation. Finding of authigenic Mn-oxide minerals in sediments supports the oxic environment of sedimentation and early diagenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Balsam WL, Damuth JE, Schneider RR (1997) Comparison of shipboard versus shore-based spectral data from Amazon Fan cores: implications for interpreting sediment composition. In: Proceedings of the Ocean Drilling Program, 155 scientific results. Ocean Drilling Program, pp 531–538

    Google Scholar 

  • Berntsson A, Rosqvist GC, Velle G (2014) Late-Holocene temperature and precipitation changes in Vindelfjällen, mid-western Swedish Lapland, inferred from chironomid and geochemical data. Holocene 24:78–92. https://doi.org/10.1177/0959683613512167

    Article  Google Scholar 

  • Blanchet CL, Thouveny N, Vidal L (2009) Formation and preservation of greigite (Fe3 S4) in sediments from the Santa Barbara Basin: Implications for paleoenvironmental changes during the past 35 ka. Paleoceanography 24: n/a-n/a. https://doi.org/10.1029/2008PA001719

  • Blatt H, Middleton GV, Murray RC (1980) Origin of sedimentary rocks. Prentice-Hall

    Google Scholar 

  • Brackenridge RE, Stow DAV, Hernández-Molina FJ et al (2018) Textural characteristics and facies of sand-rich contourite depositional systems. Sedimentology. https://doi.org/10.1111/sed.12463

  • Brown G (ed) (1961) The X-ray identification and crystal structures of clay minerals. Mineralogical Society, Clay Minerals Group

    Google Scholar 

  • Doh S-J, King JW, Leinen M (1988) A rock-magnetic study of giant piston core LL44-GPC3 from the central North Pacific and its paleoceanographic implications. Paleoceanography 3:89–111. https://doi.org/10.1029/PA003i001p00089

    Article  Google Scholar 

  • Frenz M, Höppner R, Stuut J-BW et al (2003) Surface sediment bulk geochemistry and grain-size composition related to the oceanic circulation along the South American continental margin in the Southwest Atlantic. The South Atlantic in the late quaternary. Springer, Berlin Heidelberg , pp 347–373

    Chapter  Google Scholar 

  • Friedman GM, Sanders FE (1978) Principles of sedimentology. Wiley, New York

    Google Scholar 

  • Gingele FX, Schmieder F, von Dobeneck T et al (1999) Terrigenous Flux flux in the Rio Grande Rise area during the past past 1500 ka: evidence of deepwater advection or rapid response to continental rainfall patterns? Paleoceanography 14:84–95. https://doi.org/10.1029/1998PA900012

    Article  Google Scholar 

  • Giosan L, Flood RD, Grützner J, Mudie P (2002) Paleoceanographic significance of sediment color on western North Atlantic drifts: II. Late Pliocene-Pleistocene sedimentation. Mar Geol 189:43–61. https://doi.org/10.1016/S0025-3227(02)00322-5

  • Guyard H, Chapron E, St-Onge G et al (2007) High-altitude varve records of abrupt environmental changes and mining activity over the last 4000 years in the western French Alps (Lake Bramant, Grandes Rousses Massif). Quat Sci Rev 26:2644–2660. https://doi.org/10.1016/j.quascirev.2007.07.007

    Article  Google Scholar 

  • Hamann Y, Ehrmann W, Schmiedl G et al (2008) Sedimentation processes in the Eastern Mediterranean Sea during the Late Glacial and Holocene revealed by end-member modelling of the terrigenous fraction in marine sediments. Mar Geol 248:97–114. https://doi.org/10.1016/j.margeo.2007.10.009

    Article  Google Scholar 

  • IJmker J, Stauch G, Dietze E et al (2012) Characterisation of transport processes and sedimentary deposits by statistical end-member mixing analysis of terrestrial sediments in the Donggi Cona lake catchment, NE Tibetan Plateau. Sediment Geol 281:166–179. https://doi.org/10.1016/j.sedgeo.2012.09.006

  • Ivanova E, Murdmaa I, Borisov D, Dmitrenko O, Levchenko O, Emelyanov E (2016) Late Pliocene-Pleistocene stratigraphy and history of formation of the Ioffe calcareous contourite drift, Western South Atlantic. Mar Geol 372:17–30. https://doi.org/10.1016/j.margeo.2015.12.002

    Article  Google Scholar 

  • Ivanova E, Borisov D, Dmitrenko O, Murdmaa I (2020) Hiatuses in the late Pliocene–Pleistocene stratigraphy of the Ioffe calcareous contourite drift, western South Atlantic. Mar Pet Geol 111. https://doi.org/10.1016/j.marpetgeo.2019.08.031

  • Just J, Heslop D, Von Dobeneck T et al (2012) Multiproxy characterization and budgeting of terrigenous end-members at the NW African continental margin. Geochem Geophys Geosyst 13:1–18. https://doi.org/10.1029/2012GC004148

    Article  Google Scholar 

  • Kent DV (1982) Apparent correlation of palaeomagnetic intensity and climatic records in deep-sea sediments. Nature 299:538–539. https://doi.org/10.1038/299538a0

    Article  Google Scholar 

  • Kylander ME, Ampel L, Wohlfarth B, Veres D (2011) High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: New insights from chemical proxies. J Quat Sci 26:109–117. https://doi.org/10.1002/jqs.1438

    Article  Google Scholar 

  • Marsh R, Mills RA, Green DRH et al (2007) Controls on sediment geochemistry in the Crozet region. Deep Sea Res Part II Top Stud Oceanogr 54:2260–2274. https://doi.org/10.1016/j.dsr2.2007.06.004

    Article  Google Scholar 

  • Martín-Chivelet J, Fregenal-Martínez MA, Chacón B (2008) Traction structures in contourites. In: Rebesco M, Camerlenghi A (eds) Contourites. developments in sedimentology, vol 60, pp 157–182

    Google Scholar 

  • McCave IN (2008) Size sorting during transport and deposition of fine sediments: sortable silt and flow speed. Dev Sedimentol 60:121–142

    Article  Google Scholar 

  • McCave IN, Manighetti B, Robinson SG (1995) Sortable silt and fine sediment size/composition slicing: parameters for palaeocurrent speed and palaeoceanography. Paleoceanography 10:593–610. https://doi.org/10.1029/94PA03039

    Article  Google Scholar 

  • McCave IN, Thornalley DJR, Hall IR (2017) Relation of sortable silt grain-size to deep-sea current speeds: calibration of the ‘mud current meter.’ Deep Sea Res Part I Oceanogr Res Pap 127:1–12. https://doi.org/10.1016/j.dsr.2017.07.003

    Article  Google Scholar 

  • Moore DM, Reynolds RC (1997) X-ray diffraction and the identification and analysis of clay minerals, 2nd edn. Oxford University Press, New York

    Google Scholar 

  • Paterson GA, Heslop D (2015) New methods for unmixing sediment grain size data. Geochem Geophys Geosyst 16:4494–4506. https://doi.org/10.1002/2015GC006070

    Article  Google Scholar 

  • Paterson GA, Heslop D (2017) Software for grain size unmixing and analysis

    Google Scholar 

  • Prins MA, Bouwer LM, Beets CJ et al (2002) Ocean circulation and iceberg discharge in the glacial North Atlantic: Inferences from unmixing of sediment size distributions. Geology 30:555–558. https://doi.org/10.1130/0091-7613(2002)030%3c0555:OCAIDI%3e2.0.CO;2

    Article  Google Scholar 

  • Rebesco M, Hernández-Molina FJ, Van Rooij D, Wåhlin A (2014) Contourites and associated sediments controlled by deep-water circulation processes: state-of-the-art and future considerations. Mar Geol 352:111–154. https://doi.org/10.1016/j.margeo.2014.03.011

    Article  Google Scholar 

  • Rothwell RG, Croudace IW (2015) Twenty years of XRF core scanning marine sediments: what do geochemical proxies tell us? In: Croudace I, Rothwell R (eds) Micro-XRF studies of sediment cores. Developments in paleoenvironmental research, vol 17. Springer, Dordrecht, pp 25–102

    Google Scholar 

  • Saito Y (1996) Grain-size and sediment-color variations of Pleistocene slope sediments off New Jersey. In: Proceedings of the ocean drilling program, 150 scientific results. Ocean Drilling Program.

    Google Scholar 

  • Shala S, Helmens KF, Jansson KN et al (2014) Palaeoenvironmental record of glacial lake evolution during the early Holocene at Sokli, NE Finland. Boreas 43:362–376. https://doi.org/10.1111/bor.12043

    Article  Google Scholar 

  • Shepard FP (1954) Nomenclature based on sand-silt-clay ratios. SEPM J Sediment Res 24:151–158. https://doi.org/10.1306/D4269774-2B26-11D7-8648000102C1865D

    Article  Google Scholar 

  • Smetannikova OG (1988) Guidelines for X-ray study of manganese oxides and hydroxides. Leningrad State University (in Russian), Leningrad

    Google Scholar 

  • Stow DAV, Faugères J-C (2008) Contourite facies and the facies model. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentology, chap 13, 60. Elsevier, Amsterdam, pp 223–256

    Google Scholar 

  • Stow DAV, Smillie Z, Pan J, Esentia I (2019) Deep-sea contourites: sediments and cycles. In: Encyclopedia of ocean sciences. Elsevier, pp 111–120

    Google Scholar 

  • Thomson J, Croudace IW, Rothwell RG (2006) A geochemical application of the ITRAX scanner to a sediment core containing eastern Mediterranean sapropel units. Geol Soc London Spec Publ 267:65–77. https://doi.org/10.1144/GSL.SP.2006.267.01.05

    Article  Google Scholar 

  • Weltje GJ (1997) End-member modeling of compositional data: numerical-statistical algorithms for solving the explicit mixing problem. Math Geol 29:503–549. https://doi.org/10.1007/BF02775085

    Article  Google Scholar 

  • Weltje GJ, Prins MA (2007) Genetically meaningful decomposition of grain-size distributions. Sediment Geol 202:409–424. https://doi.org/10.1016/j.sedgeo.2007.03.007

    Article  Google Scholar 

  • Weltje GJ, Prins MA (2003) Muddled or mixed? Inferring palaeoclimate from size distributions of deep-sea clastics. Sediment Geol 162:39–62. https://doi.org/10.1016/S0037-0738(03)00235-5

    Article  Google Scholar 

  • Wentworth WC (1922) A scale of grade and class terms for clastic sediments. J Geol 30:377–392

    Article  Google Scholar 

  • Wetzel A, Werner F, Stow DAV (2008) Chapter 11 Bioturbation and biogenic sedimentary structures. In: Rebesco M, Camerlenghi A (eds) Contourites. Developments in sedimentology, 60, Contourites, chap 11. Elsevier, pp 183–202

    Google Scholar 

  • Windom H.L. (1976) Lithogenous material in marine sediments. In: Riley JP, Chester R (eds) Chemical oceanography, 2nd edn. Academic Press, Inc., pp 103–135

    Google Scholar 

  • Zárate M, Blasi A (1993) Late Pleistocene-Holocene eolian deposits of the southern Buenos Aires province, Argentina: a preliminary model. Quat Int 17:15–20. https://doi.org/10.1016/1040-6182(93)90075-Q

    Article  Google Scholar 

  • Zimmerman HB (1983) Clay mineral stratigraphy of the Rio Grande Rise and Southern Brazil Basin, Western South Atlantic Ocean. In: Initial reports of the deep-sea drilling project, 72. U.S. Government Printing Office

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dmitrii Borisov .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murdmaa, I., Borisov, D., Dorokhova, E., Dara, O. (2021). Lithology. In: Murdmaa, I., Ivanova, E. (eds) The Ioffe Drift. Springer Geology. Springer, Cham. https://doi.org/10.1007/978-3-030-82871-4_6

Download citation

Publish with us

Policies and ethics