Skip to main content
Log in

Fungal biotechnology

  • Review Article
  • Published:
International Microbiology Aims and scope Submit manuscript

Abstract

Fungi are used in many industrial processes, such as the production of enzymes, vitamins, polysaccharides, polyhydric alcohols, pigments, lipids, and glycolipids. Some of these products are produced commercially while others are potentially valuable in biotechnology. Fungal secondary metabolites are extremely important to our health and nutrition and have tremendous economic impact. In addition to the multiple reaction sequences of fermentations, fungi are extremely useful in carrying out biotransformation processes. These are becoming essential to the fine-chemical industry in the production of single-isomer intermediates. Recombinant DNA technology, which includes yeasts and other fungi as hosts, has markedly increased markets for microbial enzymes. Molecular manipulations have been added to mutational techniques as a means of increasing titers and yields of microbial processes and in the discovery of new drugs. Today, fungal biology is a major participant in global industry. Moreover, the best is yet to come as genomes of additional species are sequenced at some level (cDNA, complete genomes, expressed sequence tags) and gene and protein arrays become available.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1A, B.

Similar content being viewed by others

References

  1. Aharonowitz Y, Cohen G, Martín JF (1992) Penicillin and cephalosporin biosynthetic genes: structure, organization, regulation and evolution. Annu Rev Microbiol. 46:461–495

    Google Scholar 

  2. Alberts AW, Chen J, Kuron G, Hunt V, Huff J, Hoffman C, Rothrock J et al (1980) Mevinolin: A highly potent competitive inhibitor of hydroxymethylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proc Natl Acad Science USA 77:3957–3961

    CAS  Google Scholar 

  3. Andrewes AG, Phaff HJ, Starr MP (1976) Carotenoids of Phaffia rhodozyma, a red-pigmented fermenting yeast. Phytochemistry 15:1003–1007

    Article  Google Scholar 

  4. Archer D (2000) Filamentous fungi as microbial cell factories for food use. Curr Opin Biotechnol 11:478–483

    CAS  PubMed  Google Scholar 

  5. Archer D, Jeenes DJ, MacKenzie DA (1994) Strategies for improving heterologous protein production from filamentous fungi. Anton van Leeuwenhoek 65:245–250

    CAS  Google Scholar 

  6. Arnold FH (2001) Combinatorial and computational challenges for biocatalyst design. Nature 409:253–257

    Article  CAS  PubMed  Google Scholar 

  7. Askenazi M, Driggers EM, Holtzman DA, Norman TC, Iverson S, Zimmer DP, Boers ME et al (2003) Integrating transcriptional and metabolite profiles to direct the engineering of lovastatin-producing fungal strains. Nat Biotechnol 21:150–156

    Article  CAS  PubMed  Google Scholar 

  8. Baron M, Tiraby G, Calmels T, Parriche M, Durand H (1992) Efficient secretion of human lysozyme fused to the Sh ble phleomycin resistance protein by the fungus Tolypocladium geodes. J Biotechnol 24:253–266

    Article  CAS  PubMed  Google Scholar 

  9. Bentley R (1997) Microbial secondary metabolites play important roles in medicine: prospects to discovery of new drugs. Perspect Biol Med 40:364–394

    CAS  PubMed  Google Scholar 

  10. Berdy J (1995) Are actinomycetes exhausted as a source of secondary metabolites? In: Proceedings of 9th international symposium on the biology of actinomycetes. Part I. Allerton, New York, pp 3–23

  11. Bocking SP, Wiebe MG, Robson GD, Hansen K, Christiansen LH, Trinci AP (1999) Effect of branch frequency in Aspergillus oryzae on protein secretion and culture viscosity. Biotechnol Bioeng 65:638–648

    PubMed  Google Scholar 

  12. Bodie EA, Armstrong GL, Dunn-Coleman NS (1994) Strain improvement of chymosin-producing strains of Aspergillus niger var awamori using parasexual recombination. Enzyme Microb Technol 16:376–382

    Article  CAS  PubMed  Google Scholar 

  13. Borel JF, Feurer C, Gabler HU, Stahelin H (1976) Biological effects of cyclosporin A: a new antilymphocytic agent. Agents Action 6:468–475

    CAS  PubMed  Google Scholar 

  14. Brake AJ, Merryweather JP, Coit DG, Heberlein UA, Masiarz FR, Mullenbach GT, Urdea MS et al (1984) α-Factor-directed synthesis and secretion of mature foreign proteins in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 81:4642–4646

    CAS  PubMed  Google Scholar 

  15. Bretthauer RK, Castellino FJ (1999) Glycosylation of Pichia pastoris-derived proteins. Biotechnol Appl Biochem 30:193–200

    CAS  PubMed  Google Scholar 

  16. Brierley RA (1998) Secretion of recombinant human insulin-like growth factor I (IGF-I). In: Higgins DR, Cregg JM (eds) Pichia Protocols. Methods in Molecular Biology, vol 103. Humana, Totowa, New Jersey, pp 149–177

  17. Broekhuijsen MP, Mattern IE, Contreras R, Kinghorn JR, van den Hondel CAMJJ (1993) Secretion of heterologous proteins by Aspergillus niger: production of active human interleukin-6 in a protease deficient mutant by KEX2-like processing of a glucoamylase-HIL6 fusion protein. J Biotechnol 31:135–145

    CAS  PubMed  Google Scholar 

  18. Brown AG, Smale TC, King TJ, Hasenkamp R, Thompson RH (1976) Crystal and molecular structure of compactin: a new antifungal metabolite from Penicillium brevicompactum. J Chem Soc Perkin Trans I:1165–1170

    Google Scholar 

  19. Brown DW, Yu JH, Kelkar HS, Fernandes M, Nesbitt TC, Keller NP, Adams TH et al (1996) Twenty-five coregulated transcripts define a sterigmatocystin gene cluster in Aspergillus nidulans. Proc Natl Acad Sci USA 93:1418–1422

    Article  CAS  PubMed  Google Scholar 

  20. Carlsen S (1990) Molecular biology in research and production of industrial enzymes. In: Wolnak B, Scher M (eds) Industrial use of enzymes; technical and economic barriers. Brenard Wolnak and Associates, Chicago, Illinois, pp 52–69

  21. Chambergo FS, Bonaccorsi ED, Ferreira AJ, Ramos AS, Ferreira JR, Abrahao-Neto J, Farah JP et al (2002) Elucidation of the metabolic fate of glucose in the filamentous fungus Trichoderma reesei using expressed sequence tag (EST) analysis and cDNA microarrays. J Biol Chem 277:13983–13988

    Article  CAS  PubMed  Google Scholar 

  22. Conesa A, Punt PJ, van Luijk M, van den Holden CAMJJ (2001) The secretion pathway in filamentous fungi: a biotechnological view. Fungal Genet Biol 33:155–171

    CAS  PubMed  Google Scholar 

  23. Contreras R, Carrez P, Kinghorn JR, van den Hondel CAMJJ, Fiers W (1991) Efficient KEX2-like processing of a glucoamylase-interleukin-6 fusion protein by Aspergillus nidulans and secretion of mature interleukin-6. Bio/Technology 9:378–380

    Google Scholar 

  24. Cowan D (1996) Industrial enzyme technology. Trends Biotechnol 14:177–178

    Article  CAS  Google Scholar 

  25. Crawford L, Stephan AM, McAda PC, Rambosek JA, Conder MJ, Vinci VA, Reeves CD (1995) Production of cephalosporin intermediates by feeding adipic acid to recombinant Penicillium chrysogenum strains expressing ring expansion activity. Bio/Technology 13:58–62

    Google Scholar 

  26. Cregg JM, Vedvick TS, Raschke WC (1993) Recent advances in the expression of foreign genes in Pichia pastoris. Bio/Technology 11:905–910

    Google Scholar 

  27. Dale C, Allen A, Fogarty S (1999) Pichia pastoris: a eukaryotic system for the large-scale production of biopharmaceuticals. BioPharm 12:36–42

    CAS  Google Scholar 

  28. De Baets S, Vandedrinck S, Vandamme EJ (2000) Vitamins and related biofactors, microbial production. Encyclopedia of microbiology. Academic, London, 4:837–853

  29. Demain AL (1996) Fungal secondary metabolism: regulation and functions. In: Sutton B (ed) A century of mycology. Cambridge University Press, Cambridge, USA, pp 233–254

  30. Demain AL (1999) Metabolites, primary and secondary. In: Flickinger MC, Drew SC (eds) Encyclopedia of Bioprocess Technology: Fermentation, Biocatalysis and Bioseparation. Wiley, New York, pp 1713–1732

  31. Demain AL, Masurekar PS (1974) Lysine inhibition of in vivo homocitrate synthesis in Penicillium chrysogenum. J Gen Microbiol 82:143–151

    CAS  PubMed  Google Scholar 

  32. Dowzer CE, Kelly JM (1991) Analysis of the creA gene, a regulator of carbon catabolite repression in Aspergillus nidulans. Mol Cell Biol 11:5701–5709

    CAS  PubMed  Google Scholar 

  33. Dunn-Coleman NS, Bloebaum P, Berka R, Bodie E, Robinson R, Armstrong G, Ward M et al (1991) Commercial levels of chymosin production by Aspergillus. Bio/Technology, 9:976–981

  34. Egli T, van Dijken JP, Veenhuis M, Harder W, Feichter A (1980) Methanol metabolism in yeasts: regulation of the synthesis of catabolite enzymes. Arch Microbiol 124:115–121

    CAS  Google Scholar 

  35. Elbein AD, Mitchell M, Molyneux RJ (1985) Effect of castanospermine on the structure and secretion of glycoprotein enzymes in Aspergillus fumigatus. J Bacteriol 160:67–75

    Google Scholar 

  36. Endo A (1979) K Monacolin, a new hypocholesterolemic agent produced by Monascus species. J Antibiot 32:852–854

    CAS  PubMed  Google Scholar 

  37. Endo A (1985) Compactin (ML-236B) and related compounds as potential cholesterol-lowering agents that inhibit HMG-CoA reductase. J Med Chem 28:401–405

    CAS  PubMed  Google Scholar 

  38. Endo A, Kuroda M, Tsujita Y (1976) ML-236B and ML-236C, new inhibitors of cholesterolgenesis produced by Penicillium citrinin. J Antibiot 29:1346–1348

    CAS  Google Scholar 

  39. Faus I (2000) Recent developments in the characterization and biotechnological production of sweet-tasting proteins. Appl Microbiol Biotechnol 53:145–151

    Article  CAS  PubMed  Google Scholar 

  40. Fernandez-Canon JM, Reglero A, Martinez-Blanco H, Luengo JM (1989) Uptake of phenylacetic acid by Penicillium chrysogenum Wis 54–1255: a critical regulatory point in benzylpenicillin biosynthesis. J Antibiot 42:1398–1409

    CAS  PubMed  Google Scholar 

  41. Gellissen G, Janowicz JA, Merckelbach A, Piontek M, Keup P, Weydemann U, Hollenberg CP, Stasser WM (1991) Heterologous gene expresión in Hansenula polymorpha: efficient secretion of glucoamylase. Bio/Technology 9:291–295

    Google Scholar 

  42. Gellissen G, Janowicz ZA, Weydemann U, Melber K, Strasser AWM, Hollenberg CP (1992) High-level expression of foreign genes in Hansenula polymorpha. Biotech Adv 10:179–189

    Article  Google Scholar 

  43. Giuseppin M, van Eijk HM, Bes BC (1988) Molecular regulation of methanol oxidase activity in continuous cultures of Hansenula polymorpha. Biotechnol Bioeng 32:577–583

    CAS  Google Scholar 

  44. Goffeau A, Barrel BG, Bussey R, Davis RW, Dujon B, Feldmann H, Galibert F et al (1996) Life with 6000 genes. Science 274:563–567

    Article  Google Scholar 

  45. Gordon CJ, Khajal V, Ram AF, Archer D, Brookman JL, Trinci AP, Jeenes DJ et al (2000) Glucoamylase:green fluorescent protein fusion to monitor protein secretion in Aspergillus niger. Microbiology 146:415–426

    CAS  PubMed  Google Scholar 

  46. Gouka RJ, Gerk C, Hooykaas PJJ, Bundock P, Musters W, Verrips CT, de Groot MJA (1999) Transformation of Aspergillus awamori by Agrobacterium tumefaciens-mediated homologous recombination. Nature Biotechnol 6:598–601

    Article  Google Scholar 

  47. Gouka RJ, Punt PJ, van den Hondel CAMJJ (1997) Efficient production of secreted proteins by Aspergillus: progress, limitations and prospects. Appl Microbiol Biotechnol 47:1–11

    CAS  PubMed  Google Scholar 

  48. Hallborn J, Walfridsson M, Airaksinen U, Ojamo H, Hahn-Hagerdal B, Penttila ME, Keranen S (1991) Xylitol production by recombinant Saccharomyces cerevisiae. Bio/Technology 9:1090–1095

    Google Scholar 

  49. Hammond JRM (1988) Brewery fermentation in the future. J Appl Bacteriol 65:169–177

    CAS  Google Scholar 

  50. Hidy PH, Baldwin RS, Greasham RL, Keith CL, McMullen JR (1977) Zearelenone and some derivatives: production and biological activities. Adv Appl Microbiol 22:59–82

    CAS  PubMed  Google Scholar 

  51. Higgins DR, Cregg JM (1998) Introduction to Pichia pastoris. In: Higgins DR, Cregg JM (eds) Pichia protocols. Methods in molecular biology, vol 103. Humana, Totowa, New Jersey, pp 1–15

  52. Hitzeman RA, Leung DW, Perry LJ, Kohr WJ, Levine HL, Goeddel DW (1983) Secretion of human interferons by yeast. Science 219:620–625

    CAS  PubMed  Google Scholar 

  53. Hohn TM, McCormick SP, Desjardins AF (1995) Evidence for a gene cluster involving trichothecene-pathway biosynthetic genes in Fusarium sporotrichioides. Curr Genet 24:291–295

    Google Scholar 

  54. Huang YS, Chaudhary S, Thurmond JM, Bobik EG, Yuan L, Chan GM, Stobart AK et al (1999) Cloning of Δ12 and Δ6 desaturases from Mortierella alpina and recombinant production of γ-linoleic acid in Saccharomyces cerevisiae. Lipids 34:649–659

    CAS  PubMed  Google Scholar 

  55. Jaeger KE, Dijkstra BW, Reetz MT (1999) Bacterial biocatalysts: molecular biology, three-dimensional structures, and biotechnological applications of lipases. Ann Rev Microbiol 53:315–351

    Article  CAS  Google Scholar 

  56. Jaeger KE, Reetz MT (1998) Microbial lipases form versatile tools for biotechnology. Trends Biotechnol 16:396–403

    CAS  PubMed  Google Scholar 

  57. Jenkins N, Curling EM (1994) Glycosylation of recombinant proteins: problems and prospects. Enzyme Microb Technol 16:354–364

    CAS  PubMed  Google Scholar 

  58. Johnson EA, Conklin DE, Lewis MJ (1977) The yeast Phaffia rhodozyma as a dietary pigment source for salmonids and crustaceans. J Fish Res Bd Canada 34:2417–2421

    CAS  Google Scholar 

  59. Johnson EA, Villa TG, Lewis MJ (1980) Phaffia rhodozyma as an astaxanthin source in animal diets. Aquaculture 20:123–134

    Google Scholar 

  60. Juzlova P, Martinkova L, Kren V (1996) Secondary metabolites of the fungus Monascus: a review. J Indust Microbiol 16:163–170

    CAS  Google Scholar 

  61. Kasuya T, Nakajima H, Kitamoto K (1999) Cloning and characterization of the bipA gene encoding ER chaperone BiP from Aspergillus oryzae. J Biosci Bioeng 88:472–478

    Article  CAS  Google Scholar 

  62. Kennedy J, Turner G (1996) delta-(L-alpha-aminoadipyl)-L-cysteinyl-D-valine synthetase is a rate limiting enzyme for penicillin production in Aspergillus nidulans. Mol Gen Genet 253:189–197

    Article  CAS  PubMed  Google Scholar 

  63. Keller NP, Hohn TM (1997) Metabolic pathway gene clusters in filamentous fungi. Fungal Genet Biol 21:17–29

    Article  CAS  PubMed  Google Scholar 

  64. Kornfeld R, Kornfeld S (1985) Assembly of asparagine-linked oligosaccharides. Ann Rev Biochem 54:631–664

    Article  CAS  PubMed  Google Scholar 

  65. Krebs EG, Beavo JA (1979) Phosphorylation-dephosphorylation of enzymes. Ann Rev Biochem 48:923–959

    Article  CAS  PubMed  Google Scholar 

  66. Krupinski VM, Robberts JE, Floss HG (1976) Physiological study of ergot: induction of alkaloid synthesis by tryptophan at the enzymatic level. J Bacteriol 125:158–165

    CAS  PubMed  Google Scholar 

  67. Kudla B, Caddick MX, Langdon T, Martinez-Rosi NM, Bennett CF, Sibley S, Davies RW et al (1990) The regulatory gene areA mediating nitrogen metabolite repression in Aspergillus nidulans. Mutations affecting specificity of gene activation alter a loop residue of a putative zinc finger. EMBO J 9:1355–1364

    CAS  PubMed  Google Scholar 

  68. Kukuruzinska MA, Bergh ML, Jackson BL (1987) Protein glycosylation in yeast. Ann Rev Biochem 56:915–944

    Google Scholar 

  69. Lim D, Hains P, Walsh B, Nevalainen H (2001) Proteins associated with the cell envelope of Trichoderma reesei: a proteomic approach. Proteomics 1:899–909

    Article  CAS  PubMed  Google Scholar 

  70. Luckner M, Nover L, Böhm H (1977) Secondary metabolism and cell differentiation. Mol Biol Biochem Biophys 23:57

    Google Scholar 

  71. Ma J, Li Y, Ye Q, Li J, Hua Y, Ju D, Zhang D et al (2000) Constituents of red yeast rice, a traditional Chinese food and medicine. J Agric Food Chem 48:5220–5225

    Article  CAS  PubMed  Google Scholar 

  72. Maras M, van Die I, Contreras R, van den Holden CAMJJ (1999) Filamentous fungi as production organisms for glycoproteins of bio-medical interest. Glycoconjugates J 16:99–107

    CAS  Google Scholar 

  73. Mattern EI, van Noort JM, Berg P, Archer D, Roberts IN, van den Hondel CAMJJ (1992) Isolation and characterization of mutants of Aspergillus niger deficient in extracellular proteases. Mol Gen Genet 234:332–336

    CAS  PubMed  Google Scholar 

  74. Miura Y, Kondo K, Saito T, Shimada H, Fraser P, Misawa M (1998) Production of the carotenoids lycopene, β-carotene, and astaxanthin in the food yeast Candida utilis. Appl Environ Microbiol 64:1226–1229

    CAS  PubMed  Google Scholar 

  75. Miyanohara A, Toh-e A, Nozai C, Hamada F, Ohtomo N, Matsubara K (1983) Expression of hepatitis B surface antigen gene in yeast. Proc. Natl Acad Sci USA 80:1–5

    CAS  PubMed  Google Scholar 

  76. Moralejo FJ, Cardoza RE, Gutierrez S, Martin JF. Thaumatin production in Aspergillus awamori by use of expression cassettes with strong fungal promoters and high gene dosage. Appl Environ Microbiol 65:1168–1174

    CAS  PubMed  Google Scholar 

  77. Ness JE, Del Cardayre SB, Minshull J, Stemmer WP (2000) Molecular breeding: the natural approach to protein design. Adv Protein Chem 55:261–292

    CAS  PubMed  Google Scholar 

  78. Pakula TM, Uusitalo J, Saloheimo M, Salonen K, Aarts RJ, Penttila ME (2000) Monitoring the kinetics of glycoprotein synthesis and secretion in the filamentous fungus Trichoderma reesei: cellobiohydrolase I (CBHI) as a model protein. Microbiology 146:223–232

    CAS  PubMed  Google Scholar 

  79. Pandey A, Benjamin S, Soccol CR, Nigam P, Krieger N, Soccol VT (1999) The realm of microbial lipases in biotechnology. Biotechnol Appl Biochem 29:119–131

    CAS  PubMed  Google Scholar 

  80. Pariza MW, Johnson EA (2001) Evaluating the safety of microbial enzyme preparations used in food processing: update for a new century. Regul Toxicol Pharmacol 33:173–186

    Article  CAS  PubMed  Google Scholar 

  81. Penttila ME, Andre L, Saloheimo M, Lehtovaara P, Knowles JK (1987) Expression of two Trichoderma reesei endoglucanases in the yeast Saccharomyces cerevisiae. Yeast 3:175–185

    PubMed  Google Scholar 

  82. Perez-Ortin JE, Garcia-Martinez J, Alberola TM (2002) DNA chips for yeast biotechnology. The case of wine yeasts. J Biotechnol 98:227–241

    Article  CAS  PubMed  Google Scholar 

  83. Porro D, Brambilla L, Ranzi M, Martegani E, Alberghina L (1995) Development of metabolically engineered Saccharomyces cerevisiae cells for the production of lactic acid. Biotechnol Prog 11:294–298

    CAS  PubMed  Google Scholar 

  84. Punt PJ, van Viesen N, Conesa A, Albers A, Mangnus J, van den Hondel C (2002) Filamentous fungi as cell factories for heterologous protein production. Trends Biotechnol 20:200–206

    Article  CAS  PubMed  Google Scholar 

  85. Romanos MA (1995) Advances in the use of Pichia pastoris for high-level expression. Curr Opin Biotechnol 6:527–533

    Article  CAS  Google Scholar 

  86. Romanos MA, Scorer CA, Clare JJ (1992) Foreign gene expression in yeast: a review. Yeast 8:423–488

    CAS  PubMed  Google Scholar 

  87. Rosenfeld SA (1999) Use of Pichia pastoris for expression of recombinant proteins. Methods Enzymol 306:154–169

    CAS  PubMed  Google Scholar 

  88. Sakuradani E, Kobayashi M, Ashikari T, Shimizu S (1999 a) Identification of Δ12 fatty acid desaturase from arachidonic acid-producing Mortierella fungus by heterologous expression in the yeast Saccharomyces cerevisiae and the fungus Aspergillus oryzae. Eur J Biochem 261:812–820

    Article  CAS  PubMed  Google Scholar 

  89. Sakuradani E, Kobayashi M, Shimizu S (1999 b) Δ6 fatty acid desaturase from arachidonic acid-producing Mortierella fungus – gene cloning and its heterologous expression in a fungus, Aspergillus. Gene 238:445–453

    Article  CAS  PubMed  Google Scholar 

  90. Saloheimo M, Lund M, Penttila ME (1999) The protein disulphide isomerase gene of the fungus Trichoderma reesei is induced by endoplasmic reticulum stress and regulated by the carbon source. Mol Gen Genet 262:35–45

    Article  CAS  PubMed  Google Scholar 

  91. Salovouri I, Makarow M, Rauvala H, Knowles J, Kääriäinen L (1987) Low molecular weight high-mannose type glycans in a secreted protein of the filamentous fungus Trichoderma reesei. Bio/Technology 5:152–156

    Google Scholar 

  92. Scazzocchio C (1992) Control of gene expression in the catabolic pathways of Aspergillus nidulans: a personal and biased account. J Biotechnol 23:43–68

    CAS  Google Scholar 

  93. Schmid RD, Verger R (1998) Lipases: interfacial enzymes with attractive applications. Angew Chem Int Ed 37:1608–1633

    Article  Google Scholar 

  94. Shimada H, Kondo K, Fraser P, Miura Y, Saito T, Misawa M (1998) Increased carotenoid production by the food yeast Candida utilis through metabolic engineering of the isoprenoid pathway. Appl Environ Microbiol 64:2676–2680

    CAS  PubMed  Google Scholar 

  95. Shuster JR, Connelley MB (1999) Promoter-tagged restriction enzyme-mediated insertion mutagenesis in Aspergillus niger. Mol Gen Genet 262:27–34

    Article  CAS  PubMed  Google Scholar 

  96. Sohn JH, Kang HA, Rao KJ, Kim CH, Choi ES, Chung BH, Rhee SK (2001) Current status of the anticoagulant hirudin: its biotechnological production and clinical practice. Appl Microbiol Biotechnol 57:606–613

    Article  CAS  PubMed  Google Scholar 

  97. Sone H, Fujii T, Kondo K, Shimizu F, Tanaka JI, Inoue T (1988) Nucleotide sequence and expression of Enterobacter aerogenes α-acetolactate decarboxylase gene in brewers' yeast. Appl Environ Microbiol 54:38–42

    CAS  PubMed  Google Scholar 

  98. Stierle A, Strobel G, Stierle D (1993) Taxol and taxane production by Taxomyces andreanae, an endophytic fungus of Pacific yew. Science 260:214–216

    CAS  PubMed  Google Scholar 

  99. Stroh WH (1998) Industrial enzymes market. Gen Eng News 18:11–38

    Google Scholar 

  100. Strohl WR (1997) Industrial antibiotics: today and the future. In: Strohl WR (ed) Biotechnology of antibiotics, 2nd edn. Marcel Dekker, New York, pp 1–47

  101. Szczebara FM, Chandelier C, Villeret C, Masurel A, Bourot S, Duport C, Blanchard S et al (2003) Total synthesis of hydrocortisone from a simple carbon source in yeast. Nature Biotechnol 21:143–149

    Article  CAS  Google Scholar 

  102. Thayer AM (2000) Busting down a blockbuster drug. Chem Eng News 78:20–21

    Google Scholar 

  103. Tudzinski B (1999) Biosynthesis of gibberellins in Gibberella fujikuroi: biomolecular aspects. Appl Microbiol Biotechnol 52:298–231

    CAS  PubMed  Google Scholar 

  104. Valenzuela P, Medina A, Rutter WJ, Ammerer G, Hall BD (1982) Synthesis and assembly of hepatitis B virus surface antigen particles in yeast. Nature 298:347–350

    CAS  PubMed  Google Scholar 

  105. van der Hombergh JP, van de Vondervoort PJ, van der Heijden NC, Visser J (1997) New protease mutants in Aspergillus niger result in strongly reduced in vitro degradation of target proteins; genetic and biochemical characterization of seven complementation groups. Curr Genet 28:299–308

    Google Scholar 

  106. Velasco J, Adrio JL, Moreno MA, Diez B, Soler G, Barredo JL (2000) Environmentally safe production of 7-aminodeacetoxycephalosporanic acid (7-ADCA) using recombinant strains of Acremonium chrysogenum. Nature Biotechnol 18:857–861

    Article  CAS  Google Scholar 

  107. Velasco J, Gutierrez S, Fernández FJ, Marcos AT, Arenos C, Martín JF (1995) Exogenous methionine increases levels of mRNAs transcribed from pcbAB, pcbC, and cefEF genes, encoding enzymes of the cephalosporin biosynthetic pathway, in Acremonium chrysogenum. J Bacteriol 176:985–991

    Google Scholar 

  108. Verdoes JC, Punt PJ, van den Hondel CAMJJ (1995) Molecular genetic strain improvement for the overproduction of fungal proteins by filamentous fungi. Appl Microbiol Biotechnol 43:195–205

    Article  CAS  Google Scholar 

  109. Vining LC, Taber WA (1979) Ergot alkaloids. In: Rose AH (ed) Economic microbiology, vol 3. Secondary products of metabolism. Academic, London, pp 389–420

  110. Wagenbach M, O'Rourke K, Vitez L, Wieczorek A, Hoffman S, Durfee S, Tedesco J et al (1991) Synthesis of wild type and mutant hemoglobins in Saccharomyces cerevisiae. Bio/Technology 9:57–61

    Google Scholar 

  111. Wall ME, Wani MC (1995) Campothecin and taxol: discovery to clinic. Cancer Res 55:753–760

    CAS  PubMed  Google Scholar 

  112. Wang H, Ward M (2000) Molecular characterization of a PDI-related gene prpA in Aspergillus niger var awamori. Curr Genet 37:57–64

    Article  CAS  PubMed  Google Scholar 

  113. Ward P, Cunningham GA, Conneely OM (1997) Commercial production of lactoferrin, a multifunctional iron-binding glycoprotein. Biotechnol Genet Eng Rev 14:303–319

    CAS  PubMed  Google Scholar 

  114. Ward P, Piddington CS, Cunningham GA, Zhou X, Wyatt RD, Conneely OM (1995) A system for production of commercial quantities of human lactoferrin, a broad spectrum natural antibiotic. Bio/Technology 13:498–503

    Google Scholar 

  115. Wood V, Gwilliam R, Rajandream MA, Lyne M, Lyne R, Stewart A, Sgouros J et al (2002) The genome sequence of Schizosaccharomyces pombe. Nature 415:871–880

    CAS  PubMed  Google Scholar 

  116. Zhang JY, Wolfe S, Demain AL (1987) Effect of ammonium as nitrogen source on production of δ-(l-α-aminoadipyl)-l-cysteinyl-d-valine synthetase by Cephalosporium acremonium C-10. J Antibiot 40:1746–1750

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold L. Demain.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adrio, J.L., Demain, A.L. Fungal biotechnology. Int Microbiol 6, 191–199 (2003). https://doi.org/10.1007/s10123-003-0133-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10123-003-0133-0

Keywords

Navigation