Skip to main content

Advertisement

Log in

High treatment efficacy by dual targeting of Burkitt’s lymphoma xenografted mice with a 177Lu-based CD22-specific radioimmunoconjugate and rituximab

  • Original Article
  • Published:
European Journal of Nuclear Medicine and Molecular Imaging Aims and scope Submit manuscript

Abstract

Purpose

Dual-targeted therapy has been shown to be a promising treatment option in recurrent and/or refractory B-cell non-Hodgkin’s lymphoma (B-NHL). We generated radioimmunoconjugates (RICs) comprising either a novel humanized anti-CD22 monoclonal antibody, huRFB4, or rituximab, and the low-energy β-emitter 177Lu. Both RICs were evaluated as single agents in a human Burkitt’s lymphoma xenograft mouse model. To increase the therapeutic efficacy of the anti-CD22 RIC, combination therapy with unlabelled anti-CD20 rituximab was explored.

Methods

The binding activity of CHX-A″-DTPA-conjugated antibodies to target cells was analysed by flow cytometry. To assess tumour targeting of 177Lu-labelled antibodies, in vivo biodistribution experiments were performed. For radioimmunotherapy (RIT) studies, non-obese diabetic recombination activating gene-1 (NOD-Rag1null) interleukin-2 receptor common gamma chain (IL2rγ null) null mice (NRG mice) were xenografted subcutaneously with Raji Burkitt’s lymphoma cells. 177Lu-conjugated antibodies were administered at a single dose of 9.5 MBq per mouse. For dual-targeted therapy, rituximab was injected at weekly intervals (0.5 – 1.0 mg). Tumour accumulation of RICs was monitored by planar scintigraphy.

Results

Conjugation of CHX-A”-DTPA resulted in highly stable RICs with excellent antigen-binding properties. Biodistribution experiments revealed higher tumour uptake of the 177Lu-labelled anti-CD22 IgG than of 177Lu-labelled rituximab. Treatment with 177Lu-conjugated huRFB4 resulted in increased tumour growth inhibition and significantly longer survival than treatment with 177Lu-conjugated rituximab. The therapeutic efficacy of the anti-CD22 RIC could be markedly enhanced by combination with unlabelled rituximab.

Conclusion

These findings suggest that dual targeting with 177Lu-based CD22-specific RIT in combination with rituximab is a promising new treatment option for refractory B-NHL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Pfreundschuh M, Trumper L, Osterborg A, Pettengell R, Trneny M, Imrie K, et al. CHOP-like chemotherapy plus rituximab versus CHOP-like chemotherapy alone in young patients with good-prognosis diffuse large-B-cell lymphoma: a randomised controlled trial by the MabThera International Trial (MInT) Group. Lancet Oncol. 2006;7(5):379–91. doi:10.1016/S1470-2045(06)70664-7.

    Article  PubMed  CAS  Google Scholar 

  2. Feugier P, Van Hoof A, Sebban C, Solal-Celigny P, Bouabdallah R, Ferme C, et al. Long-term results of the R-CHOP study in the treatment of elderly patients with diffuse large B-cell lymphoma: a study by the Groupe d'Etude des Lymphomes de l’Adulte. J Clin Oncol. 2005;23(18):4117–26. doi:10.1200/JCO.2005.09.131.

    Article  PubMed  CAS  Google Scholar 

  3. Sehn LH, Donaldson J, Chhanabhai M, Fitzgerald C, Gill K, Klasa R, et al. Introduction of combined CHOP plus rituximab therapy dramatically improved outcome of diffuse large B-cell lymphoma in British Columbia. J Clin Oncol. 2005;23(22):5027–33. doi:10.1200/JCO.2005.09.137.

    Article  PubMed  CAS  Google Scholar 

  4. Gustavsson A, Osterman B, Cavallin-Stahl E. A systematic overview of radiation therapy effects in non-Hodgkin’s lymphoma. Acta Oncol. 2003;42(5-6):605–19.

    Article  PubMed  Google Scholar 

  5. Milenic DE, Brady ED, Brechbiel MW. Antibody-targeted radiation cancer therapy. Nat Rev Drug Discov. 2004;3(6):488–99. doi:10.1038/nrd1413.

    Article  PubMed  CAS  Google Scholar 

  6. Forrer F, Chen J, Fani M, Powell P, Lohri A, Muller-Brand J, et al. In vitro characterization of (177)Lu-radiolabelled chimeric anti-CD20 monoclonal antibody and a preliminary dosimetry study. Eur J Nucl Med Mol Imaging. 2009;36(9):1443–52. doi:10.1007/s00259-009-1120-2.

    Article  PubMed  CAS  Google Scholar 

  7. Witzig TE, Gordon LI, Cabanillas F, Czuczman MS, Emmanouilides C, Joyce R, et al. Randomized controlled trial of yttrium-90-labeled ibritumomab tiuxetan radioimmunotherapy versus rituximab immunotherapy for patients with relapsed or refractory low-grade, follicular, or transformed B-cell non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(10):2453–63.

    Article  PubMed  CAS  Google Scholar 

  8. Davis TA, Kaminski MS, Leonard JP, Hsu FJ, Wilkinson M, Zelenetz A, et al. The radioisotope contributes significantly to the activity of radioimmunotherapy. Clin Cancer Res. 2004;10(23):7792–8. doi:10.1158/1078-0432.CCR-04-0756.

    Article  PubMed  CAS  Google Scholar 

  9. Witzig TE, Flinn IW, Gordon LI, Emmanouilides C, Czuczman MS, Saleh MN, et al. Treatment with ibritumomab tiuxetan radioimmunotherapy in patients with rituximab-refractory follicular non-Hodgkin’s lymphoma. J Clin Oncol. 2002;20(15):3262–9.

    Article  PubMed  CAS  Google Scholar 

  10. Horning SJ, Younes A, Jain V, Kroll S, Lucas J, Podoloff D, et al. Efficacy and safety of tositumomab and iodine-131 tositumomab (Bexxar) in B-cell lymphoma, progressive after rituximab. J Clin Oncol. 2005;23(4):712–9. doi:10.1200/JCO.2005.07.040.

    Article  PubMed  CAS  Google Scholar 

  11. Vitetta ES, Stone M, Amlot P, Fay J, May R, Till M, et al. Phase I immunotoxin trial in patients with B-cell lymphoma. Cancer Res. 1991;51(15):4052–8.

    PubMed  CAS  Google Scholar 

  12. Sullivan-Chang L, O'Donnell RT, Tuscano JM. Targeting CD22 in B-cell malignancies: current status and clinical outlook. BioDrugs. 2013;27(4):293–304. doi:10.1007/s40259-013-0016-7.

    Article  PubMed  CAS  Google Scholar 

  13. Leung SO, Goldenberg DM, Dion AS, Pellegrini MC, Shevitz J, Shih LB, et al. Construction and characterization of a humanized, internalizing, B-cell (CD22)-specific, leukemia/lymphoma antibody, LL2. Mol Immunol. 1995;32(17-18):1413–27.

    Article  PubMed  CAS  Google Scholar 

  14. Morschhauser F, Kraeber-Bodere F, Wegener WA, Harousseau JL, Petillon MO, Huglo D, et al. High rates of durable responses with anti-CD22 fractionated radioimmunotherapy: results of a multicenter, phase I/II study in non-Hodgkin’s lymphoma. J Clin Oncol. 2010;28(23):3709–16. doi:10.1200/JCO.2009.27.7863.

    Article  PubMed  CAS  Google Scholar 

  15. Mattes MJ, Sharkey RM, Karacay H, Czuczman MS, Goldenberg DM. Therapy of advanced B-lymphoma xenografts with a combination of 90Y-anti-CD22 IgG (epratuzumab) and unlabeled anti-CD20 IgG (veltuzumab). Clin Cancer Res. 2008;14(19):6154–60. doi:10.1158/1078-0432.CCR-08-0404.

    Article  PubMed  CAS  Google Scholar 

  16. Witzig TE, Tomblyn MB, Misleh JG, Kio EA, Sharkey RM, Wegener WA, et al. Anti-CD22 90Y-epratuzumab tetraxetan combined with anti-CD20 veltuzumab: a phase I study in patients with relapsed/refractory, aggressive non-Hodgkin lymphoma. Haematologica. 2014;99(11):1738–45. doi:10.3324/haematol.2014.112110.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  17. Stein R, Govindan SV, Chen S, Reed L, Richel H, Griffiths GL, et al. Radioimmunotherapy of a human lung cancer xenograft with monoclonal antibody RS7: evaluation of (177)Lu and comparison of its efficacy with that of (90)Y and residualizing (131)I. J Nucl Med. 2001;42(6):967–74.

    PubMed  CAS  Google Scholar 

  18. Michel RB, Andrews PM, Rosario AV, Goldenberg DM, Mattes MJ. 177Lu-antibody conjugates for single-cell kill of B-lymphoma cells in vitro and for therapy of micrometastases in vivo. Nucl Med Biol. 2005;32(3):269–78. doi:10.1016/j.nucmedbio.2005.01.003.

    Article  PubMed  CAS  Google Scholar 

  19. Forrer F, Oechslin-Oberholzer C, Campana B, Maecke H, Mueller-Brand J, Lohri A. Is there need for radioimmunotherapy? results of a phase I/II study in patients with indolent B-cell lymphomas using lutetium-177-DOTA-rituximab. Q J Nucl Med Mol Imaging. 2012;56(6):544–50.

    PubMed  CAS  Google Scholar 

  20. Krauss J, Arndt MA, Martin AC, Liu H, Rybak SM. Specificity grafting of human antibody frameworks selected from a phage display library: generation of a highly stable humanized anti-CD22 single-chain Fv fragment. Protein Eng. 2003;16(10):753–9.

    Article  PubMed  CAS  Google Scholar 

  21. Wu C, Gansow OA, Brechbiel MW. Evaluation of methods for large scale preparation of antibody ligand conjugates. Nucl Med Biol. 1999;26(3):339–42.

    Article  PubMed  CAS  Google Scholar 

  22. Mirzadeh S, Brechbiel MW, Atcher RW, Gansow OA. Radiometal labeling of immunoproteins: covalent linkage of 2-(4-isothiocyanatobenzyl)diethylenetriaminepentaacetic acid ligands to immunoglobulin. Bioconjug Chem. 1990;1(1):59–65.

    Article  PubMed  CAS  Google Scholar 

  23. Fischer E, Chaitanya K, Wuest T, Wadle A, Scott AM, van den Broek M, et al. Radioimmunotherapy of fibroblast activation protein positive tumors by rapidly internalizing antibodies. Clin Cancer Res. 2012;18(22):6208–18. doi:10.1158/1078-0432.CCR-12-0644.

    Article  PubMed  CAS  Google Scholar 

  24. Mier W, Hoffend J, Kramer S, Schuhmacher J, Hull WE, Eisenhut M, et al. Conjugation of DOTA using isolated phenolic active esters: the labeling and biodistribution of albumin as blood pool marker. Bioconjug Chem. 2005;16(1):237–40. doi:10.1021/bc034216c.

    Article  PubMed  CAS  Google Scholar 

  25. Habu S, Fukui H, Shimamura K, Kasai M, Nagai Y, Okumura K, et al. In vivo effects of anti-asialo GM1. I. Reduction of NK activity and enhancement of transplanted tumor growth in nude mice. J Immunol. 1981;127(1):34–8.

    PubMed  CAS  Google Scholar 

  26. Press OW, Corcoran M, Subbiah K, Hamlin DK, Wilbur DS, Johnson T, et al. A comparative evaluation of conventional and pretargeted radioimmunotherapy of CD20-expressing lymphoma xenografts. Blood. 2001;98(8):2535–43.

    Article  PubMed  CAS  Google Scholar 

  27. Dahle J, Borrebaek J, Jonasdottir TJ, Hjelmerud AK, Melhus KB, Bruland OS, et al. Targeted cancer therapy with a novel low-dose rate alpha-emitting radioimmunoconjugate. Blood. 2007;110(6):2049–56. doi:10.1182/blood-2007-01-066803.

    Article  PubMed  CAS  Google Scholar 

  28. Mansfield E, Pastan I, FitzGerald DJ. Characterization of RFB4-Pseudomonas exotoxin A immunotoxins targeted to CD22 on B-cell malignancies. Bioconjug Chem. 1996;7(5):557–63. doi:10.1021/bc960043y.

    Article  PubMed  CAS  Google Scholar 

  29. Sausville EA, Headlee D, Stetler-Stevenson M, Jaffe ES, Solomon D, Figg WD, et al. Continuous infusion of the anti-CD22 immunotoxin IgG-RFB4-SMPT-dgA in patients with B-cell lymphoma: a phase I study. Blood. 1995;85(12):3457–65.

    PubMed  CAS  Google Scholar 

  30. Milenic DE, Garmestani K, Chappell LL, Dadachova E, Yordanov A, Ma D, et al. In vivo comparison of macrocyclic and acyclic ligands for radiolabeling of monoclonal antibodies with 177Lu for radioimmunotherapeutic applications. Nucl Med Biol. 2002;29(4):431–42.

    Article  PubMed  CAS  Google Scholar 

  31. Chang C-H, Rossi EA, Sharkey RM, Goldenberg DM. The Dock-and-Lock (DNL) approach to novel bispecific antibodies. In: Kontermann RE, editor. Bispecific antibodies. Springer: Heidelberg; 2011. p. 199–216.

    Chapter  Google Scholar 

  32. Pagel JM, Pantelias A, Hedin N, Wilbur S, Saganic L, Lin Y, et al. Evaluation of CD20, CD22, and HLA-DR targeting for radioimmunotherapy of B-cell lymphomas. Cancer Res. 2007;67(12):5921–8. doi:10.1158/0008-5472.CAN-07-0080.

    Article  PubMed  CAS  Google Scholar 

  33. Postema EJ, Frielink C, Oyen WJ, Raemaekers JM, Goldenberg DM, Corstens FH, et al. Biodistribution of 131I-, 186Re-, 177Lu-, and 88Y-labeled hLL2 (Epratuzumab) in nude mice with CD22-positive lymphoma. Cancer Biother Radiopharm. 2003;18(4):525–33. doi:10.1089/108497803322287592.

    Article  PubMed  CAS  Google Scholar 

  34. Sharkey RM, Behr TM, Mattes MJ, Stein R, Griffiths GL, Shih LB, et al. Advantage of residualizing radiolabels for an internalizing antibody against the B-cell lymphoma antigen, CD22. Cancer Immunol Immunother : CII. 1997;44(3):179–88.

    Article  PubMed  CAS  Google Scholar 

  35. Biedermann KA, Sun JR, Giaccia AJ, Tosto LM, Brown JM. scid mutation in mice confers hypersensitivity to ionizing radiation and a deficiency in DNA double-strand break repair. Proc Natl Acad Sci U S A. 1991;88(4):1394–7.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  36. Pearson T, Shultz LD, Miller D, King M, Laning J, Fodor W, et al. Non-obese diabetic-recombination activating gene-1 (NOD-Rag1 null) interleukin (IL)-2 receptor common gamma chain (IL2r gamma null) null mice: a radioresistant model for human lymphohaematopoietic engraftment. Clin Exp Immunol. 2008;154(2):270–84. doi:10.1111/j.1365-2249.2008.03753.x.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  37. Sharkey RM, Press OW, Goldenberg DM. A re-examination of radioimmunotherapy in the treatment of non-Hodgkin lymphoma: prospects for dual-targeted antibody/radioantibody therapy. Blood. 2009;113(17):3891–5. doi:10.1182/blood-2008-11-188896.

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  38. Belizario JE. Immunodeficient mouse models: an overview. Open Immunol J. 2009;2:79–85.

    Article  CAS  Google Scholar 

  39. Smith MR. Rituximab (monoclonal anti-CD20 antibody): mechanisms of action and resistance. Oncogene. 2003;22(47):7359–68. doi:10.1038/sj.onc.1206939.

    Article  PubMed  CAS  Google Scholar 

  40. Overdijk MB, Verploegen S, Ortiz Buijsse A, Vink T, Leusen JH, Bleeker WK, et al. Crosstalk between human IgG isotypes and murine effector cells. J Immunol. 2012;189(7):3430–8. doi:10.4049/jimmunol.1200356.

    Article  PubMed  CAS  Google Scholar 

  41. Fan S, El-Deiry WS, Bae I, Freeman J, Jondle D, Bhatia K, et al. p53 gene mutations are associated with decreased sensitivity of human lymphoma cells to DNA damaging agents. Cancer Res. 1994;54(22):5824–30.

    PubMed  CAS  Google Scholar 

  42. O’Connor PM, Jackman J, Jondle D, Bhatia K, Magrath I, Kohn KW. Role of the p53 tumor suppressor gene in cell cycle arrest and radiosensitivity of Burkitt’s lymphoma cell lines. Cancer Res. 1993;53(20):4776–80.

    PubMed  Google Scholar 

  43. Michel RB, Rosario AV, Andrews PM, Goldenberg DM, Mattes MJ. Therapy of small subcutaneous B-lymphoma xenografts with antibodies conjugated to radionuclides emitting low-energy electrons. Clin Cancer Res. 2005;11(2 Pt 1):777–86.

    PubMed  CAS  Google Scholar 

  44. Ong GL, Elsamra SE, Goldenberg DM, Mattes MJ. Single-cell cytotoxicity with radiolabeled antibodies. Clin Cancer Res. 2001;7(1):192–201.

    PubMed  CAS  Google Scholar 

  45. Vallera DA, Brechbiel MW, Burns LJ, Panoskaltsis-Mortari A, Dusenbery KE, Clohisy DR, et al. Radioimmunotherapy of CD22-expressing Daudi tumors in nude mice with a 90Y-labeled anti-CD22 monoclonal antibody. Clin Cancer Res. 2005;11(21):7920–8. doi:10.1158/1078-0432.CCR-05-0725.

    Article  PubMed  CAS  Google Scholar 

  46. Stokke T, Galteland E, Holte H, Smedshammer L, Suo Z, Smeland EB, et al. Oncogenic aberrations in the p53 pathway are associated with a high S phase fraction and poor patient survival in B-cell Non-Hodgkin’s lymphoma. Int J Cancer. 2000;89(4):313–24.

    Article  PubMed  CAS  Google Scholar 

  47. Wahl RL, Wissing J, del Rosario R, Zasadny KR. Inhibition of autoradiolysis of radiolabeled monoclonal antibodies by cryopreservation. J Nucl Med. 1990;31(1):84–9.

    PubMed  CAS  Google Scholar 

  48. Kenanova V, Olafsen T, Williams LE, Ruel NH, Longmate J, Yazaki PJ, et al. Radioiodinated versus radiometal-labeled anti-carcinoembryonic antigen single-chain Fv-Fc antibody fragments: optimal pharmacokinetics for therapy. Cancer Res. 2007;67(2):718–26. doi:10.1158/0008-5472.CAN-06-0454.

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Tim Holland-Letz for help with statistical analyses. This study was supported by the ‟Deutsche José Carreras Leukämie-Stiftung” (grant no. DJCLS R 12/16).

Conflicts of Interest

None.

Compliance with Ethical Standards

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed. This article does not describe any studies with human participants performed by any of the authors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jürgen Krauss.

Additional information

Tobias Weber and Benedikt Bötticher contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weber, T., Bötticher, B., Mier, W. et al. High treatment efficacy by dual targeting of Burkitt’s lymphoma xenografted mice with a 177Lu-based CD22-specific radioimmunoconjugate and rituximab. Eur J Nucl Med Mol Imaging 43, 489–498 (2016). https://doi.org/10.1007/s00259-015-3175-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00259-015-3175-6

Keywords

Navigation