Skip to main content

Transcranial Doppler (TCD/TCCS) and Cerebral Blood Flow: Applications in the Neurological Intensive Care Unit

  • Chapter
  • First Online:
Neurosonology in Critical Care

Abstract

Transcranial Doppler ultrasonography represents a noninvasive method to evaluate flow velocities through the basal cerebral arteries. By evaluating the flow velocity spectrum of the cerebral arteries, transcranial Doppler ultrasound can provide information on the direction of flow, patency of vessels, focal stenosis, and cerebrovascular reactivity, and estimates of cerebral blood flow.

By comparing changes to flow velocity to changes in blood pressure, transcranial Doppler ultrasonography can be used to estimate cerebral blood flow and cerebral autoregulation in select circumstances. Similarly, increasing flow velocities after subarachnoid hemorrhage are often interpreted as worsening cerebral vasospasm and can be used to guide therapies. Transcranial Doppler ultrasound in the neurological intensive care unit has also been used in head trauma, intracerebral hemorrhage, and assessing sources of ischemic stroke. Transcranial Doppler ultrasound has also been used as a confirmatory test for brain death.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aaslid R, Markwalder T-M, Nornes H. Noninvasive transcranial Doppler ultrasound recording of flow velocity in basal cerebral arteries. J Neurosurg. 1982;57:769–74.

    Article  CAS  PubMed  Google Scholar 

  2. Fick A. Ueber die Messung des Blutquantums in den Herzventrikeln. Sitz ber Physik-Med Ges Wurzburg. 1870;2:16–28.

    Google Scholar 

  3. Kety SS, Schmidt CF. The determination of cerebral blood flow in man by the use of nitrous oxide in low concentrations. Am J Phys. 1945;143:53–66.

    Article  CAS  Google Scholar 

  4. Manno EM, Koroshetz WJ. Cerebral blood flow. Chapter 5. In: Babikian VL, Wechsler LR, editors. Transcranial Doppler ultrasonography. 2nd ed. Boston: Butterworth Heinmann; 1999. p. 67–87.

    Google Scholar 

  5. Aaslid R. Development of the principles of transcranial Doppler ultrasound. In: Aaslid R, Newell DE, editors. Transcranial Doppler. New York: Raven Press; 1992. p. 1–8.

    Google Scholar 

  6. Saver JL, Feldmann E. Basic transcranial Doppler examinations. In: Babikian VL, Wechsler LR, editors. Transcranial Doppler ultrasonography. Mosby-Year Book: St Louis; 1993. p. 11–28.

    Google Scholar 

  7. Manno EM. Transcranial Doppler ultrasonography in the neurocritical care unit. In: Diringer MN, editor. Critical care clinics, vol. 13. Philadelphia: W.B. Saunders; 1997. p. 79–104.

    Google Scholar 

  8. Sorteberg W. Cerebral artery blood velocity and cerebral blood flow. In: Newell DW, Aaslid R, editors. Transcranial Doppler. New York: Raven; 1992. p. 57–66.

    Google Scholar 

  9. Sorteberg W, Lindegaard KF, Rootwell K, et al. Blood velocity and regional blood flow in defined cerebral artery systems. Acta Neurochir. 1989;97:47–52.

    Article  CAS  PubMed  Google Scholar 

  10. Schoning M, Walter J, Scheel P. Estimation of cerebral blood flow through color duplex sonography of the carotid and vertebral arteries in healthy adults. Stroke. 1994;25:17–22.

    Article  CAS  PubMed  Google Scholar 

  11. Kirkham FJ, Padayachee TS, Parsons S, et al. Transcranial measurement of blood velocities in the basal cerebral arteries using pulsed Doppler ultrasound: velocity as an index of flow. Ultrasound Med Biol. 1986;12:15–21.

    Article  CAS  PubMed  Google Scholar 

  12. Dahl A, Russell D, Nyberg-Hansen R, et al. Simultaneous assessment of vasoreactivity using transcranial Doppler ultrasound and cerebral blood flow in healthy subjects. J Cereb Blood Flow Metab. 1994;14:974–81.

    Article  CAS  PubMed  Google Scholar 

  13. Sorteberg W, Lindegaard KF, Rootwell K, et al. Effect of acetazolamide on cerebral artery blood velocity and regional cerebral blood flow in normal subjects. Acta Neurochir. 1989;97:47–52.

    Article  CAS  PubMed  Google Scholar 

  14. Naylor AR, Merrick MV, Slattery JM, et al. Parametric imaging of cerebrovascular reserve. Eur J Nucl Med. 1991;18:259–64.

    Article  CAS  PubMed  Google Scholar 

  15. Kofke WA, Brauer P, Policare R, et al. Middle cerebral artery blood flow velocity and stable xenon-enhanced computed blood flow during test balloon occlusion of the internal carotid artery. Stroke. 1995;26:1603–6.

    Article  CAS  PubMed  Google Scholar 

  16. Hartmann A, Ries F, Tsuda Y, et al. Correlation of regional cerebral blood flow and blood flow velocity in normal volunteers and patients with cerebro-vascular disease. Neurochirgia (Stuttg). 1991;34:6–13.

    CAS  Google Scholar 

  17. Manno EM, Rabinstein AA. Central nervous system. Chapter 43. In: Gabriella A, Layton AJ, Yu M, editors. Civetta, Taylor, and Kirby’s critical care. 4th ed. Philadelphia: Wolters Kluver Lippincott Williams and Wilkins; 2009. p. 649–65.

    Google Scholar 

  18. Rose JC, Mayer SA. Optimizing blood pressure in neurological emergencies. Neurocrit Care. 2004;1:287–99.

    Article  PubMed  Google Scholar 

  19. Edvisson L. Neurogenic mechanisms in the cerebrovascular bed. Autonomic nerves, amine receptors, and their effects on cerebral blood flow. Acta Physiol Scand Suppl. 1975;427:1.

    Google Scholar 

  20. Kontos HA, Wei EP, Navari RM, et al. Responses of cerebral arteries and arterioles to acute hypotension and hypertension. Am J Physiol Heart Circ Physiol. 1978;234:H371.

    Article  CAS  Google Scholar 

  21. Folkow B. Description of the myogenic hypothesis. Circ Res. 1964;15:279–87.

    Google Scholar 

  22. Chillon JM, Baumbach JL. Autoregulation: arterial and intracranial pressure. In: Edvisson L, Krause DN, editors. Cerebral blood flow and metabolism. 2nd ed. Philadelphia: Lippincott Williams and Wilkens; 2002. p. 395–412.

    Google Scholar 

  23. Lou HC, Edvission L, MacKenzie ET. The concept of coupling blood flow to brain function: revision required? Ann Neurol. 1987;22:289.

    Article  CAS  PubMed  Google Scholar 

  24. Ginsberg MD. Cerebral circulation: its regulation, pharmacology, and pathophysiology. In: Asbury AK, McKhann GM, McDonald WI, editors. Diseases of the nervous system clinical neurobiology. Philadelphia: Saunders; 1992. p. 989–1001.

    Google Scholar 

  25. Harper AM, Glass HI. Effect of alterations in the arterial carbon dioxide tension on the blood flow through the cerebral cortex at normal and low arterial pressures. J Neurol Neurosurg Psychiatry. 1965;28:449–52.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ropper AH. Treatment of intracranial hypertension. In: Ropper AH, editor. Neurological and neurosurgical intensive care. 3rd ed. New York: Raven Press; 1993. p. 29–52.

    Google Scholar 

  27. Ringelstein EB, Otis SM. Physiological testing of vasomotor reserve. Chapter 8. In: Newell DW, Aaslid R, editors. Transcranial Doppler. New York: Raven; 1992. p. 83–100.

    Google Scholar 

  28. Aaslid R. Cerebral Hemodynamics chapter 5. In: Newell DW, Aaslid R, editors. Transcranial Doppler. New York: Raven; 1992. p. 49–55.

    Google Scholar 

  29. Tiecks FP, Lam AM, Aaslid R, Newell DW. Comparison of static and dynamic autoregulation measurements. Stroke. 1995;26:1014–9.

    Article  CAS  PubMed  Google Scholar 

  30. Manno EM, Gress DR, Schwamm LH, et al. Effects of induced hypertension on transcranial Doppler ultrasound velocities in patients after subarachnoid hemorrhage. Stroke. 1998;29:422–8.

    Article  CAS  PubMed  Google Scholar 

  31. Ringelstein EB, van Eyck S, Mertens I. Evaluation of cerebral vasomotor reactivity by various vasodilating stimuli: comparison of CO2 with acetazolamide. J Cereb Blood Flow Metab. 1992;12:162–8.

    Article  CAS  PubMed  Google Scholar 

  32. Tresser SJ, Selmon WR, Ratcheson RA. Pathophysiological alterations following aneurysm rupture. Concepts Neurosurg. 1994;6:23–45.

    Google Scholar 

  33. Fisher CM, Kistler JP, Davis JM. Relation of cerebral vasospasm to subarachnoid hemorrhage visualized on computed tomographic scanning. Neurosurgery. 1980;6:1–9.

    Article  CAS  PubMed  Google Scholar 

  34. Kistler JP, Crowell RM, Davis KR, et al. The relation of cerebral vasospasm to the extent and location of subarachnoid blood visualized by CT scan: a prospective study. Neurology. 1983;33:424–36.

    Article  CAS  PubMed  Google Scholar 

  35. Seckhar LN, Wechsler LR, Yonas H, et al. Value of transcranial Doppler examination in the diagnosis of cerebral vasospasm after subarachnoid hemorrhage. Neurosurgery. 1988;22:813–21.

    Article  Google Scholar 

  36. Sloan MA, Rigamonti D, Rothman M, et al. Sensitivity and specificity of transcranial Doppler ultrasound in the diagnosis of vasospasm following subarachnoid hemorrhage. Neurology. 1989;39:1514–8.

    Article  CAS  PubMed  Google Scholar 

  37. Laumer R, Steinmeier R, Gonner F, et al. Cerebral hemodynamics in subarachnoid hemorrhage evaluated by transcranial Doppler ultrasonography. Part 1: reliability of flow velocities in clinical management. Neurosurgery. 1993;33:1–9.

    CAS  PubMed  Google Scholar 

  38. Brass LM, Pavlakis SG, DeVivo D, et al. Transcranial Doppler measurements of the middle cerebral artery: effect of hematocrit. Stroke. 1988;19:1466–9.

    Article  CAS  PubMed  Google Scholar 

  39. Lindegaard KF, Nornes H, Bakke SJ, et al. Cerebral vasospasm after subarachnoid hemorrhage investigated by means of transcranial Doppler ultrasound. Acta Neurochir Suppl (Wien). 1988;42:81–4.

    CAS  Google Scholar 

  40. Soustiel JF, Shik V, Schreiber R, et al. Basilar vasospasm diagnosis: investigation of a modified “Lindegaard index” based on imaging studies and blood velocity measurements of the basilar artery. Stroke. 2002;33:72–7.

    Article  PubMed  Google Scholar 

  41. Hassler W, Chioffi F. CO2 reactivity of cerebral vasospasm after aneursysmal subarachnoid hemorrhage. Acta Neurochir. 1989;98:167–75.

    Article  CAS  PubMed  Google Scholar 

  42. Siuta M, Zuckerman SL, Mocco J. Nitric oxide in cerebral vasospasm. Theories measurement and treatment. Neurology Research International; 2013;2013:11. Article ID 972417.

    Book  Google Scholar 

  43. Rabinstein AA, Weigand S, Atkinson JL, Wijdicks EF. Patterns of cerebral infarction in aneurysmal subarachnoid hemorrhage. Stroke. 2005;36:992–7.

    Article  PubMed  Google Scholar 

  44. MacDonald RL, Higashida RT, Keller E, et al. Clazosentan, an endothelian receptor antagonist in patients with subarachnoid hemorrhage undergoing surgical clipping: a randomized double blinded placebo controlled phase 3 trial (conscious −2). Lancet Neurol. 2011;10:618–25.

    Article  CAS  PubMed  Google Scholar 

  45. White H, Venkatesh B. Applications of transcranial Doppler in the ICU: a review. Intensive Care Med. 2006;32:981–94.

    Article  PubMed  Google Scholar 

  46. Hassler W, Steinmetz H, Gawloswski J. Transcranial Doppler ultrasongraphy in raised intracranial pressure and in circulatory arrest. J Neurosurg. 1988;68:745–51.

    Article  CAS  PubMed  Google Scholar 

  47. Klingelhofer J, Conrad B, Benecke R, et al. Evaluation of intracranial pressure from transcranial Doppler studies in cerebral disease. J Neurol. 1988;235:159–62.

    Article  CAS  PubMed  Google Scholar 

  48. Chan K-H, Miller JD, Dearden NM. Intracranial blood flow velocity after head injury: relationship to severity of injury, time, neurological status, and outcome. J Neurol Neurosurg Psychiatry. 1992;55:787–91.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Van Santbrink H, Schouten JW, Steyerberg EW, et al. Serial transcranial Doppler measurements in traumatic brain injury with special focus on the early posttraumatic period. Acta Neurochir. 2002;144:1141–9.

    Article  PubMed  Google Scholar 

  50. Vavilala MS, Lee LA, Boddu K, et al. Cerebral autoregulation in pediatric traumatic brain injury. Pediatr Crit Care Med. 2004;5:257–63.

    Article  PubMed  Google Scholar 

  51. Schmidt EA, Czosnyka M, Steiner LA, et al. Asymmetry of pressure autoregulation after traumatic brain injury. J Neurosurg. 2003;99:991–8.

    Article  PubMed  Google Scholar 

  52. Compton JS, Teddy PJ. Cerebral arterial vasospasm following severe head injury: a transcranial Doppler study. Br J Neurosurg. 1987;1:435–9.

    Article  CAS  PubMed  Google Scholar 

  53. Martin NA, Doberstein C, Zane C, et al. Posttraumatic cerebral arterial spasm: transcranial Doppler ultrasound, cerebral blood flow, and angiographic findings. J Neurosurg. 1992;77:575–83.

    Article  CAS  PubMed  Google Scholar 

  54. Azevedo E, Teixeira J, Neves JC, Vaz R. Transcranial Doppler and brain death. Transplant Proc. 2000;32:2579–81.

    Article  CAS  PubMed  Google Scholar 

  55. Dominguez-Roldan JM, Jimenez-Gonzalez PI, Garcia-Alfaro C, et al. Diagnosis of brain death by transcranial Doppler sonography: solutions for cases of difficult sonic windows. Transplant Proc. 2004;36:2896–7.

    Article  CAS  PubMed  Google Scholar 

  56. Chang JJ, Tsivgoulis G, Katsanos AH, et al. Diagnostic accuracy of transcranial Doppler for brain death confirmation: systemic review and meta-analysis. AJNR. 2016;37:408–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Ducrocq X, Hassler W, Moritake K, et al. Consensus opinion on diagnosis of cerebral circulatory arrest using Doppler-sonography: task force group on cerebral death of the neurosonology research group of the World Federation of Neurology. J Neurol Sci. 1998;159:145–50.

    Article  CAS  PubMed  Google Scholar 

  58. Young GB, Shemie SD, Doig J, Teitelbaum JT. Brief review: the role of ancillary tests in the neurological determination of death. Can J Anesth. 2006;53:620–7.

    Article  PubMed  Google Scholar 

  59. Klingelhofer J, Sander D. Doppler CO2 test as an indicator of cerebral vasoreactivity and prognosis in severe intracerebral hemorrhage. Stroke. 1992;23:962–6.

    Article  CAS  PubMed  Google Scholar 

  60. Kukulska-Pawluczul B, Ksiazkiewicz B, Nowaczewska M. Imaging of spontaneous intracerebralhemorrhages by means of transcranial colr-coded sonography. Europ J Radiol. 2012;81:1253–8.

    Article  Google Scholar 

  61. Kiphuth IC, Huttmer HB, Breuer L, et al. Songraphic monitoring of midline shift predicts outcome after intracerebral hemorrhage. Cerebrovascular Dis. 2012;34:297–304.

    Article  Google Scholar 

  62. Camps-Renom P, Granell JME, Prats-Sanchez L, et al. Transcranial duplex sonography predicts outcome following intracerebral hemorrhage. AJNR. 2017;38:1543–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Spencer MP, Thomas GI, Nicholls SC, Sauvage LR. Detection of middle cerebral emboli during carotid endarterectomy using transcranial doppler ultrasound. Stroke. 1990;21:415–23.

    Article  CAS  PubMed  Google Scholar 

  64. Merceron S, Geeraerts T, Montlahuc C, et al. Assessment of cerebral blood flow in nonconvulsive status epilepticus in comatose patients: a pathophysiological transcranial Doppler study. Seizure. 2014;23:284–9.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Edward M. Manno .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manno, E.M., Sorond, F. (2022). Transcranial Doppler (TCD/TCCS) and Cerebral Blood Flow: Applications in the Neurological Intensive Care Unit. In: Rodríguez, C.N., et al. Neurosonology in Critical Care . Springer, Cham. https://doi.org/10.1007/978-3-030-81419-9_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81419-9_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81418-2

  • Online ISBN: 978-3-030-81419-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics