Skip to main content

2-[18F]FDG PET Imaging of Infection and Inflammation

  • Chapter
  • First Online:
Nuclear Medicine and Immunology
  • 1256 Accesses

Abstract

2-[18F]fluoro-2-deoxy-d-glucose (2-[18F]FDG) positron emission tomography (PET) has been used for the diagnosis and management of the malignancy, cardiac, and brain disorders. A significant linear correlation between 2-[18F]FDG uptake and inflammatory cell density was confirmed in both acute and chronic inflammation. These observations explain the superior accuracy of 2-[18F]FDG PET over traditional imaging techniques in the assessment of infection/inflammation. Currently, 2-[18F]FDG PET provides outstanding performance for the diagnosis of several infectious and inflammatory diseases and monitoring of response to therapy. 2-[18F]FDG PET can provide higher resolution images than conventional nuclear medicine examinations. Moreover, 2-[18F]FDG PET has the advantage of completing a whole-body scan in a short time. However, compared to malignancy, evidence for the usefulness of 2-[18F]FDG PET is still weak for assessing infections, inflammatory, and autoimmune diseases. This chapter introduces the utility and limitations of 2-[18F]FDG PET for the diagnosis and assessment of treatment in infections, inflammatory, and autoimmune diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bell GI, Burant CF, Takeda J, Gould GW. Structure and function of mammalian facilitative sugar transporters. J Biol Chem. 1993;268(26):19161–4.

    Article  CAS  PubMed  Google Scholar 

  2. Pauwels EK, Ribeiro MJ, Stoot JH, McCready VR, Bourguignon M, Maziere B. FDG accumulation and tumor biology. Nucl Med Biol. 1998;25(4):317–22.

    Article  CAS  PubMed  Google Scholar 

  3. Zhuang H, Alavi A. 18-Fluorodeoxyglucose positron emission tomographic imaging in the detection and monitoring of infection and inflammation. Semin Nucl Med. 2002;32(1):47–59. https://doi.org/10.1053/snuc.2002.29278.

    Article  PubMed  Google Scholar 

  4. Mochizuki T, Tsukamoto E, Kuge Y, Kanegae K, Zhao S, Hikosaka K, et al. FDG uptake and glucose transporter subtype expressions in experimental tumor and inflammation models. J Nucl Med. 2001;42(10):1551–5.

    CAS  PubMed  Google Scholar 

  5. O’Neill LA, Hardie DG. Metabolism of inflammation limited by AMPK and pseudo-starvation. Nature. 2013;493(7432):346–55. https://doi.org/10.1038/nature11862.

    Article  CAS  PubMed  Google Scholar 

  6. Basu S, Kwee TC, Surti S, Akin EA, Yoo D, Alavi A. Fundamentals of PET and PET/CT imaging. Ann N Y Acad Sci. 2011;1228:1–18. https://doi.org/10.1111/j.1749-6632.2011.06077.x.

    Article  CAS  PubMed  Google Scholar 

  7. Ohba K, Sasaki S, Oki Y, Nishizawa S, Matsushita A, Yoshino A, et al. Factors associated with fluorine-18-fluorodeoxyglucose uptake in benign thyroid nodules. Endocr J. 2013;60(8):985–90.

    Article  CAS  PubMed  Google Scholar 

  8. Vaidyanathan S, Patel CN, Scarsbrook AF, Chowdhury FU. FDG PET/CT in infection and inflammation—current and emerging clinical applications. Clin Radiol. 2015;70(7):787–800. https://doi.org/10.1016/j.crad.2015.03.010.

    Article  CAS  PubMed  Google Scholar 

  9. Bental M, Deutsch C. Metabolic changes in activated T cells: an NMR study of human peripheral blood lymphocytes. Magn Reson Med. 1993;29(3):317–26.

    Article  CAS  PubMed  Google Scholar 

  10. Marjanovic S, Skog S, Heiden T, Tribukait B, Nelson BD. Expression of glycolytic isoenzymes in activated human peripheral lymphocytes: cell cycle analysis using flow cytometry. Exp Cell Res. 1991;193(2):425–31. https://doi.org/10.1016/0014-4827(91)90116-c.

    Article  CAS  PubMed  Google Scholar 

  11. Kubota R, Yamada S, Kubota K, Ishiwata K, Tamahashi N, Ido T. Intratumoral distribution of fluorine-18-fluorodeoxyglucose in vivo: high accumulation in macrophages and granulation tissues studied by microautoradiography. J Nucl Med. 1992;33(11):1972–80.

    CAS  PubMed  Google Scholar 

  12. Irmler IM, Opfermann T, Gebhardt P, Gajda M, Brauer R, Saluz HP, et al. In vivo molecular imaging of experimental joint inflammation by combined (18)F-FDG positron emission tomography and computed tomography. Arthritis Res Ther. 2010;12(6):R203. https://doi.org/10.1186/ar3176.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Rakesh Kumar MRN, Balakrishnan V, Bal C, Malhotra A. FDG-PET imaging in infection and inflammation. Indian J Nucl Med. 2006;21(4):10.

    Google Scholar 

  14. Tseng JR, Chen KY, Lee MH, Huang CT, Wen YH, Yen TC. Potential usefulness of FDG PET/CT in patients with sepsis of unknown origin. PLoS One. 2013;8(6):e66132. https://doi.org/10.1371/journal.pone.0066132.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Bleeker-Rovers CP, Vos FJ, de Kleijn EM, Mudde AH, Dofferhoff TS, Richter C, et al. A prospective multicenter study on fever of unknown origin: the yield of a structured diagnostic protocol. Medicine (Baltimore). 2007;86(1):26–38. https://doi.org/10.1097/MD.0b013e31802fe858.

    Article  Google Scholar 

  16. Besson FL, Chaumet-Riffaud P, Playe M, Noel N, Lambotte O, Goujard C, et al. Contribution of (18)F-FDG PET in the diagnostic assessment of fever of unknown origin (FUO): a stratification-based meta-analysis. Eur J Nucl Med Mol Imaging. 2016;43(10):1887–95. https://doi.org/10.1007/s00259-016-3377-6.

    Article  CAS  PubMed  Google Scholar 

  17. Guhlmann A, Brecht-Krauss D, Suger G, Glatting G, Kotzerke J, Kinzl L, et al. Chronic osteomyelitis: detection with FDG PET and correlation with histopathologic findings. Radiology. 1998;206(3):749–54. https://doi.org/10.1148/radiology.206.3.9494496.

    Article  CAS  PubMed  Google Scholar 

  18. Sugawara Y, Braun DK, Kison PV, Russo JE, Zasadny KR, Wahl RL. Rapid detection of human infections with fluorine-18 fluorodeoxyglucose and positron emission tomography: preliminary results. Eur J Nucl Med. 1998;25(9):1238–43.

    Article  CAS  PubMed  Google Scholar 

  19. Bleeker-Rovers CP, Vos FJ, Corstens FH, Oyen WJ. Imaging of infectious diseases using [18F] fluorodeoxyglucose PET. Q J Nucl Med Mol Imaging. 2008;52(1):17–29.

    CAS  PubMed  Google Scholar 

  20. de Winter F, van de Wiele C, Vogelaers D, de Smet K, Verdonk R, Dierckx RA. Fluorine-18 fluorodeoxyglucose-position emission tomography: a highly accurate imaging modality for the diagnosis of chronic musculoskeletal infections. J Bone Joint Surg Am. 2001;83(5):651–60. https://doi.org/10.2106/00004623-200105000-00002.

    Article  PubMed  Google Scholar 

  21. Hartmann A, Eid K, Dora C, Trentz O, von Schulthess GK, Stumpe KDM. Diagnostic value of 18F-FDG PET/CT in trauma patients with suspected chronic osteomyelitis. Eur J Nucl Med Mol Imaging. 2007;34(5):704–14. https://doi.org/10.1007/s00259-006-0290-4.

    Article  PubMed  Google Scholar 

  22. El-Haddad G, Zhuang H, Gupta N, Alavi A. Evolving role of positron emission tomography in the management of patients with inflammatory and other benign disorders. Semin Nucl Med. 2004;34(4):313–29.

    Article  PubMed  Google Scholar 

  23. Palestro CJ. FDG-PET in musculoskeletal infections. Semin Nucl Med. 2013;43(5):367–76. https://doi.org/10.1053/j.semnuclmed.2013.04.006.

    Article  PubMed  Google Scholar 

  24. Termaat MF, Raijmakers PG, Scholten HJ, Bakker FC, Patka P, Haarman HJ. The accuracy of diagnostic imaging for the assessment of chronic osteomyelitis: a systematic review and meta-analysis. J Bone Joint Surg Am. 2005;87(11):2464–71. https://doi.org/10.2106/JBJS.D.02691.

    Article  CAS  PubMed  Google Scholar 

  25. Stumpe KD, Zanetti M, Weishaupt D, Hodler J, Boos N, Von Schulthess GK. FDG positron emission tomography for differentiation of degenerative and infectious endplate abnormalities in the lumbar spine detected on MR imaging. AJR Am J Roentgenol. 2002;179(5):1151–7. https://doi.org/10.2214/ajr.179.5.1791151.

    Article  PubMed  Google Scholar 

  26. Jamar F, Buscombe J, Chiti A, Christian PE, Delbeke D, Donohoe KJ, et al. EANM/SNMMI guideline for 18F-FDG use in inflammation and infection. J Nucl Med. 2013;54(4):647–58. https://doi.org/10.2967/jnumed.112.112524.

    Article  PubMed  Google Scholar 

  27. Prodromou ML, Ziakas PD, Poulou LS, Karsaliakos P, Thanos L, Mylonakis E. FDG PET is a robust tool for the diagnosis of spondylodiscitis: a meta-analysis of diagnostic data. Clin Nucl Med. 2014;39(4):330–5. https://doi.org/10.1097/RLU.0000000000000336.

    Article  PubMed  Google Scholar 

  28. Ito K, Kubota K, Morooka M, Hasuo K, Kuroki H, Mimori A. Clinical impact of (18)F-FDG PET/CT on the management and diagnosis of infectious spondylitis. Nucl Med Commun. 2010;31(8):691–8. https://doi.org/10.1097/MNM.0b013e32833bb25d.

    Article  PubMed  Google Scholar 

  29. Gemmel F, Rijk PC, Collins JM, Parlevliet T, Stumpe KD, Palestro CJ. Expanding role of 18F-fluoro-D-deoxyglucose PET and PET/CT in spinal infections. Eur Spine J. 2010;19(4):540–51. https://doi.org/10.1007/s00586-009-1251-y.

    Article  PubMed  PubMed Central  Google Scholar 

  30. Sollini M, Raffaella B, Bandera F, Lazzeri E, Erba PA. Detection of device infection using nuclear cardiology imaging. Ann Nucl Cardiol. 2018;4(1):52–9. https://doi.org/10.17996/anc.18-00078.

    Article  Google Scholar 

  31. Mahmood M, Kendi AT, Farid S, Ajmal S, Johnson GB, Baddour LM, et al. Role of (18)F-FDG PET/CT in the diagnosis of cardiovascular implantable electronic device infections: a meta-analysis. J Nucl Cardiol. 2019;26(3):958–70. https://doi.org/10.1007/s12350-017-1063-0.

    Article  PubMed  Google Scholar 

  32. Gomes A, Glaudemans A, Touw DJ, van Melle JP, Willems TP, Maass AH, et al. Diagnostic value of imaging in infective endocarditis: a systematic review. Lancet Infect Dis. 2017;17(1):e1–e14. https://doi.org/10.1016/S1473-3099(16)30141-4.

    Article  PubMed  Google Scholar 

  33. Saby L, Laas O, Habib G, Cammilleri S, Mancini J, Tessonnier L, et al. Positron emission tomography/computed tomography for diagnosis of prosthetic valve endocarditis: increased valvular 18F-fluorodeoxyglucose uptake as a novel major criterion. J Am Coll Cardiol. 2013;61(23):2374–82. https://doi.org/10.1016/j.jacc.2013.01.092.

    Article  PubMed  Google Scholar 

  34. Pizzi MN, Roque A, Fernandez-Hidalgo N, Cuellar-Calabria H, Ferreira-Gonzalez I, Gonzalez-Alujas MT, et al. Improving the diagnosis of infective endocarditis in prosthetic valves and intracardiac devices with 18F-fluordeoxyglucose positron emission tomography/computed tomography angiography: initial results at an infective endocarditis referral center. Circulation. 2015;132(12):1113–26. https://doi.org/10.1161/CIRCULATIONAHA.115.015316.

    Article  PubMed  Google Scholar 

  35. Salomaki SP, Saraste A, Kemppainen J, Bax JJ, Knuuti J, Nuutila P, et al. (18)F-FDG positron emission tomography/computed tomography in infective endocarditis. J Nucl Cardiol. 2017;24(1):195–206. https://doi.org/10.1007/s12350-015-0325-y.

    Article  PubMed  Google Scholar 

  36. Yan J, Zhang C, Niu Y, Yuan R, Zeng X, Ge X, et al. The role of 18F-FDG PET/CT in infectious endocarditis: a systematic review and meta-analysis. Int J Clin Pharmacol Ther. 2016;54(5):337–42. https://doi.org/10.5414/CP202569.

    Article  CAS  PubMed  Google Scholar 

  37. Habib G, Lancellotti P, Iung B. 2015 ESC guidelines on the management of infective endocarditis: a big step forward for an old disease. Heart. 2016;102(13):992–4. https://doi.org/10.1136/heartjnl-2015-308791.

    Article  CAS  PubMed  Google Scholar 

  38. Kestler M, Munoz P, Rodriguez-Creixems M, Rotger A, Jimenez-Requena F, Mari A, et al. Role of (18)F-FDG PET in patients with infectious endocarditis. J Nucl Med. 2014;55(7):1093–8. https://doi.org/10.2967/jnumed.113.134981.

    Article  CAS  PubMed  Google Scholar 

  39. Adler Y, Charron P, Imazio M, Badano L, Baron-Esquivias G, Bogaert J, et al. 2015 ESC guidelines for the diagnosis and management of pericardial diseases: the task force for the Diagnosis and Management of Pericardial Diseases of the European Society of Cardiology (ESC) endorsed by: The European Association for Cardio-Thoracic Surgery (EACTS). Eur Heart J. 2015;36(42):2921–64. https://doi.org/10.1093/eurheartj/ehv318.

    Article  PubMed  Google Scholar 

  40. Dong A, Dong H, Wang Y, Cheng C, Zuo C, Lu J. (18)F-FDG PET/CT in differentiating acute tuberculous from idiopathic pericarditis: preliminary study. Clin Nucl Med. 2013;38(4):e160–5. https://doi.org/10.1097/RLU.0b013e31827a2537.

    Article  PubMed  Google Scholar 

  41. Kilic A, Arnaoutakis DJ, Reifsnyder T, Black JH III, Abularrage CJ, Perler BA, et al. Management of infected vascular grafts. Vasc Med. 2016;21(1):53–60. https://doi.org/10.1177/1358863X15612574.

    Article  PubMed  Google Scholar 

  42. Darouiche RO. Treatment of infections associated with surgical implants. N Engl J Med. 2004;350(14):1422–9. https://doi.org/10.1056/NEJMra035415.

    Article  CAS  PubMed  Google Scholar 

  43. Perera GB, Fujitani RM, Kubaska SM. Aortic graft infection: update on management and treatment options. Vasc Endovasc Surg. 2006;40(1):1–10. https://doi.org/10.1177/153857440604000101.

    Article  Google Scholar 

  44. Keidar Z, Pirmisashvili N, Leiderman M, Nitecki S, Israel O. 18F-FDG uptake in noninfected prosthetic vascular grafts: incidence, patterns, and changes over time. J Nucl Med. 2014;55(3):392–5. https://doi.org/10.2967/jnumed.113.128173.

    Article  CAS  PubMed  Google Scholar 

  45. Fukuchi K, Ishida Y, Higashi M, Tsunekawa T, Ogino H, Minatoya K, et al. Detection of aortic graft infection by fluorodeoxyglucose positron emission tomography: comparison with computed tomographic findings. J Vasc Surg. 2005;42(5):919–25. https://doi.org/10.1016/j.jvs.2005.07.038.

    Article  PubMed  Google Scholar 

  46. Spacek M, Belohlavek O, Votrubova J, Sebesta P, Stadler P. Diagnostics of “non-acute” vascular prosthesis infection using 18F-FDG PET/CT: our experience with 96 prostheses. Eur J Nucl Med Mol Imaging. 2009;36(5):850–8. https://doi.org/10.1007/s00259-008-1002-z.

    Article  CAS  PubMed  Google Scholar 

  47. Tokuda Y, Oshima H, Araki Y, Narita Y, Mutsuga M, Kato K, et al. Detection of thoracic aortic prosthetic graft infection with 18F-fluorodeoxyglucose positron emission tomography/computed tomography. Eur J Cardiothorac Surg. 2013;43(6):1183–7. https://doi.org/10.1093/ejcts/ezs693.

    Article  PubMed  Google Scholar 

  48. Cook GJ, Fogelman I, Maisey MN. Normal physiological and benign pathological variants of 18-fluoro-2-deoxyglucose positron-emission tomography scanning: potential for error in interpretation. Semin Nucl Med. 1996;26(4):308–14.

    Article  CAS  PubMed  Google Scholar 

  49. van der Bruggen W, Bleeker-Rovers CP, Boerman OC, Gotthardt M, Oyen WJ. PET and SPECT in osteomyelitis and prosthetic bone and joint infections: a systematic review. Semin Nucl Med. 2010;40(1):3–15. https://doi.org/10.1053/j.semnuclmed.2009.08.005.

    Article  PubMed  Google Scholar 

  50. Manthey N, Reinhard P, Moog F, Knesewitsch P, Hahn K, Tatsch K. The use of [18 F]fluorodeoxyglucose positron emission tomography to differentiate between synovitis, loosening and infection of hip and knee prostheses. Nucl Med Commun. 2002;23(7):645–53.

