Skip to main content

The Genus Phoma: A Review of Its Potential Bioactivities, Implications, and Prospects

  • Chapter
  • First Online:
Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology

Abstract

This chapter presents a constructive review of genus Phoma, which includes important plant endophytes, plant pathogens, and in a few cases, pathogens of human and other vertebrates. Furthermore, many Phoma lineages have been reported to be efficient in biological control and to exhibit promising characteristics for agricultural, medical, and other industry field. The chapter includes many species and their useful beneficial traits, including microbial bioactive compounds that could be incorporated into biotechnology. Metabolites of Phoma have been demonstrated to promote crop protection, with great potential for biological weed control, in addition to exhibiting important biological factors and pharmacological properties such as anticancer, antimicrobial, and antioxidant activities. Alternative control products are scarcely available in the market for some Phoma species. However, there is a need for gathering information to highlight the great biotechnological potential to be explored. Therefore, the aim of this work is to describe the literature concerning the biological activities of the genus Phoma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

A549:

Human lung cancer

CHL:

Chinese hamster lung

CNS:

Central nervous system

DV3:

Dengue virus type 3

EPS:

Exopolysaccharides

H1N1:

Influenza A virus

HCT15:

Human colon cancer

HeLa:

Human cervical carcinoma

HIV-1:

Human immunodeficiency virus type 1

HL-60:

Leukemia cell line

HT-29:

Colon cancer cells

L-O2 cells:

Human hepatocytes

MCF-7:

Breast cancer cells

MGC80-3:

Gastric carcinoma cells

P-388:

Leukemia cell line

RSV:

Respiratory syncytial virus

SK-MEL-2:

Human skin cancer

SK-OV-3:

Human ovarian cancer

SMMC-772:

Liver cancer cells

TeA:

Tenuazonic acid

XF 498:

Human CNS cancer

YCP:

Yancheng polysaccharide

References

  • Adrio JL, Demain AL (2003) Fungal biotechnology. Int Microbiol 6: 191–199

    Article  CAS  PubMed  Google Scholar 

  • Alvi KA, Nair B, Pu H, Ursino R, Gallo C, Mocek U (1997) Phomacins: Three novel antitumor cytochalasan constituents produced by a Phoma sp. J Org Chem 62: 2148–2151

    Article  CAS  PubMed  Google Scholar 

  • Arie T, Kobayashi Y, Gen O, Kono Y, Yamaguchi I (1998) Control of soilborne clubroot disease of cruciferous plants by epoxydon from Phoma glomerata. Plant Pathol 47: 743–748

    Article  Google Scholar 

  • Arie T, Kobayashi Y, Kono Y, Gen O, Yamaguchi I (1999) Control of clubroot of crucifers by Phoma glomerata and its product epoxydon. Pestic Sci 55:602–604

    Article  CAS  Google Scholar 

  • Aveskamp MM, De Gruyter J, Crous PW (2008) Biology and recent developments in the systematics of Phoma, a complex genus of major quarantine significance. Fungal Divers 31: 1–18.

    Google Scholar 

  • Bailey KL, Derby J (2001) Fungal isolates and biological control compositions for the control of weeds. Patent US7772155

    Google Scholar 

  • Bailey KL, Pitt WM, Falk S, Derby J (2011) The effects of Phoma macrostoma on nontarget plant and target weed species. Biol Control 58: 379–386

    Article  Google Scholar 

  • Bennett A, Ponder MM, Garcia-diaz J (2018) Phoma Infections: Classification, Potential Food Sources, and Their Clinical Impact. Microorganisms 6:2–13

    Article  Google Scholar 

  • Betina V (1992) Biological effects of the antibiotic brefeldin A (Decumbin, cyanein, ascotoxin, synergisidin): A retrospective. Folia Microbiol 37, 3–11.

    Article  CAS  Google Scholar 

  • Bhimba V, Pushpam AC, Arumugam P, Prakash S (2012) Phthalate derivatives from the marine fungi Phoma herbarum VB7. Int J Biol Pharma Res 3(4):507–512

    Google Scholar 

  • Bick IRC, Rhee C (1966) Anthraquinone pigments from Phoma foveata Foister. Biochenm J 98: 112–116.

    Article  CAS  Google Scholar 

  • Binder M, Tarnrn C (1973) Proxiphomin und Protophomin, zwei neue Cytochalasane. Helv. Chim. Acta 56(7): 2387–2396

    Article  CAS  PubMed  Google Scholar 

  • Bithell SL, Stewart A (2001) Evaluation of the pathogenicity of Phoma exigua var. exigua on Californian thistle. N. Z. Plant Prot 54: 179–183

    Google Scholar 

  • Boerema GH, Bollen GJ (1975) Conidiogenesis and conidial septation as differentiating criteria between Phoma and Ascochyta. Persoonia 8: 111–144

    Google Scholar 

  • Boerema GH, Höweler LH (1967) Phoma exigua Desm. and its varieties. Persoonia 5: 15–28

    Google Scholar 

  • Boerema GH, de Gruyter J, Noordeloos ME, Hamers MEC (2004) Phoma Identification manual differentiation of species and infra-specific taxa in culture CABI Publishing, CAB International Wallingford, Oxfordshire, UK

    Google Scholar 

  • Borges WDS, Pupo MT (2006) Novel anthraquinone derivatives produced by Phoma sorghina, an endophyte found in association with the medicinal plant Tithonia diversifolia (Asteraceae). J Braz Chem Soc 17, 929–934

    Article  CAS  Google Scholar 

  • Bottalico A, Capasso R, Evidente A, Vurro M (1994) Process for the production and purification of cytocalasine B from Phoma exigua var. heteromorpha. Patent IT1246345B

    Google Scholar 

  • Boudart G (1989) Antibacterial activity of sirodesmin PL phytotoxin: Application the selection of phytotoxin-deficient mutants. Appl Environ Microbiol 55: 1555–1559

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boyette CD, Hoagland RE, Stetina KC (2015) Biological control of spreading dayflower (Commelina diffusa) with the fungal pathogen Phoma commelinicola. Agronomy 5, 519–536

    Article  CAS  Google Scholar 

  • Brun T, Rabuske JE, Todero I, Almeida TC, Junior JJD, Ariotti G, Confortin T, Arnemann JA, Kuhn RC, Guedes JVC, Mazutti MA (2016) Production of bioherbicide by Phoma sp. in a stirred-tank bioreactor. 3 Biotech 6(2): 230

    Google Scholar 

  • Canuto KM, Rodrigues THS, de Oliveira FSA, Gonçalves FJT (2012) Endophytic fungi: perspective of discovery and application of bioactive compounds in agriculture. Embrapa Agroindústria Tropical, ISSN 2179-8184, 154

    Google Scholar 

  • Capasso R, Evidente A, Vurro M (1991) Cytochalasins from Phoma exigua var. heteromorpha. Phytochemistry 30: 3945–3950

    Article  CAS  Google Scholar 

  • Chaves Neto JR, Mazutti MA, Zabot GL, Tres MV (2020) Bioherbicidal action of Phoma dimorpha fermented broth on seeds and plants of Senna obtusifolia. Pesqui Agropecu Trop 50: 1–8

    Article  Google Scholar 

  • Che Y, Gloer JB, Wicklow DT (2002) Phomadecalins A-D and phomapentenone A: New bioactive metabolites from Phoma sp. NRRL 25697, a fungal colonist of Hypoxylon stromata. J Nat Prod 65:399–402

    Article  CAS  PubMed  Google Scholar 

  • Chen S, Yin D, Yao W, Wang Y, Zhang Y, Gao X (2009) Macrophage receptors of polysaccharide isolated from a marine filamentous fungus Phoma herbarum. Acta Pharmacol Sin 30:1008–1014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen S, Ding R, Zhou Y, Zhang X, Zhu R, Gao XD (2014) Immunomodulatory effects of polysaccharide from marine fungus Phoma herbarum YS4108 on T cells and dendritic cells. Mediators Inflamm 2014:738631

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Chen H, Li Y, Feng T, Liu J (2015) Cytochalasins from cultures of endophytic fungus Phoma multirostrata EA-12. J Antibiot 68:23–26

    Article  CAS  Google Scholar 

  • Chiba S, Tsuyoshi N, Fudou R, Ojika M, Murakami Y, Ogoma Y, Oguchi M, Yamanaka S (2006) Magenta pigment produced by fungus J Gen Appl Microbiol 52(4): 201–207

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Andolfi A, Berestetskiy A, Evidente A (2008) Production of phytotoxins by Phoma exigua var. exigua, a potential mycoherbicide against perennial thistles. J Agric Food Chem 56: 6304–6309

    Article  CAS  PubMed  Google Scholar 

  • Cimmino A, Andolfi A, Zonno MC, Avolio F, Santini A, Tuzi A, Berestetskyi A, Vurro M, Evidente A (2013) Chenopodolin: A phytotoxic unrearranged ent-pimaradiene diterpene produced by Phoma chenopodicola, a fungal pathogen for chenopodium album biocontrol. J Nat Prod 76: 1291–1297

    Article  CAS  PubMed  Google Scholar 

  • Clemente E, Pamphile JA, Wenzel JB, Sarragiotto MH, Sékua RA (2012) Obtaining secondary bioactive compounds from the endophyte Phoma herbarium with broad spectrum antimicrobial activity. Patent BR102012005283A2

    Google Scholar 

  • Cole L, Davies D, Hyde GJ, Ashford AE (2000) Brefeldine A affects growth, endoplasmic reticulum, Golgi bodies, tubular vacuole system, and secretory pathway in Pisolithus tinctorius Fungal Genet Biol 29(2), 95–106

    Google Scholar 

  • Cui J, Guo S, Xiao P (2011) Antitumor and antimicrobial activities of endophytic fungi from medicinal parts of Aquilaria sinensis. J Zhejiang Univ Sci B 12(5): 385–392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Demain AL (2014) Importance of microbial natural products and the need to revitalize their discovery. J Ind Microbiol Biotechnol 41, 185–201

    Article  CAS  PubMed  Google Scholar 

  • Devys M, Fbrbzou J, Topgi RS, Barbier M, Bousquet J, Kollmann A (1984) Structure and biosynthesis of phomenoic acid, an antifungal compound isolated from Phoma lingam Tode. J Chem Soc Perkin Trans I 2133–2137

    Google Scholar 

  • Dufossé L, Fouillaud M, Caro Y, Mapari SAS, Sutthiwong N (2014) Filamentous fungi are large-scale producers of pigments and colorants for the food industry. Curr Opin Biotech 26: 56–61

    Article  PubMed  Google Scholar 

  • Elliott CE, Gardiner DM, Thomas G, Cozijnsen A, Van De Wouw A, Howlett BJ (2007) Production of the toxin sirodesmin PL by Leptosphaeria maculans during infection of Brassica napus. Mol Plant Pathol 8,: 791–802

    Google Scholar 

  • Elsebai MF, Ghabbour HA (2016) Isocoumarin derivatives from the marine-derived fungus Phoma sp. 135. Tetrahedron Lett 57: 354–356

    Article  CAS  Google Scholar 

  • Evidente A, Lanzetta R, Capasso R, Vurro M, Bottalico A (1992) Cytochalasin U and V, two new cytochalasans, from Phoma exigua var. heteromorpha. Tetrahedron 48(30): 6317–6324

    Article  CAS  Google Scholar 

  • Evidente A, Lanzetta R, Capasso R, Andol A, Vurro M, Zonno MC (1995) Putaminoxin, A phytotoxic nonenolide from Phoma putaminum. Phytochemistry 40: 1637–1641

    Article  CAS  Google Scholar 

  • Evidente A, Capasso R, Vurro M, Bottalico A (1996) Cytochalasin W, a new 24-Oxa[14]cytochalasan from Phoma exigua var. heteromorpha. Nat Toxins 4: 53–57

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Capasso R, Andolfi A, Vurro M, Zonno MC (1998) Structure-activity relationship studies of putaminoxins and pinolidoxins: Phytotoxic nonenolides produced by phytopathogenic Phoma and Ascochyta species. Nat Toxins 6: 183–188

    Article  CAS  PubMed  Google Scholar 

  • Evidente A, Andolfi A, Vurro M, Zonno MC, Motta A (2003) Cytochalasins Z4, Z5, and Z6, Three New 24-Oxa [14] cytochalasans produced by Phoma exigua var. heteromorpha. J Nat Prod 66: 1540–1544

    Article  CAS  PubMed  Google Scholar 

  • Fang MJ, Fang H, Li WJ, Huang DM, Wu Z, Zhao YF (2012) A new diphenyl ether from Phoma sp strain, SHZK-2. Nat Prod Res 26(13): 1224–1228

    Article  CAS  PubMed  Google Scholar 

  • Gallo MBC, Chagas FO, Almeida MO, Macedo CC, Cavalcanti BC, Barros FWA, De Moraes MO, Costa-Lotufo LV, Pessoa C, Bastos JK, Pupo MT (2009) Endophytic fungi found in association with Smallanthus sonchifolius (Asteraceae) as resourceful producers of cytotoxic bioactive natural products. J Basic Microbiol 49: 142–151

    Article  CAS  PubMed  Google Scholar 

  • Graupner PR, Carr A, Clancy E, Gilbert J, Bailey KL, Derby J-A, Gerwick BC (2003) The Macrocidins: novel cyclic tetramic acids with herbicidal activity produced by Phoma macrostoma. J Nat Prod 66: 1558–1561

    Article  CAS  PubMed  Google Scholar 

  • Graupner PR, Gerwick BC, Siddall TL, Carr AW, Clancy E, Gilbert JR, Bailey KL, Derby J (2006) Chlorosis inducing phytotoxic metabolites: New herbicides from Phoma macrostoma. Natural Product for Pest Management, 3: 37–47

    Google Scholar 

  • Gu Z, Ji M, Zou Y, Wang Y, Qi Z, He L (2019) A kind of Phoma herbarum water dispersible granules and its preparation and application. Patent CN109997877A

    Google Scholar 

  • Hand (2010) Novel compounds having antioxidant activity isolated from Phoma herbarum. Patent KR101107260B1

    Google Scholar 

  • Hardoim PR, van Overbeek LS, Berg G, Pirttilä AM, Compant S, Campisano A, Döring M, Sessitsch A (2015) The hidden world within plants: Ecological and evolutionary considerations for defining functioning of microbial endophytes. Microbiol Mol Biol Rev 79: 293–320

    Article  PubMed  PubMed Central  Google Scholar 

  • Hazuda D, Blau CU, Felock P, Hastings J, Pramanik B, Wolfe A, Bushman F, Farnet C, Goetz M, Williams M, Silverman K, Lingham R, Singh S (1998) Isolation and characterization of novel human immunodeficiency virus integrase inhibitors from fungal metabolites. Antivir Chem Chemother 10: 63–70.

    Article  Google Scholar 

  • Heiny DK, Templeton GE (1991) Effects of spore concentration, temperature, and dew period on disease of field bindweed caused by Phoma proboscis. Phytopathology 81: 905–909

    Article  Google Scholar 

  • Herath K, Harris G, Jayasuriya H, Zink D, Smith S, Vicente F, Bills G, Collado J, González A, Jiang B, Kahn JN, Galuska S, Giacobbe R, Abruzzo G, Hickey E, Liberator P, Xu D, Roemer T, Singh SB (2009) Isolation, structure and biological activity of phomafungin, a cyclic lipodepsipeptide from a widespread tropical Phoma sp. Bioorganic Med Chem 17: 1361–1369

    Article  CAS  Google Scholar 

  • Hobson DK, Edwards RL, Wales DS (1997) Cynodontin: A secondary metabolite and dyestuff intermediate. J Chem Tech Biotechnol 70: 343–348

    Article  CAS  Google Scholar 

  • Hoffman AM, Mayer SG, Strobel GA, Hess WM, Sovocool GW, Grange AH, Harper JK, Arif AM, Grant DM, Kelley-Swift EG (2008) Purification, identification and activity of phomodione, a furandione from an endophytic Phoma species 69: 1049–1056

    Google Scholar 

  • Höller U, Wright AD, Matthée GF, Konig GM, Draeger S, Aust H-J, Schulz B (2000) Fungi from marine sponges: diversity, biological activity and secondary metabolites. Mycol Res 104: 1354–1365

    Article  Google Scholar 

  • Howlett BJ, Fox EM, Cozijnsen AJ, Wouw AP Van De, Elliott CE (2009) The role of the toxin sirodesmin in virulence of the blackleg fungus. Online available www.gcirc.org. [Acessed: Oct. 10, 2020

  • Huang S, Xu J, Li F, Zhou D, Xu L, Li C (2017) Identification and antifungal activity of metabolites from the mangrove fungus Phoma sp. L28. Chem Nat Compd 53: 237–240

    Article  CAS  Google Scholar 

  • Hubbard M, Taylor WG, Bailey KL, Hynes RK (2016) The dominant modes of action of macrocidins, bioherbicidal metabolites of Phoma macrostoma, differ between susceptible plant species. Environ Exp Bot 132: 80–91

    Article  CAS  Google Scholar 

  • Hussain H, Kock I, Al-Harrasi A, Al-Rawahi A, Abbas G, Green IR, Shah A, Badshah A, Saleem M, Draeger S, Schulz B, Krohn K (2014) Antimicrobial chemical constituents from endophytic fungus Phoma sp. Asian Pac J Trop Med 7: 699–702

    Article  CAS  Google Scholar 

  • Hussain H, John M, Al-Harrasi A, Shah A, Hassan Z, Abbas G, Rana UA, Green IR, Schulz B, Krohn K (2015) Phytochemical investigation and antimicrobial activity of an endophytic fungus Phoma sp. J King Saud Univ-Sci 27: 92–95

    Article  Google Scholar 

  • Hyde KD, Xu J, Rapior S, Jeewon R, Lumyong S, Niego AGT, Abeywickrama PD, Aluthmuhandiram JVS, Brahamanage RS, Brooks S, Chaiyasen A, Chethana KWT, Chomnunti P, Chepkirui C, Chuankid B, de Silva NI, Doilom M, Faulds C, Gentekaki E, Gopalan V, Kakumyan P, Harishchandra D, Hemachandran H, Hongsanan S, Karunarathna A, Karunarathna SC, Khan S, Kumla J, Jayawardena RS, Liu JK, Liu N, Luangharn T, Macabeo APG, Marasinghe DS, Meeks D, Mortimer PE, Mueller P, Nadir S, Nataraja KN, Nontachaiyapoom S, O’Brien M, Penkhrue W, Phukhamsakda C, Ramanan US, Rathnayaka AR, Sadaba RB, Sandargo B, Samarakoon BC, Tennakoon DS, Siva R, Sriprom W, Suryanarayanan TS, Sujarit K, Suwannarach N, Suwunwong T, Thongbai B, Thongklang N, Wei D, Wijesinghe SN, Winiski J, Yan J, Yasanthika E, Stadler M (2019) The amazing potential of fungi: 50 ways we can exploit fungi industrially. Fungal Divers 97: 1–136

    Article  Google Scholar 

  • Hynes R, (2018) Phoma macrostoma: as a broad spectrum bioherbicide for turf grass and agricultural applications. CAB Rev 13(5): 1–9

    Article  Google Scholar 

  • Jones MDM, Forn I, Gadelha C, Egan MJ, Bass D, Massana R, Richards TA (2011) Discovery of novel intermediate forms redefines the fungal tree of life. Nature 474: 200–203

    Article  CAS  PubMed  Google Scholar 

  • Kalam S, Khan NA, Singh J (2014) A novel phytotoxic phenolic compound from Phoma herbarum FGCC#54 with herbicidal potential. J Chem Nat Compd 50:644–647

    Article  CAS  Google Scholar 

  • Kawanaka S, Kitahatan K (1996) Phoma hna-54f strain and cleaning of water or soil contaminated with 2-hydroxy-3-naphthoic acid deerivative. Patent JPH1028578A

    Google Scholar 

  • Klaic R, Kuhn RC, Foletto EL, Dal Prá V, Jacques RJS, Guedes JVC, Treichel H, Mossi AJ, Oliveira D, Oliveira JV, Jahn SL, Mazutti MA (2015) An overview regarding bioherbicide and their production methods by fermentation. In: GuptaVK, Mach RL, Sreenivasaprasad, S, eds. Fungal Biomolecules: Sources, Applications and Recent Developments. John Wiley & Sons, Ltda,183–199

    Google Scholar 

  • Klaic R, Sallet D, Foletto EL, Jacques RJS, Guedes JVC, Kuhn RC, Mazutti MA (2017) Optimization of solid-state fermentation for bioherbicide production by Phoma sp. Brazilian J Chem Eng 34: 377–384

    Article  CAS  Google Scholar 

  • Kong F, Wang Y, Liu P, Dong T, Zhu W (2014) Thiodiketopiperazines from the marine-derived fungus Phoma sp. OUCMDZ-1847. J Nat Prod 77: 132–137

    Article  CAS  PubMed  Google Scholar 

  • Krohn K, Farooq U, Flörke U, Schulz B, Draeger S, Pescitelli G, Salvadori P, Antus S, Kurtán T (2007) Secondary metabolites isolated from an endophytic Phoma sp. – Absolute configuration of tetrahydropyrenophorol using the solid-state TDDFT CD Methodology. Eur J Org Chem 3206–3211

    Google Scholar 

  • Kumaran RS, Choi Y, Lee S, Jeon HJ, Kim HJ (2012) Isolation of taxol, an anticancer drug produced by the endophytic fungus, Phoma betae. Afr J Biotechnol 11: 950–960

    CAS  Google Scholar 

  • Kim, Eun La, Li JL, Dang HT, Hong J, Lee CO, Kim DK, Yoon WD, Kim Euikyung, Liu Y, Jung JH (2012) Cytotoxic cytochalasins from the endozoic fungus Phoma sp. of the giant jellyfish Nemopilema nomurai. Bioorganic Med Chem Lett 22: 3126–3129

    Article  CAS  Google Scholar 

  • Leonidovna GE, Borisovna KL, Borisovich HP, Alexandrovich KI (2016) Phoma ligulicola var. inoxydabilis Boerema fungus strain having mycoherbicidal activity against common wormwood. Patent RU2588470C1

    Google Scholar 

  • Li G, Cheng J, Luo T, Yang L, Wu M, Zhang J (2018) The huge Phoma cava bacterium P2 of one plant of biological and ecological methods to prevent plant disease, pests, and erosion and its application. Patent CN109706082A

    Google Scholar 

  • Linnakoski R, Reshamwala D, Veteli P, Cortina-Escribano M, Vanhanen H, Marjomäki V (2018) Antiviral agents from fungi: Diversity, mechanisms and potential applications. Front Microbiol 9:2325

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu J, Tan W (2011) Small spore Phoma microspora for controlling Conyza sumatrensis Patent CN102382776B

    Google Scholar 

  • Liu S, Jiang J, Huang R, Wang Y, Jiang B, Zheng K, Wu S (2019) A new antiviral 14-nordrimane sesquiterpenoid from an endophytic fungus. Phytochem Lett 29: 75–78

    Article  CAS  Google Scholar 

  • Logan C, Khan AA (1969) Comparative studies of Phoma sp associated with potato gangrene in Northern Ireland. Trans Br Mycol Soc 52: 9–17

    Article  Google Scholar 

  • Luft L, Confortin TC, Todero I, Chaves Neto JR, Tonato D, Felimberti PZ, Zabot GL, Mazutti MA (2019) Different techniques for concentration of extracellular biopolymers with herbicidal activity produced by Phoma sp. Environ Technol. https://doi.org/10.1080/09593330.2019.1669720

  • Luft L, Confortin TC, Todero I, Zabot GL, Mazutti MA (2020) An overview of fungal biopolymers: bioemulsifiers and biosurfactants compounds production. Crit Rev Biotechnol. https://doi.org/10.1080/07388551.2020.1805405

  • Mohamed IE, Gross H, Pontius A, Kehraus S, Krick A, Kelter G, Maier A, Fiebig H, Konig GM (2009) Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 11: 5014–5017

    Article  CAS  PubMed  Google Scholar 

  • Nagai K, Kamigiri K, Matsumoto H, Kawano Y, Yamaoka M, Shimoi H, Watanabe M, Suzuki K (2002) YM-202204, a new antifungal antibiotic produced by marine fungus Phoma sp J Antibiot (Tokyo) 55(12): 1036–1041

    Google Scholar 

  • Neal JC, Shew B, Schiavone R (2013) Temperature and Dose influence Phoma macrostoma efficacy on seedling broadleaf weeds. Proc. IXth International Bioherbicide 511 Group Workshop. Beijing, China, 29-33

    Google Scholar 

  • Neumann S, Boland GJ (2002) Influence of host and pathogen variables on the efficacy of Phoma herbarum, a potential biological control agent of Taraxacum officinale. Can J Bot 80: 425–429

    Article  Google Scholar 

  • Oikawa H, Ohashi S, Ichihara A, Sakamura S (1999) Biosynthesis of diterpenoid aphidicolin: Isolation of intermediates from P-450 inhibitor treated mycelia of Phoma betae. Tetrahedron 55, 7541–7554

    Article  CAS  Google Scholar 

  • Oikawa H, Toshima H, Ohashi S, Ko WA (2001) Diversity of diterpene hydrocarbons in fungus Phoma betae. Tetrahedron Lett 42, 2329–2332

    Article  CAS  Google Scholar 

  • Ondeyka JG, Zink DL, Young K, Painter R, Kodali S, Galgoci A, Collado J, Tormo JR, Basilio A, Vicente F, Wang J, Singh SB (2006) Discovery of bacterial fatty acid synthase inhibitors from a Phoma species as antimicrobial agents using a new antisense-based strategy. J Nat Prod 69: 377–380

    Article  CAS  PubMed  Google Scholar 

  • Osińska-Jaroszuk M, Jarosz-Wilkołazka A, Jaroszuk-Ściseł J, Szałapata K, Nowak A, Jaszek M, Ozimek E, Majewska M (2015) Extracellular polysaccharides from Ascomycota and Basidiomycota: production conditions, biochemical characteristics, and biological properties. World J Microbiol Biotechnol 31: 1823–1844

    Article  PubMed  PubMed Central  Google Scholar 

  • Osterhage CM, Schwibibble GM, Konig Wright AD (2000) Differences between marine and terrestrial Phoma species as determined by HPLC-DAD and HPLC-MS. Phytochem Anal 11:288–294

    Article  CAS  Google Scholar 

  • Osterhage C, König GM, Jones PG, Wright AD (2002) 5-hydroxyramulosin, a new natural product produced by Phoma tropica, a marine-derived fungus isolated from the alga Fucus spiralis. Planta Med 68, 1052–1054

    Article  CAS  PubMed  Google Scholar 

  • Pandey S, Pandey AK (2000) Mycoherbicidal potential of some fungi against Lantana camara L: A preliminary observation. J Tropical Forestry 16: 28–32

    Google Scholar 

  • Pandey AK, Luka RS, Hasija SK, Rajak RC (1991) Pathogenicity of some fungi to Parthenium and obnoxious weed in Madhya Pardesh. J Biol Control 5: 113–115

    Google Scholar 

  • Park S, Song Bo B, Hong S, Hong Y (2006) Phoma macrostoma bwc05-8-3-2 having weeding efficacy against sulfonylurea resistance Monochoria vaginalis and mycelia suspension prepared using this. Patent KR20070101745A

    Google Scholar 

  • Pedras MSC, Biesenthal CJ (1998) Production of the host-selective phytotoxin phomalide by isolates of Leptosphaeria maculans and its correlation with sirodesmin PL production. Can J Microbiol 44: 547–553.

    Article  CAS  Google Scholar 

  • Pedras MSC, Biesenthal CJ (2000) HPLC analyses of cultures of Phoma spp: Differentiation among groups and species through secondary metabolite profiles. Can J Microbiol 46: 685–691

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Séguin-Swartz G (1992) The blackleg fungus: phytotoxins and phytoalexins. Can J Plant Pathol 14:67–75

    Article  CAS  Google Scholar 

  • Pedras MSC, Yu Y (2008) Phytochemistry structure and biological activity of maculansin A, a phytotoxin from the phytopathogenic fungus Leptosphaeria maculans. Phytochemistry 69: 2966–2971

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Erosa-Lopez GC, Quail JW, Taylor JL (1999) Phomalairdenone: A new host-selective phytotoxin from a virulent type of the blackleg fungus Phoma lingam. Bioorg Med Chem Lett 9: 3291–3294

    Article  CAS  PubMed  Google Scholar 

  • Pedras MSC, Chumala PB, Yu Y (2007) The phytopathogenic fungi Leptosphaeria maculans and Leptosphaeria biglobosa: chemotaxonomical characterization of isolates and metabolite production in different culture media. Can J Microbiol 53: 364–371

    Article  CAS  PubMed  Google Scholar 

  • Peng X, He Y, Gao Y, Duan F, Chen J, Ruan H (2020) Cytochalasins from an endophytic fungus Phoma multirostrata XJ-2-1 with cell cycle arrest and TRAIL-resistance-overcoming activities. Bioorg Chem 104: 104317

    Article  CAS  PubMed  Google Scholar 

  • Petrini O (1991) Fungal endophyte of tree leaves. In: Andrews JH, Hirana SS (eds.) Microbial Ecology of leaves. Springer Verlag, New York, USA, pp. 179-197

    Chapter  Google Scholar 

  • Pharamat T, Palaga T, Piapukiew J, Whalley AJS, Sihanonth P (2013) Antimicrobial and anticancer activities of endophytic fungi from Mitragyna javanica. Afr J Microbiol Res 7: 5565–5572

    Article  Google Scholar 

  • Pivkin MK, Belogortsevanov NI, Lukyanov PA (2006). Strain of fungus Phoma glomerata as producer of polysaccharide possessing immunomodulating activity. Patent RU2312148C2

    Google Scholar 

  • Poiret B, Kollmann A, Bousquet J-F (1985) Activités antifongiques de la sirodesmine PL et de deux analogues naturels isolés de Phoma lingam (Tode) Desm. Action antagoniste du zinc. Agronomie, EDP Sciences, 5(6): 533–538

    Article  Google Scholar 

  • Rai MK, Rajak RC (1993) Distinguishing characteristics of some Phoma species. Mycotaxon 48:389–414.

    Google Scholar 

  • Rai, M.K., Tiwari, V.V., Irinyi, L. et al. (2014) Advances in taxonomy of genus Phoma: polyphyletic nature and role ofphenotypic traits and molecular systematics. Indian J Microbiol 54:123–128

    Google Scholar 

  • Rai M, Deshmukh P, Gade A, Ingle A, Kövics GJ, Irinyi L (2009) Phoma Saccardo: Distribution, secondary metabolite production and biotechnological applications. Crit Rev Microbiol 35: 182–196

    Article  CAS  PubMed  Google Scholar 

  • Rai M, Gade A, Zimowska B, Ingle AP, Ingle P (2018) Marine-derived Phoma—the gold mine of bioactive compounds. Appl Microbiol Biotechnol 102:9053–9066

    Article  CAS  PubMed  Google Scholar 

  • Rajak RC, Farkya S, Hasija SK, Pandey AK (1990) Fungi associated with congress weed (Parthenium hysterophorus L). Proc Nat Acad Sci India 60, 165–168

    Google Scholar 

  • Rajamanikyam M, Vadlapudi V, Amanchy R, Upadhyayula SM (2017) Endophytic fungi as novel resources of natural therapeutics. Braz Arch Biol Technol 60: 1–26

    Article  Google Scholar 

  • Rao MPN, Xiao M, Li W-J (2017) Fungal and bacterial pigments: Secondary metabolites with wide applications. Front Microbiol 8:1113

    Article  Google Scholar 

  • Rivero-Cruz JF, García-Aguirre G, Cerda-García-Rojas CM, Mata R (2000) Conformational behavior and absolute stereostructure of two phytotoxic nonenolides from the fungus Phoma herbarum. Tetrahedron 56: 5337–5344

    Article  Google Scholar 

  • Rivero-Cruz JF, Macías M, Cerda-García-Rojas CM, Mata R (2003) A new phytotoxic nonenolide from Phoma herbarum. J Nat Prod 66: 511–514

    Article  CAS  PubMed  Google Scholar 

  • Roustaee A, Gelie B, Savy C, Dargent R, Barrault G (2000) Ultrastructural studies of the mode of penetration by Phoma macdonaldii in sunflower seedlings. Phytopathology 90: 915–920.

    Article  CAS  PubMed  Google Scholar 

  • Rouxel T, Chupeau Y, Fritz R, Kollmann A, Bousque J-F (1988) Biological effects of sirodesmin PL, a phytotoxin produced by Leptosphaeria maculans. Plant Sci 57: 45–53

    Article  CAS  Google Scholar 

  • Saccardo PA (1880) Conspectus generum fungorum Italiae inferiorum nempe ad Sphaeropsideas, Melanconieas et Hyphomyceteas pertinentium systemate sporologico dispositorum. Michelia 2:1–38

    Google Scholar 

  • Sang X, Chen S, An X, Chen G, Wang H (2016) A novel 3,4-dihydronaphthalen-1(2H)-one with spiro-butyrolactone and a new isocoumarin isolated from the endophytic fungus Phoma sp. J Asian Nat Prod Res 6020: 1–8

    Google Scholar 

  • Sang X, Chen S, Tang M, Wang H, An X, Lu X, Zhao D, Wang Y, Bai J, Hua H, Chen G, Pei Y (2017) α-Pyrone derivatives with cytotoxic activities, from the endophytic fungus Phoma sp. YN02-P-3. Bioorg Med Chem Lett 27: 3723–3725

    Article  CAS  PubMed  Google Scholar 

  • Santiago C, Fitchett C, Munro MHG, Jalil J, Santhanam J (2012) Cytotoxic and antifungal activities of 5-hydroxyramulosin, a compound produced by an endophytic fungus isolated from Cinnamomum mollisimum. Evidence-based Complement Altern Med https://doi.org/10.1155/2012/689310

  • Santiago C, Sun L, Munro MHG, Santhanam J (2014) Polyketide and benzopyran compounds of an endophytic fungus isolated from Cinnamomum mollissimum: biological activity and structure. Asian Pac J Trop Biomed 4: 627–632

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saxena S, Pandey AK (2001) Microbial metabolites as eco-friendly agrochemicals for the next millennium. Appl Microbiol Biotechnol 55: 395–403

    Article  CAS  PubMed  Google Scholar 

  • Sciaky N, Presley J, Smith C, Zaal KJM, Cole N, Moreira JE, Terasaki M, Siggia E, Lippincott-schwartz J (1997) Golgi tubule traffic and the effects of brefeldin A visualized in living cells J Cell Biol 139: 1137–1155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scott PM, Harwig J, Chen YK, Kennedy BP (1975) Cytochalasins A and B from strains of Phoma exigua var. exigua and formation of cytochalasin B in potato gangrene. J Gen Microbiol 87:177–180

    Article  CAS  PubMed  Google Scholar 

  • Selbmann L, Onofri S, Fenice M, Federici F, Petruccioli M (2002) Production and structural characterization of the exopolysaccharide of the Antarctic fungus Phoma herbarum CCFEE 5080. Res Microbiol 153: 585–592

    Article  CAS  PubMed  Google Scholar 

  • Shibazaki M, Taniguchi M, Yokoi T, Nagai K, Watanabe M, Suzuki K, Yamamoto T (2004) YM-215343, a novel antifungal compound from Phoma sp. QNO4621. J Antibiot 57(6): 379–382

    Article  CAS  Google Scholar 

  • Singh SB, Ball RG, Zink DL, Monaghan RL, Polishook JD, Sanchez M, Pelaez F, Silverman KC, Lingham RB (1997) Fusidienol-A: A novel Ras farnesyl-protein-transferase inhibitor from Phoma sp. J Org Chem 62(21): 7485–7488.

    Article  CAS  PubMed  Google Scholar 

  • Singh SB, Zink DL, Goetz MA, Dombrowski AW, Polishook JD, Hazuda DJS (1998) Equisetin and a novel opposite stereochemical homolog phomasetin, two fungal metabolites as inhibitors of HIV-1 integrase. Tetrahedron Lett 39(16): 2243–2246.

    Article  CAS  Google Scholar 

  • Smith J, Wherley B, Reynolds C, White R, Senseman S, Falk S (2015) Weed control spectrum and turfgrass tolerance to bioherbicide Phoma macrostoma. Int J Pest Manag 0874: 1–8

    Google Scholar 

  • Specian V, Orlandelli RC, Felber AC, Azevedo JL, Pamphile JA (2014) Secondary metabolites produced by endophytic fungi of pharmaceutical interest. Cient Cienc Biol Saude 16: 345–351

    Google Scholar 

  • Stewart-Wade SM, Boland GJ (2005) Oil emulsions increase efficacy of Phoma herbarum to control dandelion but are phytotoxic. Biocontrol Sci Technol 15(7): 671–681

    Article  Google Scholar 

  • Steyn PS, Rabie CJ (1976) Characterization of magnesium and calcium tenuazonate from Phoma sorghina. Phytochemistry 15: 1977–1979

    Article  CAS  Google Scholar 

  • Strange RN (1997) Phytotoxin associated with Ascochyta species In: Toxin in Plant Disease Development and Evolving Biotechnology Upadhyay RK & Mukherjee KG (Eds), 167–181 Oxford and IBH Publishing Co Pvt Ltd, New Delhi, India

    Google Scholar 

  • Sugawara F, Strobel G (1986) Zinniol, a phytotoxin produced by Phoma macdonaldii. Plant Sci 43: 19–23

    Article  CAS  Google Scholar 

  • Sullivan RF, White JF Jr (2000) Phoma glomerata as a mycoparasite of powdery mildew. Appl Environ Microbiol 66: 425–427

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun K, Chen Y, Niu Q, Zhu W, Wang B, Li P, Ge X (2016) An exopolysaccharide isolated from a coral-associated fungus and its sulfated derivative activates macrophages. Int J Biol Macromol 82: 387–394

    Article  CAS  PubMed  Google Scholar 

  • Sutton BC (1980) The coelomycetes: fungi imperfecti with pycnidia, acervuli and stromata. Commonwealth Mycological Institute, Kew, Surrey, England

    Book  Google Scholar 

  • Todero I, Confortin TC, Soares JF, Brun T, Luft L, Rabuske JE, Kuhn RC, Tres MV, Zabot GL, Mazutti MA (2019) Concentration of metabolites from Phoma sp. using microfiltration membrane for increasing bioherbicidal activity, Environ Technol 40(18): 2364-2372

    Article  CAS  PubMed  Google Scholar 

  • Topgi RS, Devys M, Bousquet JF, Kollmann A, Barbier M (1987) Phomenoic acid and phomenolactone, antifungal substances from Phoma lingam (Tode) Desm: Kinetics of their biosynthesis with an optimization of the isolation procedures. Appl Environ Microbiol 53(5): 966–968

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Valenzuela-Lopez N, Cano-Lira JF, Guarro J, Sutton DA, Wiederhold N, Crous PW, Stchigel AM (2018) Coelomycetous Dothideomycetes with emphasis on the families Cucurbitariaceae and Didymellaceae. Stud Mycol 90: 1–69

    Article  CAS  PubMed  Google Scholar 

  • Venkatasubbaiah P, Van Dyke CG, Chilton WS (1992) Phytotoxic metabolites of Phoma sorghina, a new foliar pathogen of pokeweed. Mycologia 84(5): 715–723

    Article  CAS  Google Scholar 

  • Vikrant P, Verma KK, Rajak RC, Pandey AK (2006) Characterization of a phytotoxin from Phoma herbarum for management of Parthenium hysterophorus L. J Phytopathol 154: 461–468

    Article  CAS  Google Scholar 

  • Wang G, Zhang C, Lin F, Wang L, Feng X (2011) Phoma strain and application thereof. Patent CN102154125B

    Google Scholar 

  • Wang L, Xu B, Wang J, Su Z, Lin F, Zhang C, Kubicek CP (2012) Bioactive metabolites from Phoma species, an endophytic fungus from the Chinese medicinal plant Arisaema erubescens. Appl Microbiol Biotechnol 93: 1231–1239

    Article  CAS  PubMed  Google Scholar 

  • Wang H, Chen Y, Lin F (2017) Phoma endophytic fungus and application thereof. Patent CN104293681B

    Google Scholar 

  • White JF (2000) Phoma glomerata ATCC MYA-2373 for biocontrol of fungal diseases in plants. Patent US6544512B1

    Google Scholar 

  • Wolfe JC, Neal JC, Harlow CD (2016) Selective broadleafweed control in Turfgrass with the bioherbicides Phoma macrostoma and Thaxtomin A. Weed Technol 30(3):688–700

    Article  Google Scholar 

  • Wu X, Chen Z, Ding W, Liu Y, Ma Z (2018a) Chemical constituents of the fermentative extracts of marine fungi Phoma sp. CZD-F11 and Aspergillus sp. CZD-F18 from Zhoushan, Archipelago, China. Nat Prod Res 32(13): 1562-1566

    Google Scholar 

  • Wu H, Yang F, Li L, Rao YK, Ju T, Wong W, Hsieh C, Pivkin MV, Hua K, Wu SH (2018b) Ergosterol peroxide from marine fungus Phoma sp. induces ROS-dependent apoptosis and autophagy in human lung adenocarcinoma cells. Sci Rep 8: 17956.

    Google Scholar 

  • Yang XB, Gao XD, Han F, Xu BS, Song YC, Tan RX (2005) Purification, characterization and enzymatic degradation of YCP, a polysaccharide from marine filamentous fungus Phoma herbarum YS4108. Biochimie 87: 747–754

    Article  CAS  PubMed  Google Scholar 

  • Yano T, Inukai M, Takatsu T, Tanaka I (2002) Compounds having antifungal activity. Patent US20020160946A1

    Google Scholar 

  • Yano T, Inukai M, Takatsu T, Tanaka I (2004) Phoma microorganism. Patent US20040265280A1

    Google Scholar 

  • Zhang W, Krohn K, Egold H, Draeger S, Schulz B (2008) Diversity of antimicrobial pyrenophorol derivatives from an endophytic fungus, Phoma sp. Eur J Org Chem 4320–4328

    Google Scholar 

  • Zhang X, Ding R, Zhou Y, Zhu R, Liu W, Jin L, Yao W, Gao X (2013) Toll-like receptor 2 and Toll-like receptor 4-dependent activation of B cells by a polysaccharide from marine fungus Phoma herbarum YS4108. PLoS One 8(3):e60781

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao S, Shamoun SF (2006) Effects of culture media, temperature, pH, and light on growth, sporulation, germination, and bioherbicidal efficacy of Phoma exigua, a potential biological control agent for salal (Gaultheria shallon). Biocontrol Sci Technol 16(10) 1043-1055

    Article  Google Scholar 

  • Zhou B, Qiang S (2008) Environmental, genetic and cellular toxicity of tenuazonic acid isolated from Alternaria alternata. Afr J Biotechnol 7(8): 1151–1156

    CAS  Google Scholar 

  • Zhou L, Bailey KL, Derby J (2004) Plant colonization and environmental fate of the biocontrol fungus Phoma macrostoma. Biol Control 30: 634–644

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcio A. Mazutti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Luft, L., Confortin, T.C., Todero, I., Mazutti, M.A. (2022). The Genus Phoma: A Review of Its Potential Bioactivities, Implications, and Prospects. In: Rai, M., Zimowska, B., Kövics, G.J. (eds) Phoma: Diversity, Taxonomy, Bioactivities, and Nanotechnology. Springer, Cham. https://doi.org/10.1007/978-3-030-81218-8_12

Download citation

Publish with us

Policies and ethics