Skip to main content

Significance of NK Cell in Cancer

  • Living reference work entry
  • First Online:
Handbook of Cancer and Immunology

Abstract

Natural killer cells (NK cells) are subpopulation of innate lymphoid cells with unique and significant role in control of tumor growth and metastasis. NK cells are constantly attracting interest in research, despite the fact that their initial knowledge is about the ability to lyse the tumor cells without major histocompatibility complex (MHC) restriction. NK cells were immunophenotypically characterized as CD3/CD56+ /CD16+/Nkp60+ cells. It is believed that their activation is largely determined by the balance between specific activation and inhibitory receptors expressed on their surface, unlike T cells. After activation, they have the ability to lyse tumor cells by a secretory mechanism, by production of several cytokines, granzymes, and perforin, as well as by other nonsecretory mechanism mediated by death receptor–induced apoptosis in target cells. NK cell dysfunction has been shown during cancer progression. Many cytokines exogenously have the ability to potentiate NK activity while many others, mostly pro-inflammatory, lead to their inhibition. However, the possibilities of cell therapy and the principles of immunomodulation that have recently been intensified in the research of these cells give a great hope for the treatment of patients with tumors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Reference

  • Balema W, Liu D, Shen Y, El-Zein R, Debeb BG, Kai M, Overmoyer B, Miller KD, Le-Petross HD, Ueno NT, Woodward WA (2021) Inflammatory breast cancer appearance at presentation is associated with overall survival. Cancer Med 10(18):6261–6272

    Article  PubMed  PubMed Central  Google Scholar 

  • Barrow AD, Edeling MA, Trifonov V, Luo J, Goyal P, Bohl B, Bando JK, Kim AH, Walker J, Andahazy M et al (2018) Natural killer cells control tumor growth by sensing a growth factor. Cell 172:534–548. https://doi.org/10.1016/j.cell.2017.11.037

    Article  CAS  PubMed  Google Scholar 

  • Bashiri Dezfouli A, Yazdi M, Pockley AG, Khosravi M, Kobold S, Wagner E, Multhoff G (2021) NK cells armed with chimeric antigen receptors (CAR): roadblocks to successful development. Cells 10(12):3390. https://doi.org/10.3390/cells10123390

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baychelier F, Sennepin A, Ermonval M, Dorgham K, Debré P, Vieillard V (2013) Identification of a cellular ligand for the natural cytotoxicity receptor NKp44. Blood 122:2935–2942

    Article  CAS  PubMed  Google Scholar 

  • Beziat V, Duffy D, Quoc SN, Le Garff-Tavernier M, Decocq J, Combadiere B et al (2011) CD56brightCD16+ NK cells: a functional intermediate stage of NK cell differentiation. J Immunol 186(12):6753–6761. https://doi.org/10.4049/jimmunol.1100330

    Article  CAS  PubMed  Google Scholar 

  • Biassoni R, Malnati MS (2018) Human natural killer receptors, co-receptors, and their ligands. Curr Protoc Immunol 121

    Google Scholar 

  • Bjorkstrom NK, Riese P, Heuts F, Andersson S, Fauriat C, Ivarsson MA et al (2010) Expression patterns of NKG2A, KIR, and CD57 define a process of CD56dim NK-cell differentiation uncoupled from NK-cell education. Blood 116(19):3853–3864. https://doi.org/10.1182/blood-2010-04-281675

    Article  CAS  PubMed  Google Scholar 

  • Blobe GC, Schiemann WP, Lodish HF (2000) Role of transforming growth factor beta in human disease. N Engl J Med 342:1350–1358

    Article  CAS  PubMed  Google Scholar 

  • Bottino C, Moretta L, Moretta A (2006) NK cell activating receptors and tumor recognition in humans. Curr Top Microbiol Immunol 298:175–182

    CAS  PubMed  Google Scholar 

  • Bryceson YT, March ME, Ljunggren HG, Long EO (2006) Synergy among receptors on resting NK cells for the activation of natural cytotoxicity and cytokine secretion. Blood 107:159–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caligiuri MA (2008) Human natural killer cells. Blood 112:461–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Caligiuri MA, Zmuidzinas A, Manley TJ, Levine H, Smith KA, Ritz J (1990) Functional consequences of interleukin 2 receptor expression on resting human lymphocytes. Identification of a novel natural killer cell subset with high affinitreceptors. J Exp Med 171:1509–1526

    Article  CAS  PubMed  Google Scholar 

  • Carrega P, Ferlazzo G (2012) Natural killer cell distribution and trafficking in human tissues. Front Immunol 3:347. https://doi.org/10.3389/fimmu.2012.00347

    Article  PubMed  PubMed Central  Google Scholar 

  • Cerwenka A, Lanier LL (2016) Natural killer cell memory in infection, inflammation and cancer. Nat Rev Immunol 16(2):112–123. https://doi.org/10.1038/nri.2015.9

    Article  CAS  PubMed  Google Scholar 

  • Chiossone L, Vienne M, Kerdiles YM, Vivier E (2017) Natural killer cell immunotherapies against cancer: Checkpoint inhibitors and more. Semin Immunol 31:55–63

    Article  CAS  PubMed  Google Scholar 

  • Chiossone L, Dumas PY, Vienne M, Vivier E (2018) Natural killer cells and other innate lymphoid cells in cancer. Nature Reviews Immunology 18(11):671–688

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA, Fehniger TA, Caligiuri MA (2001a) The biology of human natural killer-cell. Trends Immunol 22(11):633–640. https://doi.org/10.1016/s1471-4906(01)02060-9

    Article  CAS  PubMed  Google Scholar 

  • Cooper MA, Fehniger TA, Turner SC, Chen KS, Ghaheri BA, Ghayur T, Carson WE et al (2001b) Human natural killer cells: a unique innate immunoregulatory role for the CD56(bright) subset. Blood 97:3146–3151 https://doi.org/10.1182/blood.v97.10.3146.

  • Croxatto D, Martini S, Chiossone L, Scordamaglia F, Simonassi CF, Moretta L, Mingari MC, Vacca P (2017) IL 15 induces a potent antitumor activity in NK cells isolated from malignant pleural effusions and overcomes the inhibitory effect of pleural fluid. Onco Targets Ther 6(4):e1293210

    CAS  Google Scholar 

  • Dittrich A, Quaiser T, Khouri C, Görtz D, Mönnigmann M, Schaper F (2012) Modeldriven experimental analysis of the function of SHP-2 in IL-6-induced Jak/STAT signaling. Mol. Bio Syst 8:2119–2134

    CAS  Google Scholar 

  • Dzopalić T, Božić-Nedeljković B, Jurišić V (2019) Function of innate lymphoid cells in the immune-related disorders. Hum Cell 32(3):231–239. https://doi.org/10.1007/s13577-019-00257-1

    Article  CAS  PubMed  Google Scholar 

  • Eissens DN, Spanholtz J, van der Meer A, van Cranenbroek B, Dolstra H, Kwekkeboom J et al (2012) Defining early human NK cell developmental stages in primary and secondary lymphoid tissues. PLoS One 7:e30930

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fauriat C, Just-Landi S, Mallet F, Arnoulet C, Sainty D, Olive D et al (2007) Deficient expression of NCR in NK cells from acute myeloid leukemia: evolution during leukemia treatment and impact of leukemia cells in NCRdull phenotype induction. Blood 109(1):323–330. https://doi.org/10.1182/blood-2005-08-027979

    Article  CAS  PubMed  Google Scholar 

  • Fehniger TA, Cooper MA, Nuovo GJ, Cella M, Facchetti F, Colonna M, Caligiuri MA (2003) CD56bright natural killer cells are present in human lymph nodes and are activated by T cell derived IL-2: a potential new link between adaptive and innate immunity. Blood 101:3052–3057

    Article  CAS  PubMed  Google Scholar 

  • Feldmann M (2008) Many cytokines are very useful therapeutic targets in disease. J Clin Invest 118:3533–3536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Frassanito MA, Cusmai A, Iodice G, Dammacco F (2001) Autocrine interleukin-6 production and highly malignant multiple myeloma: relation with resistance to drug-induced apoptosis. Blood 97:483–489

    Article  CAS  PubMed  Google Scholar 

  • French A, Holroyd E, Yang L, Kim S, Yokoyama W (2006) IL-18 acts synergistically with IL-15 in stimulating natural killer cell proliferation. Cytokine 35:229–234

    Article  CAS  PubMed  Google Scholar 

  • Gorchakov, Andrey A et al (2020) Challenges and prospects of chimeric antigen receptor T- cell therapy for metastatic prostate cancer. European urology 77(3):299–308. https://doi.org/10.1016/j.eururo.2019.08.014

    Article  CAS  PubMed  Google Scholar 

  • Guillerey C, Huntington ND, Smyth MJ (2016) Targeting natural killer cells in cancer immunotherapy. Nat Immunol 17(9):1025–1036

    Article  CAS  PubMed  Google Scholar 

  • Guo L, Junttila IS, Paul WE (2012) Cytokine-induced cytokine production by conventional and innate lymphoid cells. Trends Immunol 33:598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hadad U, Thauland TJ, Martinez OM et al (2015) NKp46 clusters at the immune synapse and regulates NK cell polarization. Front Immunol 6:495

    Article  PubMed  PubMed Central  Google Scholar 

  • Hagiwara E, Abbasi F, Mor G et al (1995) Phenotype and frequency of cells secreting IL-2, IL-4, IL-6, IL-10, IFN and TNF-α in human peripheral blood. Cytokine 7(8):815–822

    Article  CAS  PubMed  Google Scholar 

  • Herberman RB, Nunn ME, Holden HT, Lavrin DH (1975a) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 16:230–239

    Article  CAS  PubMed  Google Scholar 

  • Herberman RB, Nunn ME, Holden HT, Lavrin DH (1975b) Natural cytotoxic reactivity of mouse lymphoid cells against syngeneic and allogeneic tumors. II. Characterization of effector cells. Int J Cancer 6:230–239

    Article  Google Scholar 

  • Huang H, Wang X, Zhang Y, Zheng Z, Wei H, Sun R (2010) Up-Regulation of NKG2F Receptor, a Functionally Unknown Killer Receptor, of Human Natural Killer Cells by Interleukin-2 and Interleukin-15. Oncol Rep 24:1043–1048

    CAS  PubMed  Google Scholar 

  • Huntington ND, Puthalakath H, Gunn P, Naik E, Michalak EM, Smyth MJ et al (2007) Interleukin 15-mediated survival of natural killer cells is determined by interactions among Bim, Noxa and Mcl-1. Nat Immunol 8:856–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs R, Hintzen G, Kemper Aet al. (2001) CD56bright cells differ in their KIR repertoire and cytotoxic features from CD56dim NK cells. Eur J Immunol 31:3121–3127

    Article  CAS  PubMed  Google Scholar 

  • Jain MD, Zhao H, Wang X et al (2021) Tumor interferon signaling and suppressive myeloid cells associate with CAR T cell failure in large B cell lymphoma. Blood 137(19):2621–2633. https://doi.org/10.1182/blood.2020007445

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jović V, Konjević G, Radulović S, Jelić S, Spuzić I (2001) Impaired perforin-dependent NK cell cytotoxicity and proliferative activity of peripheral blood T cells is associated with metastatic melanoma. Tumori 87:324–329

    Article  PubMed  Google Scholar 

  • June CH, Blazar BR, Riley JL (2009) Engineering lymphocyte subsets: tools, trials and tribulations. Nat Rev Immunol 9:704–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jurisic V (2020) Multiomic analysis of cytokines in immuno-oncology. Expert Rev Proteomics 17(9):663–674

    Article  CAS  PubMed  Google Scholar 

  • Jurisić V, Colović M (2002) Correlation of sera TNF-alpha with percentage of bone marrow plasma cells, LDH, beta2-microglobulin, and clinical stage in multiple myeloma. Med Oncol 19(3):133–139

    Article  PubMed  Google Scholar 

  • Jurisić V, Spuzić I, Konjević G (1999) A comparison of the NK cell cytotoxicity with effects of TNF-alpha against K-562 cells, determined by LDH release assay. Cancer Lett 138:67–72

    Article  PubMed  Google Scholar 

  • Jurisić V, Bogdanovic G, Srdic T et al (2004) Modulation of TNF-alpha activity in tumor PC cells using anti-CD45 and anti-CD95 monoclonal antibodies. Cancer Lett 214(1):55–61. https://doi.org/10.1016/j.canlet.2004.05.011

    Article  CAS  PubMed  Google Scholar 

  • Jurisic V, Bumbasirevic V, Konjevic G et al (2004a) TNF-alpha induces changes in LDH isotype profile following triggering of apoptosis in PBL of non-Hodgkin’s lymphomas. Ann Hematol 83(2):84–91. https://doi.org/10.1007/s00277-003-0731-0

    Article  CAS  PubMed  Google Scholar 

  • Jurisic V, Konjevic G, Jancic-Nedeljkov R, Sretenovic M, Banicevic B, Colovic M, Spuzic I (2004b) The comparison of spontaneous LDH release activity from cultured PBMC with sera LDH activity in Non-Hodgkin’s lymphoma patients. Med Oncol 21:179–185

    Article  CAS  PubMed  Google Scholar 

  • Jurisic V, Bogdanovic G, Kojic V et al (2006) Effect of TNF-alpha on Raji cells at different cellular levels estimated by various methods. Ann Hematol 85(2):86–94. https://doi.org/10.1007/s00277-005-0010-3

    Article  CAS  PubMed  Google Scholar 

  • Jurisic V, Srdic T, Konjevic G, Markovic O, Colovic M (2007) Clinical stage-depending decrease of NK cell activity in multiple myeloma patients. Med Oncol 24:312–317

    Article  PubMed  Google Scholar 

  • Jurisic V, Terzic T, Pavlovic S, Colovic N, Colovic M (2008) Elevated TNF-alpha and LDH without parathormone disturbance is associated with diffuse osteolytic lesions in leukemic transformation of myelofibrosis. Pathol Res Pract 204(2):129–132

    Article  PubMed  Google Scholar 

  • Jurisic V, Colovic N, Konjevic G, Minic I, Colovic M (2010) An aggressive extramedullary cutaneous plasmacytoma associated with extreme alterations in the innate immune system. Onkologie 33:113–115

    Article  PubMed  Google Scholar 

  • Jurisic V, Srdic-Rajic T, Konjevic G et al (2011) TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol 239:115–122

    Article  CAS  PubMed  Google Scholar 

  • Kiessling R, Klein E, Wigzell H (1975) “Natural” killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur J Immunol 5:112–117

    Article  CAS  PubMed  Google Scholar 

  • Kobyzeva PA, Streltsova MA, Erokhina SA, Kanevskiy LM, Telford WG, Sapozhnikov AM, Kovalenko EI (2020) CD56dimCD57−NKG2C+ NK cells retaining proliferative potential are possible precursors of CD57+NKG2C+ memory-like NK cells. J Leukoc Biol 08:1379–1395

    Article  Google Scholar 

  • Konjević G, Spuzić I (1992) Evaluation of different effects of sera of breast cancer patients on the activity of natural killer cells. J Clin Lab Immunol 38(2):83–93

    PubMed  Google Scholar 

  • Konjevic G, Jurisic V, Banicevic B, Spuzic I (1999) The difference in NK-cell activity between patients with non-Hodgkin’s lymphomas and Hodgkin’s disease. Br J Haematol 104:144–151

    Article  CAS  PubMed  Google Scholar 

  • Konjević G, Jurisić V, Spuzić I (2001) Association of NK cell dysfunction with changes in LDH characteristics of peripheral blood lymphocytes (PBL) in breast cancer patients. Breast Cancer Res Treat 66(3):255–263. https://doi.org/10.1023/a:1010602822483

    Article  PubMed  Google Scholar 

  • Konjević G, Jović V, Jurisić V, Radulović S, Jelić S, Spuzić I (2003) IL-2-mediated augmentation of NK-cell activity and activation antigen expression on NK- and T-cell subsets in patients with metastatic melanoma treated with interferon-alpha and DTIC. Clin Exp Metastasis 20:647–655

    Article  PubMed  Google Scholar 

  • Konjević G, Mirjacić Martinović K, Vuletić A, Jović V, Jurisić V, Babović N et al (2007) Low expression of CD161 and NKG2D activating NK receptor is associated with impaired NK cell cytotoxicity in metastatic melanoma patients. Clin Exp Metastasis 24:1–11

    Article  PubMed  Google Scholar 

  • Konjević G, Mirjacić Martinović K, Jurisić V, Babović N, Spuzić I (2009a) Biomarkers of suppressed natural killer (NK) cell function in metastatic melanoma: decreased NKG2D and increased CD158a receptors on CD3-CD16+ NK cells. Biomarkers 14:258–270

    Article  PubMed  Google Scholar 

  • Konjević G, Mirjacić Martinović K, Vuletić A, Jurisić V, Spuzić I (2009b) Distribution of several activating and inhibitory receptors on CD3-CD16+ NK cells and their correlation with NK cell function in healthy individuals. J Membr Biol 230:113–123

    Article  PubMed  Google Scholar 

  • Konjevic G, Jurisic V, Jovic V, Vuletic A, Mirjacic Martinovic K, Radenkovic S et al (2012) Investigation of NK cell function and their modulation in different malignancies. Immunol Res 52:139–156

    Article  CAS  PubMed  Google Scholar 

  • Konjević G, Vuletić A, Mirjačić Martinović K, Colović N, Čolović M, Jurišić V (2016) Decreased CD161 activating and increased CD158a inhibitory receptor expression on NK cells underlies impaired NK cell cytotoxicity in patients with multiple myeloma. J Clin Pathol. pii: jclinpath-2016-203614

    Google Scholar 

  • Konjević GM, Vuletić AM, Mirjačić Martinović KM, Larsen AK, Jurišić VB (2019) The role of cytokines in the regulation of NK cells in the tumor environment. Cytokine 117:30–40. https://doi.org/10.1016/j.cyto.2019.02.001

    Article  CAS  PubMed  Google Scholar 

  • Koreth J, Matsuoka K, Kim HT et al (2011) Interleukin-2 and regulatory T cells in graft-versus-host disease. N Engl J Med 365:2055–2066

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Langers I, Renoux VM, Thiry M, Delvenne P, Jacobs N (2012) Natural killer cells: role in local tumor growth and metastasis. Biologics 6:73–82

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lanier LL, Le AM, Civin CI, Loken MR, Phillips JH (1986) The relationship of CD16 (Leu-11) and Leu-19 (NKH-1) antigen expression on human peripheral blood NK cells and cytotoxic T lymphocytes. J Immunol 136:4480–4486

    Article  CAS  PubMed  Google Scholar 

  • Larsen AK, Ouaret D, El Ouadrani K et al (2011) Targeting EGFR and VEGF(R) pathway cross-talk in tumor survival and angiogenesis. Pharmacol Ther 131:80–90

    Article  CAS  PubMed  Google Scholar 

  • Levi I, Amsalem H, Nissan A, Darash-Yahana M, Peretz T, Mandelboim O et al (2015) Characterization of tumor infiltrating natural killer cell subset. Oncotarget 6:13835–13843. https://doi.org/10.18632/oncotarget.3453

    Article  PubMed  PubMed Central  Google Scholar 

  • Lindau D, Gielen P, Kroesen M et al (2013) The immunosuppressive tumour network: myeloid-derived suppressor cells, regulatory T cells and natural killer T cells. Immunology 138(2):105–115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Z, Yuan X, Luo Y, He Y, Jiang Y, Chen ZK, Sun E (2009) Evaluating the effects of immunosuppressants on human immunity using cytokine profiles of whole blood. Cytokine 45:141–147

    Article  CAS  PubMed  Google Scholar 

  • Liu G, Lu S, Wang X, Page ST, Higano CS, Plymate SR, Greenberg NM, Sun S, Li Z, Wu JD (2013) Perturbation of NK cell peripheral homeostasis accelerates prostate carcinoma metastasis. J Clin Investig 123:4410–4422

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lopez-Soto A, Gonzalez S, Smyth MJ, Galluzzi L (2017) Control of metastasis by by NK Cells. Cancer Cell 32(2):135–154. https://doi.org/10.1016/j.ccell.2017.06.009

    Article  CAS  PubMed  Google Scholar 

  • Lugthart G, Melsen JE, Vervat C, van Ostaijen-Ten Dam MM, Corver WE, Roelen DL et al (2016) Human lymphoid tissues harbor a distinct CD69+CXCR6+ NK cell population. J Immunol 197:78–84. https://doi.org/10.4049/jimmunol.1502603

    Article  CAS  PubMed  Google Scholar 

  • Lupo KB, Matosevic S (2019) Natural killer cells as allogeneic effectors in adoptive cancer immunotherapy. Cancers 11:769

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lusty E, Poznanski SM, Kwofie K, Mandur TS, Lee DA, Richards CD, Ashkar AA (2017) IL-18/IL-15/IL-12 synergy induces elevated and prolonged IFN-γ production by ex vivo expanded NK cells which is not due to enhanced STAT4 activation. Mol Immunol 88:138–147

    Article  CAS  PubMed  Google Scholar 

  • Messaoudene M, Fregni G, Fourmentraux-Neves E, Chanal J, Maubec E, Mazouz-Dorval S et al (2014) Mature cytotoxic CD56(bright)/CD16(+) natural killer cells can infiltrate lymph nodes adjacent to metastatic melanoma. Cancer Res 74:81–92. https://doi.org/10.1158/0008-5472.CAN-13-1303

    Article  CAS  PubMed  Google Scholar 

  • Michel T, Poli A, Cuapio A, Briquemont B, Iserentant G, Ollert M et al (2016) Human CD56bright NK cells: an update. J Immunol 196:2923–2931. https://doi.org/10.4049/jimmunol.1502570

    Article  CAS  PubMed  Google Scholar 

  • Mikulski D, Robak P, Perdas E, Węgłowska E, Łosiewicz A, Dróżdż I, Jarych D, Misiewicz M, Szemraj J, Fendler W, Robak T (2021) Pretreatment serum levels of IL-1 receptor antagonist and IL-4 are predictors of overall survival in multiple myeloma patients treated with bortezomib. J Clin Med 11(1):112. https://doi.org/10.3390/jcm11010112

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Miliotou AN, Papadopoulou LC (2018) CAR T-cell therapy: A new era in cancer immunotherapy. Current pharmaceutical biotechnology 19(1):5–18. https://doi.org/10.2174/1389201019666180418095526

    Article  CAS  PubMed  Google Scholar 

  • Mirjačić Martinović KM, Babović NLJ, Džodić RR, Jurišić VB, Tanić NT, Konjević GM (2014) Decreased expression of NKG2D, NKp46, DNAM-1 receptors, and intracellular perforin and STAT-1 effector molecules in NK cells and their dim and bright subsets in metastatic melanoma patients. Melanoma Res 24:295–304

    Article  PubMed  Google Scholar 

  • Mirjačić Martinović K, Babović N, Džodić R, Jurišić V, Matković S, Konjević G (2015) Favorable in vitro effects of combined IL-12 and IL-18 treatment on NK cell cytotoxicity and CD25 receptor expression in metastatic melanoma patients. J Transl Med 13:120

    Article  PubMed  PubMed Central  Google Scholar 

  • Mirjačić Martinović K, Babović NL, Džodić RR, Jurišić V, Ninković A, Konjević G (2016) Beneficial in-vitro effects of interleukin-2, interleukin-12, and their combination on functional and receptor characteristics of natural killer cells in metastatic melanoma patients with normal serum lactate dehydrogenase levels. Melanoma Res 26:551–564

    Article  PubMed  Google Scholar 

  • Mirjačić Martinović K, Vuletić A, Mališić E, Srdić-Rajić T, Tišma Miletić N, Babović N, Jurišić V (2022) Increased circulating TGF-β1 is associated with impairment in NK cell effector functions in metastatic melanoma patients. Growth Factors 40(5–6):231–239. https://doi.org/10.1080/08977194.2022.2124915

    Article  CAS  PubMed  Google Scholar 

  • Mirjačić Martinović K, Vuletić A, Tišma Miletić N, Matković S, Gavrilović D, Ninković A, Jurišić V, Babović N (2023) Circulating IL-6 is associated with disease progression in BRAFwt metastatic melanoma patients receiving anti-PD-1 therapy. J Clin Pathol 8:jcp-2022-208615. https://doi.org/10.1136/jcp-2022-208615

    Article  Google Scholar 

  • Montaldo E, Vacca P, Vitale C, Moretta F, Locatelli F, Mingari MC et al (2016) Human innate lymphoid cells. Immunol Lett 179:2–8

    Article  CAS  PubMed  Google Scholar 

  • Moretta A, Bottino C, Vitale M, Pende D, Biassoni R, Mingari MC, Moretta L (1996) Receptors for HLA class-I molecules in human natural killer cells. Annu Rev Immunol 14:619–648

    Article  CAS  PubMed  Google Scholar 

  • Moretta A, Bottino C, Mingari MC, Biassoni R, Moretta L (2002) What is a natural killer cell? Nat Immunol 3(1):6–8

    Article  CAS  PubMed  Google Scholar 

  • Moretta L, Montaldo E, Vacca P, Del Zotto G, Moretta F, Merli P, Locatelli F, Mingari MC (2014) Human natural killer cells: origin, receptors, function, and clinical applications. Int Arch Allergy Immunol 164(4):253–264

    Article  CAS  PubMed  Google Scholar 

  • Moretta L, Bottino C, Pende D, Mingari MC, Biassoni R, Moretta A (2022) Human natural killer cells: their origin, receptors and function. Eur J Immunol 32(5):1205–1211

    Article  Google Scholar 

  • Morisaki T, Onishi H, Katano M (2012) Cancer immunotherapy using NKG2D and DNAM-1systems. Anticancer Res 32:2241–2247

    CAS  PubMed  Google Scholar 

  • Munari E, Zamboni G, Sighele G, Marconi M, Sommaggio M, Lunardi G et al (2019) Expression of programmed cell death ligand 1 in non-small cell lung cancer: comparison between cytologic smears, core biopsies, and whole sections using the SP263 assay. Cancer Cytopathol 127:52–61. https://doi.org/10.1002/cncy.22083

    Article  CAS  PubMed  Google Scholar 

  • Nagler A, Lanier LL, Cwirla S, Phillips JH (1989) Comparative studies of human FcRIII-positive and negative natural killer cells. J Immunol 143(10):3183–3191

    Article  CAS  PubMed  Google Scholar 

  • Noh H, Hu J, Wang X, Xia X, Satelli A, Li S (2015) Immune checkpoint regulator PD-L1 expression on tumor cells by contacting CD11b positive bone marrow derived stromal cells. Cell Commun Signal 13:14

    Article  PubMed  PubMed Central  Google Scholar 

  • Norris PJ, Nixon DF, Lanier LL (2010) CD57 defines a functionally distinct population of mature NK cells in the human CD56dimCD16+ NK-cell subset. Blood 116:3865–3874

    Article  PubMed  PubMed Central  Google Scholar 

  • Oelsner S, Waldmann A, Billmeier A, Röder J, Lindner A, Ullrich E, Marschalek R, Dotti G, Jung G, GroßeHovest L et al (2019) Genetically engineered CAR NK cells display selective cytotoxicity against FLT3-positive B-ALL and inhibit in vivo leukemia growth. Int J Cancer 145:1935–1945

    CAS  PubMed  Google Scholar 

  • Olson B, Sullivan J, Burlingham W (2013) Interleukin 35: a key mediator of suppression and the propagation of infectious tolerance. Front Immunol 4:315

    Article  PubMed  PubMed Central  Google Scholar 

  • Palamarchuk AI, Alekseeva NA, Streltsova MA, Ustiuzhanina MO, Kobyzeva PA, Kust SA, Grechikhina MV, Boyko AA, Shustova OA, Sapozhnikov AM, Kovalenko EI (2021) Increased susceptibility of the CD57- NK cells expressing KIR2DL2/3 and NKG2C to iCasp9 gene retroviral transduction and the relationships with proliferative potential, activation degree, and death induction response. Int J Mol Sci 22(24):13326

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pickup M, Novitskiy S, Moses HL (2013) The roles of TGF beta in the tumour microenvironment. Nat Rev Cancer 13(11):788–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Porter DL, Levine BL, Kalos M, Bagg A, June CH (2011) Chimeric antigen receptor-modified T cells in chronic lymphoid leukemia. N Engl J Med 365:725–733

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Raulet DH, Vance RE (2006) Self-tolerance of natural killer cells. Nat Rev Immunol 6(7):520–531

    Article  CAS  PubMed  Google Scholar 

  • Romagnani C, Juelke K, Falco M, Morandi B, D’Agostino A, Costa R, Ratto G et al (2007) CD56brightCD16-killer Ig-like receptor-NK cells display longer telomeres and acquire features of CD56dim NK cells upon activation. J Immunol 178:4947–4955

    Article  CAS  PubMed  Google Scholar 

  • Romee R, Rosario M, Berrien-Elliott MM, Wagner JA, Jewell BA, Schappe T et al (2016) Cytokine-induced memory-like natural killer cells exhibit enhanced responses against myeloid leukemia. Sci Transl Med 8(357):357ra123. https://doi.org/10.1126/scitranslmed.aaf2341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rosenberg SA (2014) IL-2: The first effective immunotherapy for human cancer. J Immunol 192:5451–5458

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Mulé JJ, Spiess PJ, Reichert CM, Schwarz SL (1985) Regression of established pulmonary metastases and subcutaneous tumor mediated by the systemic administration of high-dose recombinant interleukin 2. J Exp Med 161(5):1169–1188

    Article  CAS  PubMed  Google Scholar 

  • Rosenberg SA, Restifo NP, Yang JC, Morgan RA, Dudley ME (2008) Adoptive cell transfer: a clinical path to effective cancer immunotherapy. Nat Rev Cancer 8:299–308

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanchez-Correa B, Gayoso I, Bergua JM, Casado JG, Morgado S, Solana R et al (2012) Decreased expression of DNAM-1 on NK cells from acute myeloid leukemia patients. Immunol Cell Biol 90(1):109–115. https://doi.org/10.1038/icb.2011.15

    Article  CAS  PubMed  Google Scholar 

  • Sansoni PA, Cossarizza V, Brianti F, Fagnoni G, Snelli D, Monti A, Marcato G, Passeri C, Ortolani E, Forti, et al. (1993) Lymphocyte subsets and natural killer cell activity in healthy old people and centenarians. Blood 82:2767–2773

    Article  CAS  PubMed  Google Scholar 

  • Schmid C, Labopin M, Nagler A, Bornhäuser M, Finke J, Fassas A et al (2007) Donor lymphocyte infusion in the treatment of first hematological relapse after allogeneic stem-cell transplantation in adults with acute myeloid leukemia: a retrospective risk factors analysis and comparison with other strategies by the EBMT Acute Leukemia Working Party. J Clin Oncol 25(31):4938–4945. https://doi.org/10.1200/JCO.2007.11.6053

    Article  CAS  PubMed  Google Scholar 

  • Smyth MJ, Hayakawa Y, Takeda K, Yagita H (2002) New aspects of natural-killer-cell surveillance and therapy of cancer. Nat Rev Cancer 2:850–861

    Article  CAS  PubMed  Google Scholar 

  • Snyder MR, Weyand CM, Goronzy JJ (2004) The double life of NK receptors: stimulation or co-stimulation? Trends Immunol 25:25–32

    Article  CAS  PubMed  Google Scholar 

  • Sojka DK, Plougastel-Douglas B, Yang L, Pak-Wittel MA, Artyomov MN, Ivanova Y et al (2014) Tissue-resident natural killer (NK) cells are cell lineages distinct from thymic and conventional splenic NK cells. elife 3:e01659

    Article  PubMed  PubMed Central  Google Scholar 

  • Spits H, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G, Koyasu S, Locksley RM, McKenzie AM, Mebius RE, Powrie F, Vivier E (2013) Innate lymphoid cells–a proposal for uniform nomenclature. Nat Rev Immunol 13(2):145–149

    Article  CAS  PubMed  Google Scholar 

  • Spits H, Bernink JH, Lanier L (2016) NK cells and type 1 innate lymphoid cells: Partners in host defense. Nat Immunol 17:758–764

    Article  CAS  PubMed  Google Scholar 

  • Streltsova MA, Barsov E, Erokhina SA, Kovalenko EI (2017) Retroviral gene transfer into primary human NK cells activated by IL-2 and K562 feeder cells expressing membrane-bound IL-21. J Immunol Methods 450:90–94

    Article  CAS  PubMed  Google Scholar 

  • Sun H, Sun C (2019) The rise of NK cell checkpoints as promising therapeutic targets in cancer immunotherapy. Front Immunol 10:2354. https://doi.org/10.3389/fimmu.2019.02354

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takeda K, Hayakawa Y, Smyth MJ, Kayagaki N, Yamaguchi N, Kakuta S, Iwakura Y, Yagita H, Okumura K (2001) Involvement of tumor necrosis factor-related apoptosis-inducing ligand in surveillance of tumor metastasis by liver natural killer cells. Nat Med 7(1):94–100. https://doi.org/10.1038/83416

    Article  CAS  PubMed  Google Scholar 

  • Tang L, Peng H, Zhou J, Chen Y, Wei H, Sun R et al (2016) Differential phenotypic and functional properties of liver-resident NK cells and mucosal ILC1s. J Autoimmun 67:29–35

    Article  CAS  PubMed  Google Scholar 

  • Topalian SL, Hodi FS, Brahmer JR, Gettinger SN, Smith DC, McDermott DF et al (2012) Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. N Engl J Med 366:2443–2454. https://doi.org/10.1056/NEJMoa1200690

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trinchieri G (1989) Biology of natural killer cells. Adv Immunol 47:187–376

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tursz T, Dokhelar MC, Lipinski M, Amiel JL (1982) Low NK cell activity in patients with malignant lymphoma. Cancer 50:2333–2335

    Article  CAS  PubMed  Google Scholar 

  • Vivier E, Nunes JA, Vely F (2004) Natural killer cell signaling pathways. Science 306(5701):1517–1519

    Article  CAS  PubMed  Google Scholar 

  • Vivier E, Raulet DH, Moretta A, Caligiuri MA, Zitvogel L, Lanier LL, Yokoyama MY, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49. https://doi.org/10.1126/science.1198687

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP, Eberl G et al (2018) Innate lymphoid cells, 10 years on. Cell 174:1054–1066

    Article  CAS  PubMed  Google Scholar 

  • Vuletić A, Jurišić V, Jovanić I, Milovanović Z, Nikolić S, Konjević G (2013) Distribution of several activating and inhibitory receptors on CD3(−)CD56(+) NK cells in regional lymph nodes of melanoma patients. J Surg Res 183:860–868

    Article  PubMed  Google Scholar 

  • Vuletić A, Jovanić A, Jurišić V, Milovanović Z, Nikolić S, Tanić N, Konjević G (2015) In-vitro activation of natural killer cells from regional lymph nodes of melanoma patients with interleukin-2 and interleukin-15. Melanoma Res 25:22–34

    Article  PubMed  Google Scholar 

  • Vuletić A, Jovanić I, Jurišić V, Milovanović Z, Nikolić S, Spurnić I, Konjević G (2020a) IL-2 And IL-15 Induced NKG2D, CD158a and CD158b expression on T, NKT- like and NK cell lymphocyte subsets from regional lymph nodes of melanoma patients. Pathol Oncol Res 26(1):223–231

    Article  PubMed  Google Scholar 

  • Vuletić AM, Konjević GM, Larsen AK, Babović NL, Jurišić VB, Krivokuća A, Mirjačić Martinović KM (2020b) Interleukin-4-induced natural killer cell antitumor activity in metastatic melanoma patients. Eur Cytokine Netw 3. https://doi.org/10.1684/ecn.2020.0449

  • Wang KS, Frank DA, Ritz J (2000) Interleukin-2 enhances the response of natural killer cells to interleukin-12 through up-regulation of the interleukin-12 receptor and STAT4. Blood 95:3183–3190

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Erbe AK, Hank JA, Morris ZS, Sondel PM (2015) NK cell-Mediated antibody-Dependent cellular cytotoxicity in cancer immunotherapy. Front Immunol 6:368

    Article  PubMed  PubMed Central  Google Scholar 

  • Whiteside TL (2008) The tumor microenvironment and its role in promoting tumor growth. Oncogene 27(45):5904–5912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wolf D, Barreras H, Copsel SN, Komanduri KV, Levy RB (2022) Improved NK cell recovery following use of PTCy or treg expanded donors in experimental MHC-matched allogeneic HSCT. Transplant Cell Ther 28(6):303.e1–303.e7. https://doi.org/10.1016/j.jtct.2022.03.012

    Article  CAS  PubMed  Google Scholar 

  • Xu L, Chen HD, Shen MJ, Yang D-R, Fang L, Weng G, Tsai Y, Keng PC, Chen Y, Lee SO (2017) Inhibition of IL-6-JAK/Stat3 signaling in castration-resistant prostate cancer cells enhances the NK cell-mediated cytotoxicity via alteration of PD-L1/NKG2D ligand levels. Mol Oncol 12:3. https://doi.org/10.1002/1878-0261.12135

    Article  CAS  Google Scholar 

  • Xue Y, Qian K, Sun Y, Xiao L, Shi X (2021) Application of TGF-beta1, TIMP-1 and TIMP-2 small interfering RNAs can alleviate CCl(4)-induced hepatic fibrosis in rats by rebalancing Th1/Th2 cytokines. Exp Ther Med 22(3):963

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yokoyama WM, Ugolini S (2011) Innate or adaptive immunity? The example of natural killer cells. Science 331(6013):44–49

    Article  PubMed  PubMed Central  Google Scholar 

  • Yokoyama WM, Kim S, French AR (2004) The dynamic life of natural killer cells. Annu Rev Immunol 22:405–429

    Article  CAS  PubMed  Google Scholar 

  • Zafirova B, Wensveen FM, Gulin M, Polić B (2011) Regulation of immune cell function and differentiation by the NKG2D receptor. Cell Mol Life Sci 68:3519–3529

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang Q, Bi J, Zheng X, Chen Y, Wang H, Wu W et al (2018) Blockade of the checkpoint receptor TIGIT prevents NK cell exhaustion and elicits potent anti-tumor immunity. Nat Immunol 19(7):723–732. https://doi.org/10.1038/s41590-018-0132-0

    Article  CAS  PubMed  Google Scholar 

  • Zwirner NW, Domaica CI (2010) Cytokine regulation of natural killer cell effector functions. Biofactors 36:274–288

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the Ministry of Science, Technological Development and Innovation, Republic of Serbia, Agreements Numbers: 451-03-47/2023-01/200111.

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this entry

Check for updates. Verify currency and authenticity via CrossMark

Cite this entry

Jurisic, V. (2023). Significance of NK Cell in Cancer. In: Rezaei, N. (eds) Handbook of Cancer and Immunology. Springer, Cham. https://doi.org/10.1007/978-3-030-80962-1_15-1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80962-1_15-1

  • Received:

  • Accepted:

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80962-1

  • Online ISBN: 978-3-030-80962-1

  • eBook Packages: Springer Reference Biomedicine and Life SciencesReference Module Biomedical and Life Sciences

Publish with us

Policies and ethics