    Article  CAS  PubMed  Google Scholar 

  51. Zhuang H, Chacko TK, Hickeson M, Stevenson K, Feng Q, Ponzo F, et al. Persistent non-specific FDG uptake on PET imaging following hip arthroplasty. Eur J Nucl Med Mol Imaging. 2002;29(10):1328–33. https://doi.org/10.1007/s00259-002-0886-2.

    Article  CAS  PubMed  Google Scholar 

  52. Love C, Marwin SE, Palestro CJ. Nuclear medicine and the infected joint replacement. Semin Nucl Med. 2009;39(1):66–78. https://doi.org/10.1053/j.semnuclmed.2008.08.007.

    Article  PubMed  Google Scholar 

  53. Palestro CJ, Kim CK, Swyer AJ, Capozzi JD, Solomon RW, Goldsmith SJ. Total-hip arthroplasty: periprosthetic indium-111-labeled leukocyte activity and complementary technetium-99m-sulfur colloid imaging in suspected infection. J Nucl Med. 1990;31(12):1950–5.

    CAS  PubMed  Google Scholar 

  54. Mulamba L, Ferrant A, Leners N, de Nayer P, Rombouts JJ, Vincent A. Indium-111 leucocyte scanning in the evaluation of painful hip arthroplasty. Acta Orthop Scand. 1983;54(5):695–7.

    Article  CAS  PubMed  Google Scholar 

  55. Soussan M, Brillet PY, Mekinian A, Khafagy A, Nicolas P, Vessieres A, et al. Patterns of pulmonary tuberculosis on FDG-PET/CT. Eur J Radiol. 2012;81(10):2872–6. https://doi.org/10.1016/j.ejrad.2011.09.002.

    Article  PubMed  Google Scholar 

  56. Yang CM, Hsu CH, Lee CM, Wang FC. Intense uptake of [F-18]-fluoro-2 deoxy-D-glucose in active pulmonary tuberculosis. Ann Nucl Med. 2003;17(5):407–10.

    Article  PubMed  Google Scholar 

  57. Goo JM, Im JG, Do KH, Yeo JS, Seo JB, Kim HY, et al. Pulmonary tuberculoma evaluated by means of FDG PET: findings in 10 cases. Radiology. 2000;216(1):117–21. https://doi.org/10.1148/radiology.216.1.r00jl19117.

    Article  CAS  PubMed  Google Scholar 

  58. Spiliopoulou I, Foka A, Bounas A, Marangos MN. Mycobacterium kansasii cutaneous infection in a patient with sarcoidosis treated with anti-TNF agents. Acta Clin Belg. 2014;69(3):229–31. https://doi.org/10.1179/0001551214Z.00000000052.

    Article  CAS  PubMed  Google Scholar 

  59. Hollings NP, Wells AU, Wilson R, Hansell DM. Comparative appearances of non-tuberculous mycobacteria species: a CT study. Eur Radiol. 2002;12(9):2211–7. https://doi.org/10.1007/s00330-001-1282-1.

    Article  CAS  PubMed  Google Scholar 

  60. Kim JS, Tanaka N, Newell JD, Degroote MA, Fulton K, Huitt G, et al. Nontuberculous mycobacterial infection: CT scan findings, genotype, and treatment responsiveness. Chest. 2005;128(6):3863–9. https://doi.org/10.1378/chest.128.6.3863.

    Article  PubMed  Google Scholar 

  61. Martinez V, Castilla-Lievre MA, Guillet-Caruba C, Grenier G, Fior R, Desarnaud S, et al. (18)F-FDG PET/CT in tuberculosis: an early non-invasive marker of therapeutic response. Int J Tuberc Lung Dis. 2012;16(9):1180–5. https://doi.org/10.5588/ijtld.12.0010.

    Article  CAS  PubMed  Google Scholar 

  62. Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N Engl J Med. 2007;357(21):2153–65. https://doi.org/10.1056/NEJMra071714.

    Article  CAS  PubMed  Google Scholar 

  63. Studdy PR, Bird R. Serum angiotensin converting enzyme in sarcoidosis—its value in present clinical practice. Ann Clin Biochem. 1989;26(Pt 1):13–8. https://doi.org/10.1177/000456328902600102.

    Article  PubMed  Google Scholar 

  64. Prager E, Wehrschuetz M, Bisail B, Woltsche M, Schwarz T, Lanz H, et al. Comparison of 18F-FDG and 67Ga-citrate in sarcoidosis imaging. Nuklearmedizin. 2008;47(1):18–23.

    Article  CAS  PubMed  Google Scholar 

  65. Keijsers RG, Grutters JC, Thomeer M, Du Bois RM, Van Buul MM, Lavalaye J, et al. Imaging the inflammatory activity of sarcoidosis: sensitivity and inter observer agreement of (67)Ga imaging and (18)F-FDG PET. Q J Nucl Med Mol Imaging. 2011;55(1):66–71.

    CAS  PubMed  Google Scholar 

  66. Keijsers RG, Verzijlbergen EJ, van den Bosch JM, Zanen P, van de Garde EM, Oyen WJ, et al. 18F-FDG PET as a predictor of pulmonary function in sarcoidosis. Sarcoidosis Vasc Diffuse Lung Dis. 2011;28(2):123–9.

    CAS  PubMed  Google Scholar 

  67. Mortensen J, Loft A, Baslund B. 18F-fluoro-deoxyglucose PET for monitoring treatment in sarcoidosis. Clin Respir J. 2007;1(2):124–6. https://doi.org/10.1111/j.1752-699X.2007.00035.x.

    Article  PubMed  Google Scholar 

  68. Shafee MA, Fukuda K, Wakayama Y, Nakano M, Kondo M, Hasebe Y, et al. Delayed enhancement on cardiac magnetic resonance imaging is a poor prognostic factor in patients with cardiac sarcoidosis. J Cardiol. 2012;60(6):448–53. https://doi.org/10.1016/j.jjcc.2012.08.002.

    Article  PubMed  Google Scholar 

  69. Schatka I, Bengel FM. Advanced imaging of cardiac sarcoidosis. J Nucl Med. 2014;55(1):99–106. https://doi.org/10.2967/jnumed.112.115121.

    Article  PubMed  Google Scholar 

  70. Teirstein AS, Machac J, Almeida O, Lu P, Padilla ML, Iannuzzi MC. Results of 188 whole-body fluorodeoxyglucose positron emission tomography scans in 137 patients with sarcoidosis. Chest. 2007;132(6):1949–53. https://doi.org/10.1378/chest.07-1178.

    Article  PubMed  Google Scholar 

  71. Ohira H, Tsujino I, Ishimaru S, Oyama N, Takei T, Tsukamoto E, et al. Myocardial imaging with 18F-fluoro-2-deoxyglucose positron emission tomography and magnetic resonance imaging in sarcoidosis. Eur J Nucl Med Mol Imaging. 2008;35(5):933–41. https://doi.org/10.1007/s00259-007-0650-8.

    Article  PubMed  Google Scholar 

  72. Ishida Y, Yoshinaga K, Miyagawa M, Moroi M, Kondoh C, Kiso K, et al. Recommendations for (18)F-fluorodeoxyglucose positron emission tomography imaging for cardiac sarcoidosis: Japanese Society of Nuclear Cardiology recommendations. Ann Nucl Med. 2014;28(4):393–403. https://doi.org/10.1007/s12149-014-0806-0.

    Article  PubMed  Google Scholar 

  73. Lum DP, Wandell S, Ko J, Coel MN. Reduction of myocardial 2-deoxy-2-[18F]fluoro-D-glucose uptake artifacts in positron emission tomography using dietary carbohydrate restriction. Mol Imaging Biol. 2002;4(3):232–7.

    Article  PubMed  Google Scholar 

  74. Coulden R, Chung P, Sonnex E, Ibrahim Q, Maguire C, Abele J. Suppression of myocardial 18F-FDG uptake with a preparatory “Atkins-style” low-carbohydrate diet. Eur Radiol. 2012;22(10):2221–8. https://doi.org/10.1007/s00330-012-2478-2.

    Article  PubMed  Google Scholar 

  75. Maurer AH, Burshteyn M, Adler LP, Gaughan JP, Steiner RM. Variable cardiac 18FDG patterns seen in oncologic positron emission tomography computed tomography: importance for differentiating normal physiology from cardiac and paracardiac disease. J Thorac Imaging. 2012;27(4):263–8. https://doi.org/10.1097/RTI.0b013e3182176675.

    Article  PubMed  Google Scholar 

  76. Jennette JC, Falk RJ, Andrassy K, Bacon PA, Churg J, Gross WL, et al. Nomenclature of systemic vasculitides. Proposal of an international consensus conference. Arthritis Rheum. 1994;37(2):187–92. https://doi.org/10.1002/art.1780370206.

    Article  CAS  PubMed  Google Scholar 

  77. Jennette JC, Falk RJ, Bacon PA, Basu N, Cid MC, Ferrario F, et al. 2012 revised International Chapel Hill Consensus Conference Nomenclature of Vasculitides. Arthritis Rheum. 2013;65(1):1–11. https://doi.org/10.1002/art.37715.

    Article  CAS  PubMed  Google Scholar 

  78. Carmona FD, Coit P, Saruhan-Direskeneli G, Hernandez-Rodriguez J, Cid MC, Solans R, et al. Analysis of the common genetic component of large-vessel vasculitides through a meta-Immunochip strategy. Sci Rep. 2017;7:43953. https://doi.org/10.1038/srep43953.

    Article  PubMed  PubMed Central  Google Scholar 

  79. Maksimowicz-McKinnon K, Clark TM, Hoffman GS. Takayasu arteritis and giant cell arteritis: a spectrum within the same disease? Medicine (Baltimore). 2009;88(4):221–6. https://doi.org/10.1097/MD.0b013e3181af70c1.

    Article  Google Scholar 

  80. Cheng Y, Lv N, Wang Z, Chen B, Dang A. 18-FDG-PET in assessing disease activity in Takayasu arteritis: a meta-analysis. Clin Exp Rheumatol. 2013;31(1 Suppl 75):S22–7.

    CAS  PubMed  Google Scholar 

  81. Gravanis MB. Giant cell arteritis and Takayasu aortitis: morphologic, pathogenetic and etiologic factors. Int J Cardiol. 2000;75(Suppl 1):S21–33; discussion S5–6.

    Article  PubMed  Google Scholar 

  82. Besson FL, Parienti JJ, Bienvenu B, Prior JO, Costo S, Bouvard G, et al. Diagnostic performance of (1)(8)F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a systematic review and meta-analysis. Eur J Nucl Med Mol Imaging. 2011;38(9):1764–72. https://doi.org/10.1007/s00259-011-1830-0.

    Article  PubMed  Google Scholar 

  83. Slart R, Writing group; Reviewer group; Members of EANM Cardiovascular; Members of EANM Infection & Inflammation; Members of Committees, SNMMI Cardiovascular; Members of Council, PET Interest Group; Members of ASNC; EANM Committee Coordinator. FDG-PET/CT(A) imaging in large vessel vasculitis and polymyalgia rheumatica: joint procedural recommendation of the EANM, SNMMI, and the PET Interest Group (PIG), and endorsed by the ASNC. Eur J Nucl Med Mol Imaging. 2018;45(7):1250–69. https://doi.org/10.1007/s00259-018-3973-8.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Blockmans D, Stroobants S, Maes A, Mortelmans L. Positron emission tomography in giant cell arteritis and polymyalgia rheumatica: evidence for inflammation of the aortic arch. Am J Med. 2000;108(3):246–9. https://doi.org/10.1016/s0002-9343(99)00424-6.

    Article  CAS  PubMed  Google Scholar 

  85. Ernst D, Baerlecken NT, Schmidt RE, Witte T. Large vessel vasculitis and spondyloarthritis: coincidence or associated diseases? Scand J Rheumatol. 2014;43(3):246–8. https://doi.org/10.3109/03009742.2013.850737.

    Article  CAS  PubMed  Google Scholar 

  86. Lensen KD, Comans EF, Voskuyl AE, van der Laken CJ, Brouwer E, Zwijnenburg AT, et al. Large-vessel vasculitis: interobserver agreement and diagnostic accuracy of 18F-FDG-PET/CT. Biomed Res Int. 2015;2015:914692. https://doi.org/10.1155/2015/914692.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Blockmans D, de Ceuninck L, Vanderschueren S, Knockaert D, Mortelmans L, Bobbaers H. Repetitive 18F-fluorodeoxyglucose positron emission tomography in giant cell arteritis: a prospective study of 35 patients. Arthritis Rheum. 2006;55(1):131–7. https://doi.org/10.1002/art.21699.

    Article  PubMed  Google Scholar 

  88. Besson FL, de Boysson H, Parienti JJ, Bouvard G, Bienvenu B, Agostini D. Towards an optimal semiquantitative approach in giant cell arteritis: an (18)F-FDG PET/CT case-control study. Eur J Nucl Med Mol Imaging. 2014;41(1):155–66. https://doi.org/10.1007/s00259-013-2545-1.

    Article  PubMed  Google Scholar 

  89. Tezuka D, Haraguchi G, Ishihara T, Ohigashi H, Inagaki H, Suzuki J, et al. Role of FDG PET-CT in Takayasu arteritis: sensitive detection of recurrences. JACC Cardiovasc Imaging. 2012;5(4):422–9. https://doi.org/10.1016/j.jcmg.2012.01.013.

    Article  PubMed  Google Scholar 

  90. Lehmann P, Buchtala S, Achajew N, Haerle P, Ehrenstein B, Lighvani H, et al. 18F-FDG PET as a diagnostic procedure in large vessel vasculitis-a controlled, blinded re-examination of routine PET scans. Clin Rheumatol. 2011;30(1):37–42. https://doi.org/10.1007/s10067-010-1598-9.

    Article  PubMed  Google Scholar 

  91. Cimmino MA, Zampogna G, Parodi M. Is FDG-PET useful in the evaluation of steroid-resistant PMR patients? Rheumatology (Oxford). 2008;47(6):926–7. https://doi.org/10.1093/rheumatology/ken098.

    Article  CAS  Google Scholar 

  92. Pipitone N, Versari A, Salvarani C. Role of imaging studies in the diagnosis and follow-up of large-vessel vasculitis: an update. Rheumatology (Oxford). 2008;47(4):403–8. https://doi.org/10.1093/rheumatology/kem379.

    Article  CAS  Google Scholar 

  93. Ben-Haim S, Kupzov E, Tamir A, Israel O. Evaluation of 18F-FDG uptake and arterial wall calcifications using 18F-FDG PET/CT. J Nucl Med. 2004;45(11):1816–21.

    PubMed  Google Scholar 

  94. Dunphy MP, Freiman A, Larson SM, Strauss HW. Association of vascular 18F-FDG uptake with vascular calcification. J Nucl Med. 2005;46(8):1278–84.

    PubMed  Google Scholar 

  95. Schollhammer R, Schwartz P, Jullie ML, Pham-Ledard A, Mercie P, Fernandez P, et al. 18F-FDG PET/CT imaging of popliteal vasculitis associated with polyarteritis nodosa. Clin Nucl Med. 2017;42(8):e385–e7. https://doi.org/10.1097/RLU.0000000000001711.

    Article  PubMed  Google Scholar 

  96. Demir S, Sag E, Dedeoglu F, Ozen S. Vasculitis in systemic autoinflammatory diseases. Front Pediatr. 2018;6:377. https://doi.org/10.3389/fped.2018.00377.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Geraldino-Pardilla L, Zartoshti A, Ozbek AB, Giles JT, Weinberg R, Kinkhabwala M, et al. Arterial inflammation detected with (18) F-fluorodeoxyglucose-positron emission tomography in rheumatoid arthritis. Arthritis Rheumatol. 2018;70(1):30–9. https://doi.org/10.1002/art.40345.

    Article  CAS  PubMed  Google Scholar 

  98. Kemna MJ, Bucerius J, Drent M, Voo S, Veenman M, van Paassen P, et al. Aortic (1)(8)F-FDG uptake in patients suffering from granulomatosis with polyangiitis. Eur J Nucl Med Mol Imaging. 2015;42(9):1423–9. https://doi.org/10.1007/s00259-015-3081-y.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Mooij CF, Hermsen R, Hoppenreijs EP, Bleeker-Rovers CP, IJland MM, de Geus-Oei LF. Fludeoxyglucose positron emission tomography-computed tomography scan showing polyarthritis in a patient with an atypical presentation of Henoch-Schonlein vasculitis without clinical signs of arthritis: a case report. J Med Case Rep. 2016;10(1):159. https://doi.org/10.1186/s13256-016-0913-8.

    Article  PubMed  PubMed Central  Google Scholar 

  100. Treglia G, Quartuccio N, Sadeghi R, Farchione A, Caldarella C, Bertagna F, et al. Diagnostic performance of Fluorine-18-Fluorodeoxyglucose positron emission tomography in patients with chronic inflammatory bowel disease: a systematic review and a meta-analysis. J Crohns Colitis. 2013;7(5):345–54. https://doi.org/10.1016/j.crohns.2012.08.005.

    Article  PubMed  Google Scholar 

  101. Neurath MF, Vehling D, Schunk K, Holtmann M, Brockmann H, Helisch A, et al. Noninvasive assessment of Crohn’s disease activity: a comparison of 18F-fluorodeoxyglucose positron emission tomography, hydromagnetic resonance imaging, and granulocyte scintigraphy with labeled antibodies. Am J Gastroenterol. 2002;97(8):1978–85. https://doi.org/10.1111/j.1572-0241.2002.05836.x.

    Article  CAS  PubMed  Google Scholar 

  102. Shreve PD, Anzai Y, Wahl RL. Pitfalls in oncologic diagnosis with FDG PET imaging: physiologic and benign variants. Radiographics. 1999;19(1):61–77; quiz 150-1. https://doi.org/10.1148/radiographics.19.1.g99ja0761.

    Article  CAS  PubMed  Google Scholar 

  103. Bicik I, Bauerfeind P, Breitbach T, von Schulthess GK, Fried M. Inflammatory bowel disease activity measured by positron-emission tomography. Lancet. 1997;350(9073):262. https://doi.org/10.1016/S0140-6736(05)62225-8.

    Article  CAS  PubMed  Google Scholar 

  104. Groshar D, Bernstine H, Stern D, Sosna J, Eligalashvili M, Gurbuz EG, et al. PET/CT enterography in Crohn disease: correlation of disease activity on CT enterography with 18F-FDG uptake. J Nucl Med. 2010;51(7):1009–14. https://doi.org/10.2967/jnumed.109.073130.

    Article  PubMed  Google Scholar 

  105. Meisner RS, Spier BJ, Einarsson S, Roberson EN, Perlman SB, Bianco JA, et al. Pilot study using PET/CT as a novel, noninvasive assessment of disease activity in inflammatory bowel disease. Inflamm Bowel Dis. 2007;13(8):993–1000. https://doi.org/10.1002/ibd.20134.

    Article  PubMed  Google Scholar 

  106. Deshpande V, Zen Y, Chan JK, Yi EE, Sato Y, Yoshino T, et al. Consensus statement on the pathology of IgG4-related disease. Mod Pathol. 2012;25(9):1181–92. https://doi.org/10.1038/modpathol.2012.72.

    Article  PubMed  Google Scholar 

  107. Nakatani K, Nakamoto Y, Togashi K. Utility of FDG PET/CT in IgG4-related systemic disease. Clin Radiol. 2012;67(4):297–305. https://doi.org/10.1016/j.crad.2011.10.011.

    Article  CAS  PubMed  Google Scholar 

  108. Ozaki Y, Oguchi K, Hamano H, Arakura N, Muraki T, Kiyosawa K, et al. Differentiation of autoimmune pancreatitis from suspected pancreatic cancer by fluorine-18 fluorodeoxyglucose positron emission tomography. J Gastroenterol. 2008;43(2):144–51. https://doi.org/10.1007/s00535-007-2132-y.

    Article  CAS  PubMed  Google Scholar 

  109. Perugino CA, Wallace ZS, Meyersohn N, Oliveira G, Stone JR, Stone JH. Large vessel involvement by IgG4-related disease. Medicine (Baltimore). 2016;95(28):e3344. https://doi.org/10.1097/MD.0000000000003344.

    Article  CAS  Google Scholar 

  110. Kasashima S, Zen Y, Kawashima A, Konishi K, Sasaki H, Endo M, et al. Inflammatory abdominal aortic aneurysm: close relationship to IgG4-related periaortitis. Am J Surg Pathol. 2008;32(2):197–204. https://doi.org/10.1097/PAS.0b013e3181342f0d.

    Article  PubMed  Google Scholar 

  111. Matsumoto Y, Kasashima S, Kawashima A, Sasaki H, Endo M, Kawakami K, et al. A case of multiple immunoglobulin G4-related periarteritis: a tumorous lesion of the coronary artery and abdominal aortic aneurysm. Hum Pathol. 2008;39(6):975–80. https://doi.org/10.1016/j.humpath.2007.10.023.

    Article  CAS  PubMed  Google Scholar 

  112. Zen Y, Kasashima S, Inoue D. Retroperitoneal and aortic manifestations of immunoglobulin G4-related disease. Semin Diagn Pathol. 2012;29(4):212–8. https://doi.org/10.1053/j.semdp.2012.07.003.

    Article  PubMed  Google Scholar 

  113. Inoue D, Zen Y, Abo H, Gabata T, Demachi H, Yoshikawa J, et al. Immunoglobulin G4-related periaortitis and periarteritis: CT findings in 17 patients. Radiology. 2011;261(2):625–33. https://doi.org/10.1148/radiol.11102250.

    Article  PubMed  Google Scholar 

  114. Patel NR, Anzalone ML, Buja LM, Elghetany MT. Sudden cardiac death due to coronary artery involvement by IgG4-related disease: a rare, serious complication of a rare disease. Arch Pathol Lab Med. 2014;138(6):833–6. https://doi.org/10.5858/arpa.2012-0614-CR.

    Article  PubMed  Google Scholar 

  115. Yabusaki S, Oyama-Manabe N, Manabe O, Hirata K, Kato F, Miyamoto N, et al. Characteristics of immunoglobulin G4-related aortitis/periaortitis and periarteritis on fluorodeoxyglucose positron emission tomography/computed tomography co-registered with contrast-enhanced computed tomography. EJNMMI Res. 2017;7(1):20. https://doi.org/10.1186/s13550-017-0268-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Settepani F, Monti L, Antunovic L, Torracca L. IgG4-related aortitis: multimodality imaging approach. Ann Thorac Surg. 2017;103(3):e289. https://doi.org/10.1016/j.athoracsur.2016.09.040.

    Article  PubMed  Google Scholar 

  117. Mavrogeni S, Markousis-Mavrogenis G, Kolovou G. IgG4-related cardiovascular disease. The emerging role of cardiovascular imaging. Eur J Radiol. 2017;86:169–75. https://doi.org/10.1016/j.ejrad.2016.11.012.

    Article  PubMed  Google Scholar 

  118. Sato Y, Kojima M, Takata K, Morito T, Asaoku H, Takeuchi T, et al. Systemic IgG4-related lymphadenopathy: a clinical and pathologic comparison to multicentric Castleman’s disease. Mod Pathol. 2009;22(4):589–99. https://doi.org/10.1038/modpathol.2009.17.

    Article  CAS  PubMed  Google Scholar 

  119. Sato Y, Notohara K, Kojima M, Takata K, Masaki Y, Yoshino T. IgG4-related disease: historical overview and pathology of hematological disorders. Pathol Int. 2010;60(4):247–58. https://doi.org/10.1111/j.1440-1827.2010.02524.x.

    Article  CAS  PubMed  Google Scholar 

  120. Khosroshahi A, Wallace ZS, Crowe JL, Akamizu T, Azumi A, Carruthers MN, et al. International Consensus Guidance Statement on the Management and Treatment of IgG4-Related Disease. Arthritis Rheumatol. 2015;67(7):1688–99. https://doi.org/10.1002/art.39132.

    Article  CAS  PubMed  Google Scholar 

  121. Carey K, Saboury B, Basu S, Brothers A, Ogdie A, Werner T, et al. Evolving role of FDG PET imaging in assessing joint disorders: a systematic review. Eur J Nucl Med Mol Imaging. 2011;38(10):1939–55. https://doi.org/10.1007/s00259-011-1863-4.

    Article  PubMed  Google Scholar 

  122. Kubota K, Ito K, Morooka M, Minamimoto R, Miyata Y, Yamashita H, et al. FDG PET for rheumatoid arthritis: basic considerations and whole-body PET/CT. Ann N Y Acad Sci. 2011;1228:29–38. https://doi.org/10.1111/j.1749-6632.2011.06031.x.

    Article  PubMed  Google Scholar 

  123. Beckers C, Ribbens C, Andre B, Marcelis S, Kaye O, Mathy L, et al. Assessment of disease activity in rheumatoid arthritis with (18)F-FDG PET. J Nucl Med. 2004;45(6):956–64.

    CAS  PubMed  Google Scholar 

  124. Roivainen A, Hautaniemi S, Mottonen T, Nuutila P, Oikonen V, Parkkola R, et al. Correlation of 18F-FDG PET/CT assessments with disease activity and markers of inflammation in patients with early rheumatoid arthritis following the initiation of combination therapy with triple oral antirheumatic drugs. Eur J Nucl Med Mol Imaging. 2013;40(3):403–10. https://doi.org/10.1007/s00259-012-2282-x.

    Article  CAS  PubMed  Google Scholar 

  125. Okamura K, Yonemoto Y, Arisaka Y, Takeuchi K, Kobayashi T, Oriuchi N, et al. The assessment of biologic treatment in patients with rheumatoid arthritis using FDG-PET/CT. Rheumatology (Oxford). 2012;51(8):1484–91. https://doi.org/10.1093/rheumatology/kes064.

    Article  CAS  Google Scholar 

  126. Elzinga EH, van der Laken CJ, Comans EF, Boellaard R, Hoekstra OS, Dijkmans BA, et al. 18F-FDG PET as a tool to predict the clinical outcome of infliximab treatment of rheumatoid arthritis: an explorative study. J Nucl Med. 2011;52(1):77–80. https://doi.org/10.2967/jnumed.110.076711.

    Article  PubMed  Google Scholar 

  127. Colebatch AN, Edwards CJ, Ostergaard M, van der Heijde D, Balint PV, D’Agostino MA, et al. EULAR recommendations for the use of imaging of the joints in the clinical management of rheumatoid arthritis. Ann Rheum Dis. 2013;72(6):804–14. https://doi.org/10.1136/annrheumdis-2012-203158.

    Article  PubMed  Google Scholar 

  128. Fisher RE, Patel NR, Lai EC, Schulz PE. Two different 18F-FDG brain PET metabolic patterns in autoimmune limbic encephalitis. Clin Nucl Med. 2012;37(9):e213–8. https://doi.org/10.1097/RLU.0b013e31824852c7.

    Article  PubMed  Google Scholar 

  129. Rey C, Koric L, Guedj E, Felician O, Kaphan E, Boucraut J, et al. Striatal hypermetabolism in limbic encephalitis. J Neurol. 2012;259(6):1106–10. https://doi.org/10.1007/s00415-011-6308-2.

    Article  PubMed  Google Scholar 

  130. Faria Dde P, Copray S, Buchpiguel C, Dierckx R, de Vries E. PET imaging in multiple sclerosis. J Neuroimmune Pharmacol. 2014;9(4):468–82. https://doi.org/10.1007/s11481-014-9544-2.

    Article  PubMed  Google Scholar 

  131. gov. H. 2019. https://www.hiv.gov/hiv-basics/overview/data-and-trends/global-statistics.

  132. Wagner TBS. PET/CT in infection and inflammation. Switzerland: Springer; 2018.

    Book  Google Scholar 

  133. Iyengar S, Chin B, Margolick JB, Sabundayo BP, Schwartz DH. Anatomical loci of HIV-associated immune activation and association with viraemia. Lancet. 2003;362(9388):945–50. https://doi.org/10.1016/S0140-6736(03)14363-2.

    Article  PubMed  Google Scholar 

  134. Sathekge M, Maes A, Kgomo M, Van de Wiele C. Fluorodeoxyglucose uptake by lymph nodes of HIV patients is inversely related to CD4 cell count. Nucl Med Commun. 2010;31(2):137–40. https://doi.org/10.1097/MNM.0b013e3283331114.

    Article  PubMed  Google Scholar 

  135. Villringer K, Jager H, Dichgans M, Ziegler S, Poppinger J, Herz M, et al. Differential diagnosis of CNS lesions in AIDS patients by FDG-PET. J Comput Assist Tomogr. 1995;19(4):532–6.

    Article  CAS  PubMed  Google Scholar 

  136. Hoffman JM, Waskin HA, Schifter T, Hanson MW, Gray L, Rosenfeld S, et al. FDG-PET in differentiating lymphoma from nonmalignant central nervous system lesions in patients with AIDS. J Nucl Med. 1993;34(4):567–75.

    CAS  PubMed  Google Scholar 

  137. Vorster M, Sathekge MM, Bomanji J. Advances in imaging of tuberculosis: the role of (1)(8)F-FDG PET and PET/CT. Curr Opin Pulm Med. 2014;20(3):287–93. https://doi.org/10.1097/MCP.0000000000000043.

    Article  PubMed  Google Scholar 

  138. Ankrah AO, van der Werf TS, de Vries EF, Dierckx RA, Sathekge MM, Glaudemans AW. PET/CT imaging of Mycobacterium tuberculosis infection. Clin Transl Imaging. 2016;4:131–44. https://doi.org/10.1007/s40336-016-0164-0.

    Article  PubMed  PubMed Central  Google Scholar 

  139. Martin C, Castaigne C, Tondeur M, Flamen P, De Wit S. Role and interpretation of fluorodeoxyglucose-positron emission tomography/computed tomography in HIV-infected patients with fever of unknown origin: a prospective study. HIV Med. 2013;14(8):455–62. https://doi.org/10.1111/hiv.12030.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Minamimoto, R. (2022). 2-[18F]FDG PET Imaging of Infection and Inflammation. In: Harsini, S., Alavi, A., Rezaei, N. (eds) Nuclear Medicine and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-81261-4_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81261-4_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81260-7

  • Online ISBN: 978-3-030-81261-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics