Skip to main content

Radionuclide Therapy and Immunomodulation

  • Chapter
  • First Online:
Nuclear Medicine and Immunology

Abstract

External beam radiation therapy (EBRT) stands as one of the pillars of cancer treatment around the world and has been widely used for decades as a curative and palliative therapy. For most of that time, the prevailing explanation for its antitumor effect has been the induction of complex DNA damage leading to cell death. However, there is now an increasing body of evidence demonstrating that alongside direct tumor cell killing, radiation induces an antitumor immune response that can contribute significantly to its therapeutic efficacy. Targeted radionuclide therapy (TRT) represents a distinct form of radiotherapy, which unlike EBRT provides systemic treatment that does not rely on detailed knowledge of tumor location. It is therefore particularly useful for the treatment of metastatic tumors. Therapeutic radioisotopes can be conjugated to targeting moieties such as small molecules, antibodies, or other ligands enabling specific accumulation within the tumor site following systemic administration. These isotopes then provide protracted, low-dose rate radiation to the tumor as the isotope decays. Given its similarity to EBRT, it is likely that TRT is capable of promoting an antitumor immune response that may contribute to its observed clinical efficacy. However, differences in factors such as dose rate, mode of administration, and treatment duration are likely to influence the immune response differently. Here, we summarize the evidence to date that EBRT promotes antitumor immunity and consider the mechanisms of this effect. Based on this understanding, we discuss the possible role of the immune system in TRT and review the literature to date aimed at elucidating this role.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ewing J. Radium therapy in cancer. J Am Med Assoc. 1917;LXVIII:1238–47.

    Article  Google Scholar 

  2. Cohen A, Cohen L. Radiobiology of the C3H mouse mammary carcinoma: the effect of body dose on the radiocurability of the tumor treated in situ. Br J Cancer. 1953;7:452–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Cohen A, Cohen L. Radiobiology of the c3h mouse mammary carcinoma: increased radiosensitivity of the tumor induced by inoculation of the host with radiation attenuated isografts. Br J Cancer. 1956;10:312–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Slone HB, Peters LJ, Milas L. Effect of host immune capability on radiocurability and subsequent transplantability of a murine fibrosarcoma. J Natl Cancer Inst. 1979;63:1229–35.

    Google Scholar 

  5. Suit HD, Kastelan A. Immunologic status of host and response of a methylcholanthrene-induced sarcoma to local x-irradiation. Cancer. 1970;26:232–8.

    Article  CAS  PubMed  Google Scholar 

  6. Hewitt HB, Blake ER, Walder AS. A critique of the evidence for active host defence against cancer, based on personal studies of 27 murine tumors of spontaneous origin. Br J Cancer. 1976;33:241–59.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Nobler MP. The abscopal effect in malignant lymphoma and its relationship to lymphocyte circulation. Radiology. 1969;93:410–2.

    Article  CAS  PubMed  Google Scholar 

  8. Ehlers G, Fridman M. Abscopal effect of radiation in papillary adenocarcinoma. Br J Radiol. 1973;46:220–2.

    Article  CAS  PubMed  Google Scholar 

  9. Kingsley DPE. An interesting case of possible abscopal effect in malignant melanoma. Br J Radiol. 1975;48:863–6.

    Article  CAS  PubMed  Google Scholar 

  10. Mole RH. Whole body irradiation; radiobiology or medicine? Br J Radiol. 1953;26:234–41.

    Article  CAS  PubMed  Google Scholar 

  11. Demaria S, Ng B, Devitt ML, Babb JS, Kawashima N, Liebes L, Formenti SC. Ionizing radiation inhibition of distant untreated tumors (abscopal effect) is immune mediated. Int J Radiat Oncol Biol Phys. 2004;58:862–70.

    Article  PubMed  Google Scholar 

  12. Stamell EF, Wolchok JD, Gnjatic S, Lee NY, Brownell I. The abscopal effect associated with a systemic anti-melanoma immune response. Int J Radiat Oncol Biol Phys. 2013;85:293–5.

    Article  PubMed  Google Scholar 

  13. Chakravarty PK, Alfieri A, Thomas EK, Beri V, Tanaka KE, Vikram B, Guha C. Flt3-ligand administration after radiation therapy prolongs survival in a murine model of metastatic lung cancer. Cancer Res. 1999;59:6028–32.

    CAS  PubMed  Google Scholar 

  14. Brooks ED, Chang JY. Time to abandon single-site irradiation for inducing abscopal effects. Nat Rev Clin Oncol. 2019;16:123–35.

    Article  PubMed  Google Scholar 

  15. Abuodeh Y, Venkat P, Kim S. Systematic review of case reports on the abscopal effect. Curr Probl Cancer. 2016;40:25–37.

    Article  PubMed  Google Scholar 

  16. Tseng YD, Nguyen MH, Baker K, et al. Effect of patient immune status on the efficacy of radiation therapy and recurrence-free survival among 805 patients with merkel cell carcinoma. Int J Radiat Oncol Biol Phys. 2018;102:330–9.

    Article  PubMed  Google Scholar 

  17. Postow MA, Callahan MK, Barker CA, et al. Immunologic correlates of the abscopal effect in a patient with melanoma. N Engl J Med. 2012;366:925–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Gutkin PM, Hiniker SM, Swetter SM, Reddy SA, Knox SJ. Complete response of metastatic melanoma to local radiation and immunotherapy: 6.5 year follow-up. Cureus. 2018;10:e3723.

    PubMed  PubMed Central  Google Scholar 

  19. Golden EB, Chhabra A, Chachoua A, et al. Local radiotherapy and granulocyte-macrophage colony-stimulating factor to generate abscopal responses in patients with metastatic solid tumors: a proof-of-principle trial. Lancet Oncol. 2015;16:795–803.

    Article  CAS  PubMed  Google Scholar 

  20. Dewan MZ, Galloway AE, Kawashima N, Dewyngaert JK, Babb JS, Formenti SC, Demaria S. Fractionated but not single-dose radiotherapy induces an immune-mediated abscopal effect when combined with anti-CTLA-4 antibody. Clin Cancer Res. 2009;15:5379–88.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Lee Y, Auh SL, Wang YY, et al. Therapeutic effects of ablative radiation on local tumor require CD8+ T cells: Changing strategies for cancer treatment. Blood. 2009;114:589–95.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Takeshima T, Chamoto K, Wakita D, Ohkuri T, Togashi Y, Shirato H, Kitamura H, Nishimura T. Local radiation therapy inhibits tumor growth through the generation of tumor-specific CTL: its potentiation by combination with Th1 cell therapy. Cancer Res. 2010;70:2697–706.

    Article  CAS  PubMed  Google Scholar 

  23. Yoshimoto Y, Suzuki Y, Mimura K, et al. Radiotherapy-induced anti-tumor immunity contributes to the therapeutic efficacy of irradiation and can be augmented by CTLA-4 blockade in a mouse model. PLoS One. 2014;9:92572.

    Article  CAS  Google Scholar 

  24. Morisada M, Moore EC, Hodge R, Friedman J, Cash HA, Hodge JW, Mitchell JB, Allen CT. Dose-dependent enhancement of T-lymphocyte priming and CTL lysis following ionizing radiation in an engineered model of oral cancer. Oral Oncol. 2017;71:87–94.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Reits EA, Hodge JW, Herberts CA, et al. Radiation modulates the peptide repertoire, enhances MHC class I expression, and induces successful antitumor immunotherapy. J Exp Med. 2006;203:1259–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Lhuillier C, Rudqvist N-P, Elemento O, Formenti SC, Demaria S. Radiation therapy and anti-tumor immunity: exposing immunogenic mutations to the immune system. Genome Med. 2019;11:40.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Delamarre L, Couture R, Mellman I, Trombetta ES. Enhancing immunogenicity by limiting susceptibility to lysosomal proteolysis. J Exp Med. 2006;203:2049–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Apetoh L, Ghiringhelli F, Tesniere A, et al. Toll-like receptor 4-dependent contribution of the immune system to anticancer chemotherapy and radiotherapy. Nat Med. 2007;13:1050–9.

    Article  CAS  PubMed  Google Scholar 

  29. Akashi M, Hachiya M, Koeffler HP, Suzuki G. Irradiation increases levels of GM-CSF through RNA stabilization which requires an AU-rich region in cancer cells. Biochem Biophys Res Commun. 1992;189:986–93.

    Article  CAS  PubMed  Google Scholar 

  30. Ao X, Zhao L, Davis MA, Lubman DM, Lawrence TS, Kong F-M. Radiation produces differential changes in cytokine profiles in radiation lung fibrosis sensitive and resistant mice. J Hematol Oncol. 2009;2:6.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  31. Van der Meeren A, Monti P, Vandamme M, Squiban C, Wysocki J, Griffiths N. Abdominal radiation exposure elicits inflammatory responses and abscopal effects in the lungs of mice. Radiat Res. 2005;163:144–52.

    Article  PubMed  Google Scholar 

  32. Kim J-Y, Son Y-O, Park S-W, Bae J-H, Chung JS, Kim HH, Chung B-S, Kim S-H, Kang C-D. Increase of NKG2D ligands and sensitivity to NK cell-mediated cytotoxicity of tumor cells by heat shock and ionizing radiation. Exp Mol Med. 2006;38:474–84.

    Article  CAS  PubMed  Google Scholar 

  33. Li A, Yi M, Qin S, Song Y, Chu Q, Wu K. Activating cGAS-STING pathway for the optimal effect of cancer immunotherapy. J Hematol Oncol. 2019;12:35.

    Article  PubMed  PubMed Central  Google Scholar 

  34. Ramanjulu JM, Pesiridis GS, Yang J, et al. Design of amidobenzimidazole STING receptor agonists with systemic activity. Nature. 2018;564:439–43.

    Article  CAS  PubMed  Google Scholar 

  35. Deng L, Liang H, Xu M, et al. STING-dependent cytosolic DNA sensing promotes radiation-induced type I interferon-dependent antitumor immunity in immunogenic tumors. Immunity. 2014;41:543–852.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  36. Gekara NO. DNA damage-induced immune response: micronuclei provide key platform. J Cell Biol. 2017;216:2999–3001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Härtlova A, Erttmann SF, Raffi FA, et al. DNA damage primes the Type I Interferon system via the cytosolic DNA sensor STING to promote anti-microbial innate immunity. Immunity. 2015;42:332–43.

    Article  PubMed  CAS  Google Scholar 

  38. Mackenzie KJ, Carroll P, Martin C-A, et al. cGAS surveillance of micronuclei links genome instability to innate immunity. Nature. 2017;548:461–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Harding SM, Benci JL, Irianto J, Discher DE, Minn AJ, Greenberg RA. Mitotic progression following DNA damage enables pattern recognition within micronuclei. Nature. 2017;548:466–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Bartsch K, Knittler K, Borowski C, et al. Absence of RNase H2 triggers generation of immunogenic micronuclei removed by autophagy. Hum Mol Genet. 2017;26:3960–72.

    Article  CAS  PubMed  Google Scholar 

  41. Lugade AA, Moran JP, Gerber SA, Rose RC, Frelinger JG, Lord EM. Local radiation therapy of B16 melanoma tumors increases the generation of tumor antigen-specific effector cells that traffic to the tumor. J Immunol. 2005;174:7516–23.

    Article  CAS  PubMed  Google Scholar 

  42. Burnette BC, Liang H, Lee Y, Chlewicki L, Khodarev NN, Weichselbaum RR, Fu YX, Auh SL. The efficacy of radiotherapy relies upon induction of type I interferon-dependent innate and adaptive immunity. Cancer Res. 2011;71:2488–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Vanpouille-Box C, Formenti SC, Demaria S. TREX1 dictates the immune fate of irradiated cancer cells. Oncoimmunology. 2017;6(9):e1339857.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Benci JL, Xu B, Qiu Y, et al. Tumor interferon signaling regulates a multigenic resistance program to immune checkpoint blockade. Cell. 2016;167:1540–1554.e12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Liang H, Deng L, Hou Y, et al. Host STING-dependent MDSC mobilization drives extrinsic radiation resistance. Nat Commun. 2017;8:1736.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Post AEM, Smid M, Nagelkerke A, Martens JWM, Bussink J, Sweep FCGJ, Span PN. Interferon-stimulated genes are involved in cross-resistance to radiotherapy in tamoxifen-resistant breast cancer. Clin Cancer Res. 2018;24:3397–408.

    Article  CAS  PubMed  Google Scholar 

  47. Klug F, Prakash H, Huber PE, et al. Low-dose irradiation programs macrophage differentiation to an iNOS+/M1 phenotype that orchestrates effective T Cell immunotherapy. Cancer Cell. 2013;24:589–602.

    Article  CAS  PubMed  Google Scholar 

  48. Zhang T, Yu H, Ni C, et al. Hypofractionated stereotactic radiation therapy activates the peripheral immune response in operable stage I non-small-cell lung cancer. Sci Rep. 2017;7:4866.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Matsumura S, Wang B, Kawashima N, et al. Radiation-induced CXCL16 release by breast cancer cells attracts effector T cells. J Immunol. 2008;181:3099–107.

    Article  CAS  PubMed  Google Scholar 

  50. Lim JYH, Gerber SA, Murphy SP, Lord EM. Type I interferons induced by radiation therapy mediate recruitment and effector function of CD8(+) T cells. Cancer Immunol Immunother. 2014;63:259–71.

    Article  CAS  PubMed  Google Scholar 

  51. Surace L, Lysenko V, Fontana AO, et al. Complement is a central mediator of radiotherapy-induced tumor-specific immunity and clinical response. Immunity. 2015;42:767–77.

    Article  CAS  PubMed  Google Scholar 

  52. Walle T, Martinez Monge R, Cerwenka A, Ajona D, Melero I, Lecanda F. Radiation effects on antitumor immune responses: current perspectives and challenges. Ther Adv Med Oncol. 2018;10:1758834017742575.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Tsai CS, Chen FH, Wang CC, Huang HL, Jung SM, Wu CJ, Lee CC, McBride WH, Chiang CS, Hong JH. Macrophages from irradiated tumors express higher levels of iNOS, Arginase-I and COX-2, and promote tumor growth. Int J Radiat Oncol Biol Phys. 2007;68:499–507.

    Article  CAS  PubMed  Google Scholar 

  54. Xu J, Escamilla J, Mok S, David J, Priceman S, West B, Bollag G, McBride W, Wu L. CSFR1 signaling blockade stanches tumor-infiltrating myeloid cells and improves the efficacy of radiotherapy in prostate cancer. Cancer Res. 2013;73:2782–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kalbasi A, Komar C, Tooker GM, Liu M, Lee JW, Gladney WL, Ben-Josef E, Beatty GL. Tumor-derived CCL2 mediates resistance to radiotherapy in pancreatic ductal adenocarcinoma. Clin Cancer Res. 2017;23:137–48.

    Article  CAS  PubMed  Google Scholar 

  56. Melsens E, Verberckmoes B, Rosseel N, Vanhove C, Descamps B, Pattyn P, Ceelen W. The VEGFR inhibitor cediranib improves the efficacy of fractionated radiotherapy in a colorectal cancer xenograft model. Eur Surg Res. 2017;58:95–108.

    Article  CAS  PubMed  Google Scholar 

  57. Golden EB, Frances D, Pellicciotta I, Demaria S, Helen Barcellos-Hoff M, Formenti SC. Radiation fosters dose-dependent and chemotherapy-induced immunogenic cell death. Onco Targets Ther. 2014;3:28518.

    Google Scholar 

  58. Jobling MF, Mott JD, Finnegan MT, et al. Isoform-specific activation of latent transforming growth factor β (LTGF-β) by reactive oxygen species. Radiat Res. 2006;166:839–48.

    Article  CAS  PubMed  Google Scholar 

  59. Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G, Ling L, Worthen GS, Albelda SM. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell. 2009;16:183–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Tanaka H, Shinto O, Yashiro M, Yamazoe S, Iwauchi T, Muguruma K, Kubo N, Ohira M, Hirakawa K. Transforming growth factor β signaling inhibitor, SB-431542, induces maturation of dendritic cells and enhances anti-tumor activity. Oncol Rep. 2010;24:1637–43.

    CAS  PubMed  Google Scholar 

  61. Kachikwu EL, Iwamoto KS, Liao YP, Demarco JJ, Agazaryan N, Economou JS, McBride WH, Schaue D. Radiation enhances regulatory T cell representation. Int J Radiat Oncol Biol Phys. 2011;81:1128–35.

    Article  PubMed  Google Scholar 

  62. Lan J, Li R, Yin L-M, et al. Targeting myeloid-derived suppressor cells and programmed death ligand 1 confers therapeutic advantage of ablative hypofractionated radiation therapy compared with conventional fractionated radiation therapy. Int J Radiat Oncol. 2018;101:74–87.

    Article  Google Scholar 

  63. Dovedi SJ, Cheadle EJ, Popple AL, et al. Fractionated radiation therapy stimulates antitumor immunity mediated by both resident and infiltrating polyclonal T-cell populations when combined with PD-1 blockade. Clin Cancer Res. 2017;23:5514–26.

    Article  CAS  PubMed  Google Scholar 

  64. Derer A, Spiljar M, Bäumler M, Hecht M, Fietkau R, Frey B, Gaipl US. Chemoradiation increases PD-L1 expression in certain melanoma and glioblastoma cells. Front Immunol. 2016;7:610.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Kubo M, Satoh T, Ishiyama H, et al. Enhanced activated T cell subsets in prostate cancer patients receiving iodine-125 low-dose-rate prostate brachytherapy. Oncol Rep. 2018;39:417–24.

    CAS  PubMed  Google Scholar 

  66. Keam SP, Caramia F, Gamell C, Paul PJ, Arnau GM, Neeson PJ, Williams SG, Haupt Y. The transcriptional landscape of radiation-treated human prostate cancer: analysis of a prospective tissue cohort. Int J Radiat Oncol Biol Phys. 2018;100:188–98.

    Article  CAS  PubMed  Google Scholar 

  67. Hodge JW, Sharp HJ, Gameiro SR. Abscopal regression of antigen disparate tumors by antigen cascade after systemic tumor vaccination in combination with local tumor radiation. Cancer Biother Radiopharm. 2012;27:12–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Eric A, Juranic Z, Tisma N, Plesinac V, Borojevic N, Jovanovic D, Milovanovic Z, Gavrilovic D, Ilic B. Radiotherapy-induced changes of peripheral blood lymphocyte subpopulations in cervical cancer patients: relationship to clinical response. J BUON. 2009;14(1):79–83.

    CAS  PubMed  Google Scholar 

  69. Morris ZS, Guy EI, Werner LR, et al. Tumor-specific inhibition of in situ vaccination by distant untreated tumor sites. Cancer Immunol Res. 2018;6:825–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Garnett CT, Palena C, Chakarborty M, Tsang K-YY, Schlom J, Hodge JW, Hodge JW. Sublethal irradiation of human tumor cells modulates phenotype resulting in enhanced killing by cytotoxic T lymphocytes. Cancer Res. 2004;64:7985–94.

    Article  CAS  PubMed  Google Scholar 

  71. Chakraborty M, Wansley EK, Carrasquillo JA, Yu S, Paik CH, Camphausen K, Becker MD, Goeckeler WF, Schlom J, Hodge JW. The use of chelated radionuclide (samarium-153-ethylenediaminetetramethylenephosphonate) to modulate phenotype of tumor cells and enhance T cell-mediated killing. Clin Cancer Res. 2008;14:4241–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Malamas AS, Gameiro SR, Knudson KM, Hodge JW. Sublethal exposure to alpha radiation (223Ra dichloride) enhances various carcinomas sensitivity to lysis by antigen-specific cytotoxic T lymphocytes through calreticulin-mediated immunogenic modulation. Oncotarget. 2016;7:86937–47.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Gorin J-B, Ménager J, Gouard S, et al. Antitumor immunity induced after α irradiation. Neoplasia. 2014;16:319–28.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Hernandez R, Walker KL, Grudzinski JJ, et al. 90Y-NM600 targeted radionuclide therapy induces immunologic memory in syngeneic models of T-cell non-Hodgkin’s lymphoma. Commun Biol. 2019;2:79.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Wu Y, Pfeifer A, Myschetzky R, Garbyal R, Rasmussen P, Knigge U, Bzorek M, Kristensen M, Kjaer A. Induction of anti-tumor immune responses by peptide receptor radionuclide therapy with 177Lu-dotatate in a murine model of a human neuroendocrine tumor. Diagnostics. 2013;3:344–55.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Mukai T, Maeda Y, Tamura T, Matsuoka M, Tsukamoto Y, Makino M. Induction of cross-priming of naive CD8+ T lymphocytes by recombinant Bacillus Calmette-Guérin that secretes heat shock protein 70-major membrane protein-II fusion protein. J Immunol. 2009;183:6561–8.

    Article  CAS  PubMed  Google Scholar 

  77. Oizumi S, Strbo N, Pahwa S, Deyev V, Podack ER. Molecular and cellular requirements for enhanced antigen cross-presentation to CD8 cytotoxic T lymphocytes. J Immunol. 2007;179:2310–7.

    Article  CAS  PubMed  Google Scholar 

  78. Chao Y, Xu L, Liang C, Feng L, Xu J, Dong Z, Tian L, Yi X, Yang K, Liu Z. Combined local immunostimulatory radioisotope therapy and systemic immune checkpoint blockade imparts potent antitumor responses. Nat Biomed Eng. 2018;2:611–21.

    Article  CAS  PubMed  Google Scholar 

  79. Confino H, Schmidt M, Efrati M, Hochman I, Umansky V, Kelson I, Keisari Y. Inhibition of mouse breast adenocarcinoma growth by ablation with intratumoral alpha-irradiation combined with inhibitors of immunosuppression and CpG. Cancer Immunol Immunother. 2016;65:1149–58.

    Article  CAS  PubMed  Google Scholar 

  80. Ménager J, Gorin JB, Maurel C, et al. Combining α-radioimmunotherapy and adoptive T cell therapy to potentiate tumor destruction. PLoS One. 2015;10:e0130249.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  81. Ghodadra A, Bhatt S, Camacho JC, Kim HS. Abscopal effects and Yttrium-90 radioembolization. Cardiovasc Intervent Radiol. 2016;39:1076–80.

    Article  PubMed  Google Scholar 

  82. Kwee SA, Lim J, Coel MN. Soft tissue response on 18F-fluorocholine PET/CT in metastatic castrate-resistant prostate cancer treated with 223Ra-dichloride: a possible abscopal effect? Clin Nucl Med. 2017;42:868–71.

    Article  PubMed  Google Scholar 

  83. Poon DMC, Wong KCW. Lymph node response in a patient with metastatic castration-resistant prostate cancer treated with Radium-223. Clin Genitourin Cancer. 2018;16:e397–401.

    Article  PubMed  Google Scholar 

  84. Chew V, Lee YH, Pan L, et al. Immune activation underlies a sustained clinical response to Yttrium-90 radioembolisation in hepatocellular carcinoma. Gut. 2018;68(2):335–46.

    Article  PubMed  CAS  Google Scholar 

  85. Rouanet J, Benboubker V, Akil H, Hennino A, Auzeloux P, Besse S, Pereira B, Delorme S, Mansard S, D’Incan M, Degoul F, Rouzaire PO. Immune checkpoint inhibitors reverse tolerogenic mechanisms induced by melanoma targeted radionuclide therapy. Cancer Immunol Immunother. 2020;69:2075–88.

    Google Scholar 

  86. Gorin JB, Ménager J, Gouard S, et al. Antitumor immunity induced after α irradiation. Neoplasia (United States). 2014;16:319–28.

    Google Scholar 

  87. Domankevich V, Cohen A, Efrati M, Schmidt M, Rammensee HG, Nair SS, Tewari A, Kelson I, Keisari Y. Combining alpha radiation-based brachytherapy with immunomodulators promotes complete tumor regression in mice via tumor-specific long-term immune response. Cancer Immunol Immunother. 2019;68:1949–58.

    Google Scholar 

  88. Choi J, Beaino W, Fecek RJ, Fabian KPL, Laymon CM, Kurland BF, Storkus WJ, Anderson CJ. Combined VLA-4–targeted radionuclide therapy and immunotherapy in a mouse model of melanoma. J Nucl Med. 2018;59:1843–9.

    Google Scholar 

  89. Chen H, Zhao L, Fu K, et al. Integrin αvβ3-targeted radionuclide therapy combined with immune checkpoint blockade immunotherapy synergistically enhances anti-tumor efficacy. Theranostics. 2019;9:7948–60.

    Google Scholar 

  90. Czernin J, Current K, Mona CE, Nyiranshuti L, Hikmat F, Radu CG, Lückerath K. Immune-checkpoint blockade enhances 225Ac-PSMA617 efficacy in a mouse model of prostate cancer. J Nucl Med. 2021;62:228–31.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Katherine Vallis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Anderson, R., Vallis, K. (2022). Radionuclide Therapy and Immunomodulation. In: Harsini, S., Alavi, A., Rezaei, N. (eds) Nuclear Medicine and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-81261-4_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-81261-4_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-81260-7

  • Online ISBN: 978-3-030-81261-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics