Skip to main content

Advertisement

Log in

Function of innate lymphoid cells in the immune-related disorders

  • Review Article
  • Published:
Human Cell Aims and scope Submit manuscript

Abstract

Innate lymphoid cells (ILCs) are a recently described group of innate immune cells that mirror the characteristics of CD4+ T cell subsets. Based on their transcriptional factor and cytokine profile, ILCs family is divided into main subgroups—ILC1s, ILC2s, and ILC3s. Recently, one new subpopulation of ILCs with immunosuppressive characteristics has been described and named as regulatory ILCs. Various roles of ILCs have been confirmed including the role during the response to microbial signals, the role in inflammation and process of tissue repair. Function of ILCs is mediated through the cytokines production and direct cell-to-cell contact. This article summarizes in detail, the relationship between the ILCs and various immune-related disorders.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Origins TJ. On the origin of the immune system. Science. 2009;324:580–2.

    Article  Google Scholar 

  2. Spits H, Cupedo T. Innate lymphoid cells: emerging insights in development, lineage relationships, and function. Annu Rev Immunol. 2012;30:647–75.

    Article  CAS  PubMed  Google Scholar 

  3. Diefenbach A, Colonna M, Koyasu S. Development, differentiation, and diversity of innate lymphoid cells. Immunity. 2014;41:354–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Eberl G, Colonna M, Di Santo JP, et al. Innate lymphoid cells: a new paradigm in immunology. Science. 2015;348:6566.

    Article  CAS  Google Scholar 

  5. Spits H, Di Santo JP. The expanding family of innate lymphoid cells: regulators and effectors of immunity and tissue remodeling. Nat Immunol. 2011;12:21–7.

    Article  CAS  PubMed  Google Scholar 

  6. Artis D, Spits H. The biology of innate lymphoid cells. Nature. 2015;517:293–301.

    Article  CAS  PubMed  Google Scholar 

  7. Brestoff JR, Kim BS, Saenz SA, et al. Group 2 innate lymphoid cells promote beiging of white adipose tissue and limit obesity. Nature. 2015;519:242–6.

    Article  CAS  PubMed  Google Scholar 

  8. Lee MW, Odegaard JI, Mukundan L, et al. Activated type 2 innate lymphoid cells regulate beige fat biogenesis. Cell. 2015;160:74–87.

    Article  CAS  PubMed  Google Scholar 

  9. Geremia A, Arancibia-Carcamo CV, Fleming MP, et al. IL-23-responsive innate lymphoid cells are increased in inflammatory bowel disease. J Exp Med. 2011;208:1127–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Wang S, Xia P, Chen Y, et al. Regulatory innate lymphoid cells control innate intestinal inflammation. Cell. 2017;171(201–216):e218.

    Google Scholar 

  11. Spits H, Artis D, Colonna M, et al. Innate lymphoid cells-a proposal for uniform nomenclature. Nat Rev Immunol. 2013;13:145–9.

    Article  CAS  PubMed  Google Scholar 

  12. Cortez VS, Colonna M. Diversity and function of group 1 innate lymphoid cells. Immunol Lett. 2016;179:19–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fuchs A, Vermi W, Lee JS, et al. Intraepithelial type 1 innate lymphoid cells are a unique subset of IL-12- and IL-15-responsive IFN-gamma-producing cells. Immunity. 2013;38:769–81.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Mjosberg J, Spits H. Human innate lymphoid cells. J Allergy Clin Immunol. 2016;138:1265–76.

    Article  CAS  PubMed  Google Scholar 

  15. Jurisić V, Stojacić-Djenić S, Colović N, Konjević G. The role of cytokine in regulation of the natural killer cell activity. Srp Arh Celok Lek. 2008;136(7–8):423–9.

    Article  PubMed  Google Scholar 

  16. Simoni Y, Newell EW. Dissecting human ILC heterogeneity: more than just three subsets. Immunology. 2018;153:297–303.

    Article  CAS  PubMed  Google Scholar 

  17. Roan F, Ziegler SF. Human group 1 innate lymphocytes are negative for surface CD3 epsilon but express CD5. Immunity. 2017;46:758–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Mjosberg JM, Trifari S, Crellin NK, et al. Human IL-25- and IL-33-responsive type 2 innate lymphoid cells are defined by expression of CRTH2 and CD161. Nat Immunol. 2011;12:1055–62.

    Article  CAS  PubMed  Google Scholar 

  19. Monticelli LA, Sonnenberg GF, Abt MC, et al. Innate lymphoid cells promote lung-tissue homeostasis after infection with influenza virus. Nat Immunol. 2011;12:1045–54.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Salimi M, Barlow JL, Saunders SP, et al. A role for IL-25 and IL-33-driven type-2 innate lymphoid cells in atopic dermatitis. J Exp Med. 2013;210:2939–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Kim BS, Siracusa MC, Saenz SA, et al. TSLP elicits IL-33-independent innate lymphoid cell responses to promote skin inflammation. Sci Transl Med. 2013;5:170ra116.

    Article  CAS  Google Scholar 

  22. Turner JE, Morrison PJ, Wilhelm C, et al. IL-9-mediated survival of type 2 innate lymphoid cells promotes damage control in helminth-induced lung inflammation. J Exp Med. 2013;210:2951–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Roediger B, Weninger W. Group 2 innate lymphoid cells in the regulation of immune responses. Adv Immunol. 2015;125:111–54.

    Article  CAS  PubMed  Google Scholar 

  24. Liu M, Zhang C. The role of innate lymphoid cells in immune-mediated liver diseases. Front Immunol. 2017;8:695.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Hughes T, Becknell B, Freud AG, et al. Interleukin-1beta selectively expands and sustains interleukin-22 + immature human natural killer cells in secondary lymphoid tissue. Immunity. 2010;32:803–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Coccia M, Harrison OJ, Schiering C, et al. IL-1beta mediates chronic intestinal inflammation by promoting the accumulation of IL-17A secreting innate lymphoid cells and CD4(+) Th17 cells. J Exp Med. 2012;209:1595–609.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Neurath MF. Cytokines in inflammatory bowel disease. Nat Rev Immunol. 2014;14:329–42.

    Article  CAS  PubMed  Google Scholar 

  28. Hepworth MR, Monticelli LA, Fung TC, et al. Innate lymphoid cells regulate CD4+ T-cell responses to intestinal commensal bacteria. Nature. 2013;498:113–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Mortha A, Chudnovskiy A, Hashimoto D, et al. Microbiota-dependent crosstalk between macrophages and ILC3 promotes intestinal homeostasis. Science. 2014;343:1249288.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Melo-Gonzalez F, Hepworth MR. Functional and phenotypic heterogeneity of group 3 innate lymphoid cells. Immunology. 2017;150:265–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Cording S, Medvedovic J, Cherrier M, et al. Development and regulation of RORgammat(+) innate lymphoid cells. FEBS Lett. 2014;588:4176–81.

    Article  CAS  PubMed  Google Scholar 

  32. Yang Q, Bhandoola A. The development of adult innate lymphoid cells. Curr Opin Immunol. 2016;39:114–20.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Zook EC, Kee BL. Development of innate lymphoid cells. Nat Immunol. 2016;17:775–82.

    Article  CAS  PubMed  Google Scholar 

  34. Gasteiger G, Rudensky AY. Interactions between innate and adaptive lymphocytes. Nat Rev Immunol. 2014;14:631–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Pulendran B. The varieties of immunological experience: of pathogens, stress, and dendritic cells. Annu Rev Immunol. 2015;33:563–606.

    Article  CAS  PubMed  Google Scholar 

  36. Jiao L, Gao X, Joyee AG, et al. NK cells promote type 1 T cell immunity through modulating the function of dendritic cells during intracellular bacterial infection. J Immunol. 2011;187:401–11.

    Article  CAS  PubMed  Google Scholar 

  37. Halim TY, Steer CA, Matha L, et al. Group 2 innate lymphoid cells are critical for the initiation of adaptive T helper 2 cell-mediated allergic lung inflammation. Immunity. 2014;40:425–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Tumanov AV, Koroleva EP, Guo X, et al. Lymphotoxin controls the IL-22 protection pathway in gut innate lymphoid cells during mucosal pathogen challenge. Cell Host Microbe. 2011;10:44–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Dong C, Juedes AE, Temann UA, et al. ICOS co-stimulatory receptor is essential for T-cell activation and function. Nature. 2001;409:97–101.

    Article  CAS  PubMed  Google Scholar 

  40. Simoni Y, Fehlings M, Kloverpris HN, et al. Human innate lymphoid cell subsets possess tissue-type based heterogeneity in phenotype and frequency. Immunity. 2017;46:148–61.

    Article  CAS  PubMed  Google Scholar 

  41. Germain C, Meier A, Jensen T, et al. Induction of lectin-like transcript 1 (LLT1) protein cell surface expression by pathogens and interferon-gamma contributes to modulate immune responses. J Biol Chem. 2011;286:37964–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Dinarello CA, Novick D, Kim S, et al. Interleukin-18 and IL-18 binding protein. Front Immunol. 2013;4:289.

    PubMed  PubMed Central  Google Scholar 

  43. Walker JA, Barlow JL, McKenzie AN. Innate lymphoid cells-how did we miss them? Nat Rev Immunol. 2013;13:75–87.

    Article  CAS  PubMed  Google Scholar 

  44. Abt MC, Lewis BB, Caballero S, et al. Innate immune defenses mediated by two ILC subsets are critical for protection against acute Clostridium difficile infection. Cell Host Microbe. 2015;18:27–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Klose CSN, Flach M, Mohle L, et al. Differentiation of type 1 ILCs from a common progenitor to all helper-like innate lymphoid cell lineages. Cell. 2014;157:340–56.

    Article  CAS  PubMed  Google Scholar 

  46. Yang Z, Tang T, Wei X, et al. Type 1 innate lymphoid cells contribute to the pathogenesis of chronic hepatitis B. Innate Immun. 2015;21:665–73.

    Article  CAS  PubMed  Google Scholar 

  47. Braudeau C, Amouriaux K, Neel A, et al. Persistent deficiency of circulating mucosal-associated invariant T (MAIT) cells in ANCA-associated vasculitis. J Autoimmun. 2016;70:73–9.

    Article  CAS  PubMed  Google Scholar 

  48. Kim J, Kim G, Min H. Pathological and therapeutic roles of innate lymphoid cells in diverse diseases. Arch Pharm Res. 2017;40:1249–564.

    Article  CAS  PubMed  Google Scholar 

  49. Schepis D, Gunnarsson I, Eloranta ML, et al. Increased proportion of CD56bright natural killer cells in active and inactive systemic lupus erythematosus. Immunology. 2009;126:140–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Roan F, Stoklasek TA, Whalen E, et al. CD4+ group 1 innate lymphoid cells (ILC) form a functionally distinct ILC subset that is increased in systemic sclerosis. J Immunol. 2016;196:2051–62.

    Article  CAS  PubMed  Google Scholar 

  51. Chen P, Vu T, Narayanan A, et al. Pharmacokinetic and pharmacodynamic relationship of AMG 811, an anti-IFN-gamma IgG1 monoclonal antibody, in patients with systemic lupus erythematosus. Pharm Res. 2015;32:640–53.

    Article  CAS  PubMed  Google Scholar 

  52. Werth VP, Fiorentino D, Sullivan BA, et al. Brief report: pharmacodynamics, safety, and clinical efficacy of AMG 811, a human anti-interferon-gamma antibody, in patients with discoid lupus erythematosus. Arthritis Rheumatol. 2017;69:1028–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bromberg JF, Horvath CM, Wen Z, et al. Transcriptionally active Stat1 is required for the antiproliferative effects of both interferon alpha and interferon gamma. Proc Natl Acad Sci USA. 1996;93:7673–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Martini M, Testi MG, Pasetto M, et al. IFN-gamma-mediated upmodulation of MHC class I expression activates tumor-specific immune response in a mouse model of prostate cancer. Vaccine. 2010;28:3548–57.

    Article  CAS  PubMed  Google Scholar 

  55. van Beek JJP, Martens AWJ, Bakdash G, et al. Innate lymphoid cells in tumor immunity. Biomedicines. 2016;4:7.

    Article  CAS  PubMed Central  Google Scholar 

  56. Dadi S, Chhangawala S, Whitlock BM, et al. Cancer immunosurveillance by tissue-resident innate lymphoid cells and innate-like T Cells. Cell. 2016;164:365–77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Halim TY. Group 2 innate lymphoid cells in disease. Int Immunol. 2016;28:13–22.

    CAS  PubMed  Google Scholar 

  58. Holgate ST. Innate and adaptive immune responses in asthma. Nat Med. 2012;18:673–83.

    Article  CAS  PubMed  Google Scholar 

  59. Bousquet J, Clark TJ, Hurd S, et al. GINA guidelines on asthma and beyond. Allergy. 2007;62:102–12.

    CAS  PubMed  Google Scholar 

  60. Kim HY, Umetsu DT, Dekruyff RH. Innate lymphoid cells in asthma: will they take your breath away? Eur J Immunol. 2016;46:795–806.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Drake LY, Kita H. Group 2 innate lymphoid cells in the lung. Adv Immunol. 2014;124:1–16.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Kabata H, Moro K, Koyasu S, et al. Group 2 innate lymphoid cells and asthma. Allergol Int. 2015;64:227–34.

    Article  CAS  PubMed  Google Scholar 

  63. Drake LY, Iijima K, Kita H. Group 2 innate lymphoid cells and CD4+ T cells cooperate to mediate type 2 immune response in mice. Allergy. 2014;69:1300–7.

    Article  CAS  PubMed  Google Scholar 

  64. Moffatt MF, Gut IG, Demenais F, et al. A large-scale, consortium-based genomewide association study of asthma. N Engl J Med. 2010;363:1211–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Barlow JL, Bellosi A, Hardman CS, et al. Innate IL-13-producing nuocytes arise during allergic lung inflammation and contribute to airways hyperreactivity. J Allergy Clin Immunol. 2012;129(191–198):e191–4.

    Article  CAS  Google Scholar 

  66. Wilhelm C, Turner JE, Van Snick J, et al. The many lives of IL-9: a question of survival? Nat Immunol. 2012;13:637–41.

    Article  CAS  PubMed  Google Scholar 

  67. Lee S, Lane AP. Chronic rhinosinusitis as a multifactorial inflammatory disorder. Curr Infect Dis Rep. 2011;13:159–68.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Akdis CA, Bachert C, Cingi C, et al. Endotypes and phenotypes of chronic rhinosinusitis: a PRACTALL document of the European Academy of Allergy and Clinical Immunology and the American Academy of Allergy, Asthma Immunology. J Allergy Clin Immunol. 2013;131:1479–90.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Ho J, Bailey M, Zaunders J, et al. Group 2 innate lymphoid cells (ILC2s) are increased in chronic rhinosinusitis with nasal polyps or eosinophilia. Clin Exp Allergy. 2015;45:394–403.

    Article  CAS  PubMed  Google Scholar 

  70. Ebbo M, Crinier A, Vely F, et al. Innate lymphoid cells: major players in inflammatory diseases. Nat Rev Immunol. 2017;17:665–78.

    Article  CAS  PubMed  Google Scholar 

  71. Kim BS, Wang K, Siracusa MC, et al. Basophils promote innate lymphoid cell responses in inflamed skin. J Immunol. 2014;193:3717–25.

    Article  CAS  PubMed  Google Scholar 

  72. Salimi M, Xue L, Jolin H, et al. Group 2 innate lymphoid cells express functional NKp30 receptor inducing type 2 cytokine production. J Immunol. 2016;196:45–54.

    Article  CAS  PubMed  Google Scholar 

  73. Moro K, Yamada T, Tanabe M, et al. Innate production of T(H)2 cytokines by adipose tissue-associated c-Kit(+)Sca-1(+) lymphoid cells. Nature. 2010;463:540–4.

    Article  CAS  PubMed  Google Scholar 

  74. Williams CM, Rahman S, Hubeau C, et al. Cytokine pathways in allergic disease. Toxicol Pathol. 2012;40:205–15.

    Article  CAS  PubMed  Google Scholar 

  75. Pulendran B, Artis D. New paradigms in type 2 immunity. Science. 2012;337:431–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Zaiss DMW, Gause WC, Osborne LC, et al. Emerging functions of amphiregulin in orchestrating immunity, inflammation, and tissue repair. Immunity. 2015;42:216–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Monticelli LA, Osborne LC, Noti M, et al. IL-33 promotes an innate immune pathway of intestinal tissue protection dependent on amphiregulin-EGFR interactions. Proc Natl Acad Sci USA. 2015;112:10762–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Molofsky AB, Nussbaum JC, Liang HE, et al. Innate lymphoid type 2 cells sustain visceral adipose tissue eosinophils and alternatively activated macrophages. J Exp Med. 2013;210:535–49.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Miller AM, Asquith DL, Hueber AJ, et al. Interleukin-33 induces protective effects in adipose tissue inflammation during obesity in mice. Circ Res. 2010;107:650–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  80. Spencer SP, Wilhelm C, Yang Q, et al. Adaptation of innate lymphoid cells to a micronutrient deficiency promotes type 2 barrier immunity. Science. 2014;343:432–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  81. Kim HY, Lee HJ, Chang YJ, et al. Interleukin-17-producing innate lymphoid cells and the NLRP3 inflammasome facilitate obesity-associated airway hyperreactivity. Nat Med. 2014;20:54–61.

    Article  CAS  PubMed  Google Scholar 

  82. Neumann K, Karimi K, Meiners J, et al. A proinflammatory role of type 2 innate lymphoid cells in murine immune-mediated hepatitis. J Immunol. 2017;198:128–37.

    Article  CAS  PubMed  Google Scholar 

  83. Sonnenberg GF, Artis D. Innate lymphoid cells in the initiation, regulation and resolution of inflammation. Nat Med. 2015;21:698–708.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  84. Malik TA. Inflammatory bowel disease: historical perspective, epidemiology, and risk factors. Surg Clin N Am. 2015;95:1105–22.

    Article  PubMed  Google Scholar 

  85. Pearson C, Thornton EE, McKenzie B, et al. ILC3 GM-CSF production and mobilisation orchestrate acute intestinal inflammation. Elife. 2016;5:e10066.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Longman RS, Diehl GE, Victorio DA, et al. CX(3)CR86(+) mononuclear phagocytes support colitis-associated innate lymphoid cell production of IL-22. J Exp Med. 2014;211:1571–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Villanova F, Flutter B, Tosi I, et al. Characterization of innate lymphoid cells in human skin and blood demonstrates increase of NKp44 + ILC3 in psoriasis. J Investig Dermatol. 2014;134(4):984–91.

    Article  CAS  PubMed  Google Scholar 

  88. Teunissen MBM, Munneke JM, Bernink JH, et al. Composition of innate lymphoid cell subsets in the human skin: enrichment of NCR(+) ILC3 in lesional skin and blood of psoriasis patients. J Investig Dermatol. 2014;134:2351–60.

    Article  CAS  PubMed  Google Scholar 

  89. Sospedra M, Martin R. Immunology of multiple sclerosis. Annu Rev Immunol. 2005;23:683–747.

    Article  CAS  PubMed  Google Scholar 

  90. Bielekova B, Goodwin B, Richert N, et al. Encephalitogenic potential of the myelin basic protein peptide (amino acids 83-99) in multiple sclerosis: results of a phase II clinical trial with an altered peptide ligand. Nat Med. 2000;6:1167–75.

    Article  CAS  PubMed  Google Scholar 

  91. Langrish CL, Chen Y, Blumenschein WM, et al. IL-23 drives a pathogenic T cell population that induces autoimmune inflammation. J Exp Med. 2005;201:233–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  92. Perry JS, Han S, Xu Q, et al. Inhibition of LTi cell development by CD25 blockade is associated with decreased intrathecal inflammation in multiple sclerosis. Sci Transl Med. 2012;4:145ra106.

    Article  CAS  PubMed  Google Scholar 

  93. Lock C, Hermans G, Pedotti R, et al. Gene-microarray analysis of multiple sclerosis lesions yields new targets validated in autoimmune encephalomyelitis. Nat Med. 2002;8:500–8.

    Article  CAS  PubMed  Google Scholar 

  94. Liu J, Duan Y, Cheng X, et al. IL-17 is associated with poor prognosis and promotes angiogenesis via stimulating VEGF production of cancer cells in colorectal carcinoma. Biochem Biophys Res Commun. 2011;407:348–54.

    Article  CAS  PubMed  Google Scholar 

  95. Langowski JL, Zhang X, Wu L, et al. IL-23 promotes tumour incidence and growth. Nature. 2006;442:461–5.

    Article  CAS  PubMed  Google Scholar 

  96. He S, Fei M, Wu Y, et al. Distribution and clinical significance of Th17 cells in the tumor microenvironment and peripheral blood of pancreatic cancer patients. Int J Mol Sci. 2011;12:7424–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pan B, Shen J, Cao J, et al. Interleukin-17 promotes angiogenesis by stimulating VEGF production of cancer cells via the STAT3/GIV signaling pathway in non-small-cell lung cancer. Sci Rep. 2015;5:16053.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Wu X, Yang T, Liu X, et al. IL-17 promotes tumor angiogenesis through Stat3 pathway mediated upregulation of VEGF in gastric cancer. Tumour Biol. 2016;37:5493–501.

    Article  CAS  PubMed  Google Scholar 

  99. Carrega P, Loiacono F, Di Carlo E, et al. NCR(+)ILC3 concentrate in human lung cancer and associate with intratumoral lymphoid structures. Nat Commun. 2015;6:8280.

    Article  CAS  PubMed  Google Scholar 

  100. Sugimoto K, Ogawa A, Mizoguchi E, et al. IL-22 ameliorates intestinal inflammation in a mouse model of ulcerative colitis. J Clin Investig. 2008;118:534–44.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors thank the support of the Ministry of Education, Science and Technological Development of the Republic of Serbia (projects numbers 175102, 175056).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vladimir Jurišić.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dzopalić, T., Božić-Nedeljković, B. & Jurišić, V. Function of innate lymphoid cells in the immune-related disorders. Human Cell 32, 231–239 (2019). https://doi.org/10.1007/s13577-019-00257-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13577-019-00257-1

Keywords

Navigation