Skip to main content

Characterizations and Functions of Transcription Factor Gene Families

  • Chapter
  • First Online:
The Moso Bamboo Genome

Part of the book series: Compendium of Plant Genomes ((CPG))

  • 254 Accesses

Abstract

As proteins that play important regulatory roles in vivo, transcription factors (TFs) have been extensively studied in various fields of molecular biology. TFs, such as MYB, MADS, Dof, and NAC, which have profound effects on plant growth and development, organ development, stress resistance, senescence, and stem cell localization. The achievements of TFs function research in moso bamboo are reviewed in this chapter, which will be helpful for the exploration of the function of those TFs and provide reference for the research of the functions of TFs in other species.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandrova K, Conger B (2002) Isolation of two somatic embryogenesis-related genes from orchardgrass (Dactylis glomerata). Plant Sci 162:301–307

    Article  CAS  Google Scholar 

  • Almada R, Cabrera N, Casaretto JA et al (2009) VvCO and VvCOL1, two CONSTANS homologous genes, are regulated during flower induction and dormancy in grapevine buds. Plant Cell Rep 28:1193–1203

    Article  CAS  PubMed  Google Scholar 

  • Ariel F, Manavella P, Dezar C et al (2007) The true story of the HD-Zip family. Trends Plant Sci 12(9):419–426

    Article  CAS  PubMed  Google Scholar 

  • Bai Q (2017) Identification, clone and function analysis of SAUR and DELLA genes in Moso Bamboo. Chinese Academy of Forestry

    Google Scholar 

  • Bai Q, Hou D, Li L et al (2017) Genome-wide analysis and expression characteristics of small auxin-up RNA (SAUR) genes in moso bamboo (Phyllostachys edulis). Genome 60(4):325–336

    Article  CAS  PubMed  Google Scholar 

  • Bailey P, Martin C, Toledo-Ortiz G et al (2003) Update on the basic helix-loop-helix transcription factor gene family in Arabidopsis thaliana. Plant Cell 15(11):2497–2502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bohlenius H, Huang T, Charbonnel-Campaa L et al (2016) CO/FT regulatory module controls timing of flowering and seasonal growth cessation in trees. Science 312:1040–1043

    Article  CAS  Google Scholar 

  • Brand U, Fletcher J, Hobe M et al (2000) Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. Science 289(5479):617–619

    Article  CAS  PubMed  Google Scholar 

  • Brewer P, Howles P, Dorian K et al (2004) PETAL LOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower. Development 131(16):4035–4045

    Article  CAS  PubMed  Google Scholar 

  • Cao Y, Han Y, Jin Q et al (2016) Comparative Genomic Analysis of the GRF Genes in Chinese Pear (Pyrus bretschneideri Rehd), Poplar (Populous), Grape (Vitis vinifera), Arabidopsis and Rice (Oryza sativa). Front Plant Sci 7:1750

    Article  PubMed  PubMed Central  Google Scholar 

  • Capili A, Schultz D, Rauscher F et al (2001) Solution structure of the PHD domain from the KAP-1 corepressor: structural determinants for PHD, RING and LIM zinc-binding domains. EMBO J 20(1):165–177

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chae K, Isaacs C, Reeves P et al (2012) Arabidopsis SMALL AUXIN UP RNA63 promotes hypocotyl and stamen filament elongation. Plant J 71(4):684–697

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Chen Z (2002) Potentiation of developmentally regulated plant defense response by AtWRKY18, a pathogen induced Arabidopsis transcription factor. Plant Physiol 129:706–716

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen W, Provart NJ, Glazebrook J et al (2002) Expression profile matrix of Arabidopsis transcription factor genes suggests their putative functions in response to environmental stresses. Plant Cell 14:559–574

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen D, Chen Z, Wu M et al (2017) Genome-wide identification and expression analysis of the HD-Zip gene family in Moso Bamboo (Phyllostachys edulis). J Plant Growth Regul 36(2):323–337

    Article  CAS  Google Scholar 

  • Cheng Z, Ge W, Li L et al (2017) Analysis of MADS-Box gene family reveals conservation in floral organ ABCDE model of Moso Bamboo (Phyllostachys edulis). Front Plant Sci 8:656

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng X, Xiong R, Liu H et al (2018) Basic helix-loop-helix gene family: Genome wide identification, phylogeny, and expression in Moso bamboo. Plant Physiol Biochem 132:104–119

    Article  CAS  PubMed  Google Scholar 

  • Cheng X, Xiong R, Yan H et al (2019) The trihelix family of transcription factors: functional and evolutionary analysis in Moso bamboo (Phyllostachys edulis). BMC Plant Biol 19(1):154

    Article  PubMed  PubMed Central  Google Scholar 

  • Cheng Z, Hou D, Ge W et al (2020) Integrated mRNA, microRNA transcriptome and degradome analyses provide insights into stamen development in moso bamboo. Plant Cell Physiol 61(1):76–87

    Article  CAS  PubMed  Google Scholar 

  • Chia T, Muller A, Jung C et al (2008) Sugar beet contains a large CONSTANS-LIKE gene family including a CO homologue that is independent of the early-bolting (B) gene locus. J Exp Bot 59:2735–2748

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ciolkowski I, Wanke D, Birkenbihl RP et al (2008) Studies on DNA-binding selectivity of WRKY transcription factors lend structural clues into WRKY-domain function. Plant Mol Biol 68:81–92

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui K, He C, Zhang J et al (2012) Temporal and spatial profiling of internode elongation-associated protein expression in rapidly growing culms of bamboo. J Proteome Res 11(4):2492–2507

    Article  CAS  PubMed  Google Scholar 

  • Danisman S (2016) TCP Transcription Factors at the Interface between Environmental Challenges and the Plant’s Growth Responses. Front Plant Sci 7(406):1930

    PubMed  PubMed Central  Google Scholar 

  • Dellagi A, Heilbronn J, Avrova A et al (2002) A potato gene encoding a WRKY-like transcription factor is induced in interactions with Erwinia carotovora subsp atroseptica and Phytophthora infestans and is coregulated with class I endochitinase expression. Mol. Plant-Microbe Interaction 13:1092–1101

    Article  Google Scholar 

  • Deslandes L, Olivier J, Theulières F et al (2002) Resistance to Ralstonia solanacearum in Arabidopsis thaliana is conferred by the recessive RRS1-R gene, a member of a novel family of resistance genes. Proc Natl Acad Sci USA 99:2404–2409

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ding J, Böhlenius H, Rühl MG et al (2018) GIGANTEA-like genes control seasonal growth cessation in Populus. New PhytolOgy 218:1491–1503

    Article  CAS  Google Scholar 

  • Doebley J, Stec A, Hubbard L (1997) The evolution of apical dominance in maize. Nature 386(6624):485–488

    Article  CAS  PubMed  Google Scholar 

  • Eulgem T, Somssich IE (2007) Networks of WRKY transcription factors in defense signaling. Curr Opin Plant Biol 10:366–371

    Article  CAS  PubMed  Google Scholar 

  • Fang Y, Xie K, Hou X et al (2010) Systematic analysis of GT factor family of rice reveals a novel subfamily involved in stress responses. Mol Genet Genomics 283(2):157–169

    Article  CAS  PubMed  Google Scholar 

  • Fornara F, Panigrahi KC, Gissot L et al (2009) Arabidopsis DOF transcription factors act redundantly to reduce CONSTANS expression and are essential for a photoperiodic flowering response. Dev Cell 17:75–86

    Article  CAS  PubMed  Google Scholar 

  • Gao Z, Zheng B, Peng Z (2010) Isolation of PeMADS1 Gene from Phyllostachys edulis and its transformation in Arabidopsis thaliana. Scientia Silvae Sinicae 46(10):37–41

    Google Scholar 

  • Gao J, Zhang Y, Zhang C et al (2014) Characterization of the floral transcriptome of moso bamboo (Phyllostachys edulis) at different flowering developmental stages by transcriptome sequencing and RNA-Seq analysis. PLoS One 9:e98910

    Google Scholar 

  • Gao Y, Liu H, Wang Y et al (2018) Genome-wide identification of PHD-finger genes and expression pattern analysis under various treatments in moso bamboo (Phyllostachys edulis). Plant Physiol Biochem 123:378–391

    Article  CAS  PubMed  Google Scholar 

  • Garber R, Kuroiwa A, Gehring W (1983) Genomic and cDNA clones of the homeotic locus Antennapedia in Drosophila. EMBO J 2(11):2027–2036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ge W, Zhang Y, Cheng Z et al (2017) Main regulatory pathways, key genes and microRNAs involved in flower formation and development of moso bamboo (Phyllostachys edulis). Plant Biotechnol J 15:82–96

    Article  CAS  PubMed  Google Scholar 

  • Gehring W, Qian Y, Billeter M et al (1994) Homeodomain-DNA recognition. Cell 78(2):211–223

    Article  CAS  PubMed  Google Scholar 

  • Gremski K, Ditta G, Yanofsky M (2007) The HECATE genes regulate female reproductive tract development in Arabidopsis thaliana. Development 134(20):3593–3601

    Article  CAS  PubMed  Google Scholar 

  • Griffifiths S, Dunford R, Coupland G et al (2003) The Evolution of CONSTANS-Like gene families in barley, rice, and Arabidopsis. Plant Physiol 131:1855–1867

    Article  CAS  Google Scholar 

  • Guo A, Zhu Q, Gu X et al (2008) Genome-wide identification and evolutionary analysis of the plant specific SBP-box transcription factor family. Gene 418:1–8

    Article  CAS  PubMed  Google Scholar 

  • Guo Z, Ma P, Yang G et al (2019) Genome sequences provide insights into the reticulate origin and unique traits of woody bamboos. Mol Plant 12(10):1353–1365

    Article  CAS  PubMed  Google Scholar 

  • Haecker A, Groß-Hardt R, Geiges B et al (2004) Expression dynamics of WOX genes mark cell fate decisions during early embryonic patterning in Arabidopsis thaliana. Development 131(3):657–668

    Article  CAS  PubMed  Google Scholar 

  • Harris J, Hrmova M, Lopato S et al (2011) Modulation of plant growth by HD-Zip class I and II transcription factors in response to environmental stimuli. New Phytol 190(4):823–837

    Article  CAS  PubMed  Google Scholar 

  • Higashi K, Ishiga Y, Inagaki Y et al (2008) Modulation of defense signal transduction by flagellin-induced WRKY41 transcription factor in Arabidopsis thaliana. Mol Gen Genet 279:303–312

    Article  CAS  Google Scholar 

  • Hinderhofer K, Zentgraf U (2001) Identification of a transcription factor specifically expressed at the onset of leaf senescence. Planta 213:469–473

    Article  CAS  PubMed  Google Scholar 

  • Hirakawa Y, Kondo Y, Fukuda H (2010) TDIF peptide signaling regulates vascular stem cell proliferation via the WOX4 homeobox gene in Arabidopsis. Plant Cell 22(8):2618–2629

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hou D, Cheng Z, Xie L et al (2018) The R2R3MYB gene family in Phyllostachys edulis: genome-wide analysis and identification of stress or development-related R2R3MYBs. Front Plant Sci 9:738

    Article  PubMed  PubMed Central  Google Scholar 

  • Hu X, Xu L (2016) Transcription factors WOX11/12 directly activate WOX5/7 to promote root primordia initiation and organogenesis. Plant Physiol 172(4):2363–2373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Imaizumi T, Tran H, Swartz T et al (2003) FKF1 is essential for photoperiodic-specifific light signaling in Arabidopsis. Nature 426:302–306

    Article  CAS  PubMed  Google Scholar 

  • Ishiguro S, Nakamura K (1994) Characterization of a cDNA encoding a novel DNA-binding protein, SPF1, that recognizes SP8 sequences in the 5′ upstream regions of genes coding for sporamin and β-amylase from sweet potato. Mol Gen Genet 244:563–571

    Article  CAS  PubMed  Google Scholar 

  • Jain M, Tyagi A, Khurana J (2006) Genome-wide analysis, evolutionary expansion, and expression of early auxin-responsive SAUR gene family in rice (Oryza sativa). Genomics 88(3):360–371

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Duan Y, Yin J et al (2014) Genome-wide identification and characterization of the Populus WRKY transcription factor family and analysis of their expression in response to biotic and abiotic stresses. J Exp Bot 65:6629–6644

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jin J, Feng T, De-Chang Y et al (2016) PlantTFDB 4.0: toward a central hub for transcription factors and regulatory interactions in plants. Nucleic Acids Res, pp gkw982

    Google Scholar 

  • Johnson C, Kolevski B, Smyth D (2002) Transparent Testa GLABRA2, a trichome and seed coat development gene of Arabidopsis, encodes a WRKY transcription factor. Plant Cell 14:1359–1375

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klein J, Saedler H, Huijser P (1996) A new family of DNA binding proteins includes putative transcriptional regulators of the Antirrhinum majus floral meristem identity gene SQUAMOSA. Mol Gen Genet 250:7–16

    CAS  PubMed  Google Scholar 

  • Knaap E, Kim J, Kende H et al (2000) A novel gibberellin-induced gene from rice and its potential regulatory role in stem growth. Plant Physiol 122:695–704

    Article  PubMed  PubMed Central  Google Scholar 

  • Knauss S, Rohrmeier T, Lehle L (2003) The auxin-induced maize gene ZmSAUR2 encodes a short-lived nuclear protein expressed in elongating tissues. J Biol Chem 278(26):23936–23943

    Article  CAS  PubMed  Google Scholar 

  • Kosugi S, Ohashi Y (1997) PCF1 and PCF2 specifically bind to cis elements in the rice proliferating cell nuclear antigen gene. Plant Cell 9(9):1607–1619

    CAS  PubMed  PubMed Central  Google Scholar 

  • Laux T, Mayer K, Berger J et al (1996) The WUSCHEL gene is required for shoot and floral meristem integrity in Arabidopsis. Development 122(1):87–96

    Article  CAS  PubMed  Google Scholar 

  • Ledent V, Vervoort M (2001) The basic helix-loop-helix protein family: comparative genomics and phylogenetic analysis. Genome Res 11(5):754–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li X, Duan X, Jiang H et al (2006) Genome-wide analysis of basic/helix-loop-helix transcription factor family in rice and Arabidopsis. Plant Physiol 141(4):1167–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li Z, Chen H, Li Q et al (2015) Three SAUR proteins SAUR76, SAUR77 and SAUR78 promote plant growth in Arabidopsis. Sci Rep 5:12477

    Article  PubMed  PubMed Central  Google Scholar 

  • Li L, Mu S, Cheng Z et al (2017) Characterization and expression analysis of the WRKY gene family in moso bamboo. Sci Rep 7:6675

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li X, Li J, Cai M et al (2020) Identification and evolution of the WUSCHEL-related homeobox protein family in Bambusoideae. Biomolecules 10(5):739

    Article  CAS  PubMed Central  Google Scholar 

  • Lie C, Kelsom C, Wu X (2012) WOX2 and STIMPY-LIKE/WOX8 promote cotyledon boundary formation in Arabidopsis. Plant J 72(4):674–682

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Cheng Z, Li X et al (2019) Expression analysis and regulation network identification of the CONSTANS-Like gene family in moso bamboo (Phyllostachys edulis) under photoperiod treatments. DNA and Cell Biol 38(7):607–626

    Google Scholar 

  • Liu J, Cheng Z, Xie L et al (2019) Multifaceted role of PheDof12-1 in the regulation of flowering time and abiotic stress responses in Moso Bamboo (Phyllostachys edulis). Int J Mol Sci 20(2):1–13.

    Google Scholar 

  • Li X, Xie L, Zheng H et al (2019) Transcriptome profiling of postharvest shoots identifies PheNAP2- and PheNAP3-promoted shoot senescence. Tree Physiol 39(12):2027–2044

    Google Scholar 

  • Liu J, Ekramoddoullah A (2009) Identification and characterization of the WRKY transcription factor family in Pinus monticola. Genome 52:77–88

    Article  CAS  PubMed  Google Scholar 

  • Liu J, Sheng L, Xu Y et al (2014) WOX11 and 12 are involved in the first-step cell fate transition during de novo root organogenesis in Arabidopsis. Plant Cell 26(3):1081–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu J, Huang R, Cheng Z et al (2017). Molecular cloning and expression analysis of the PheDof4-1 gene in moso bamboo (Phyllostachys edulis). Journal of Anhui Agricultural University 44(3): 398-403.

    Google Scholar 

  • Liu H, Wu M, Li F et al (2018) TCP Transcription factors in Moso Bamboo (Phyllostachys edulis): genome-wide identification and expression analysis. Front Plant Sci 9:1263

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu M, Wang M, Yang J et al (2019) Evolutionary and comparative expression analyses of tcp transcription factor gene family in land plants. Int J Mol Sci 20:3591

    Article  CAS  PubMed Central  Google Scholar 

  • Lu Z, Shao G, Xiong J et al (2015) MONOCULM 3, an ortholog of WUSCHEL in rice, is required for tiller bud formation. J Genet Genomics 42(2):71–78

    Article  PubMed  CAS  Google Scholar 

  • Ludwig S, Habera L, Dellaporta S, Wessler SR (1989) Lc, a member of the maize R gene family responsible for tissue-specific anthocyanin production, encodes a protein similar to transcriptional activators and contains the myc-homology region. Proc Natl Acad Sci USA 86(18):7092–7096

    Google Scholar 

  • Luo D, Carpenter R, Copsey L et al (1999) Control of organ asymmetry in flowers of antirrhinum. Cell 99(4):367–376

    Article  CAS  PubMed  Google Scholar 

  • Maren P, Silke S, Stefan B et al (2014) Senescence networking: WRKY18 is an upstream regulator, a downstream target gene, and a protein interaction partner of WRKY53. J. Plant Growth Regulation 33:106–118

    Article  CAS  Google Scholar 

  • Martíntrillo M, Cubas P (2010) TCP genes: a family snapshot ten years later. Trends Plant Sci 15(1):31–39

    Article  CAS  Google Scholar 

  • Miura K, Renhu N, Suzaki T (2020) The PHD finger of Arabidopsis SIZ1 recognizes trimethylated histone H3K4 mediating SIZ1 function and abiotic stress response. Commun Biol 3(1):23

    Article  PubMed  PubMed Central  Google Scholar 

  • Narusaka Y, Nakashima K, Shinwari Z et al (2003) Interaction between two cis-acting elements, ABRE and DRE, in ABA-dependent expression of Arabidopsis rd29A gene in response to dehydration and high-salinity stresses. Plant J 34:137–148

    Article  CAS  PubMed  Google Scholar 

  • Ni M, Tepperman J, Quail P et al (1998) PIF3, a phytochrome-interacting factor necessary for normal photoinduced signal transduction, is a novel basic helix-loop-helix protein. Cell 95(5):657–667

    Article  CAS  PubMed  Google Scholar 

  • Ohmori Y, Tanaka W, Kojima M et al (2013) WUSCHEL-RELATED HOMEOBOX4 is involved in meristem maintenance and is negatively regulated by the CLE gene FCP1 in rice. Plant Cell 25(1):229–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Omidbakhshfard M, Proost S, Fujikura U et al (2015) Growth-regulating factors (GRFs): a small transcription factor family with important functions in plant biology. Mol Plant 8:998–1010

    Article  CAS  PubMed  Google Scholar 

  • Pan F, Wang Y, Liu H et al (2017) Genome-wide identification and expression analysis of SBP-like transcription factor genes in Moso Bamboo (Phyllostachys edulis). BMC Genomics 18(1):486–503

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pan F, Wu M, Hu W et al (2019) Genome-wide identification and expression analyses of the bZIP transcription factor genes in moso bamboo (Phyllostachys edulis). Int J Mol Sci 20(9):2203

    Article  CAS  PubMed Central  Google Scholar 

  • Pandey SP, Roccaro M, Schön M et al (2010) Transcriptional reprogramming regulated by WRKY18 and WRKY40 facilitates powdery mildew infection of Arabidopsis. Plant J 64:912–923

    Article  CAS  PubMed  Google Scholar 

  • Park J, Kim Y, Yoon H et al (2007) Functional characterization of a small auxin-up RNA gene in apical hook development in Arabidopsis. Plant Sci 172(1):150–157

    Article  CAS  Google Scholar 

  • Peng Z, Lu T, Li L et al (2010) Genome-wide characterization of the biggest grass, bamboo, based on 10,608 putative full-length cDNA sequences. BMC Plant Biol 10(116):1–13

    Google Scholar 

  • Peng Z, Lu Y, Li L et al (2013) The draft genome of the fast-growing non-timber forest species moso bamboo (Phyllostachys heterocycla). Nat Genet 45:456–461

    Article  CAS  PubMed  Google Scholar 

  • Pi L, Aichinger E, van der Graaff E et al (2015) Organizer-derived WOX5 signal maintains root columella stem cells through chromatin-mediated repression of CDF4 expression. Dev Cell 33(5):576–588

    Article  CAS  PubMed  Google Scholar 

  • Plesch G, Ehrhardt T, Muellerroeber B (2001) Involvement of TAAAG elements suggests a role for Dof transcription factors in guard cell-specific gene expression. Plant J 28(455–464):4

    Google Scholar 

  • Qi F, Hu T, Peng Z et al (2013) Screening of reference genes used in qRT-PCR and expression analysis of PheTFL1 gene in moso bamboo. Acta Botan Boreali-Occiden Sin 33(1):0048–0052

    Google Scholar 

  • Quan W, Liu X, Wang L et al (2019) Ectopic expression of Medicago truncatula homeodomain finger protein, MtPHD6, enhances drought tolerance in Arabidopsis. BMC Genomics 20(1):1–16

    Article  CAS  Google Scholar 

  • Riechmann J, Heard J, Martin G et al (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290(5499):2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Robson F, Costa M, Hepworth S et al (2001) Functional importance of conserved domains in the flowering-time gene CONSTANS demonstrated by analysis of mutant alleles and transgenic plants. Plant J 28:619–631

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Macdonald H, Huttly AK et al (1995) Members of a new family of DNA-binding proteins bind to a conserved cis-element in the promoters of alpha-Amy2 genes. Plant Mol Biol 29:691–702

    Article  CAS  PubMed  Google Scholar 

  • Rushton PJ, Somssich IE, Ringler P et al (2010) WRKY transcription factors. Trends Plant Sci 15:247–258

    Article  CAS  PubMed  Google Scholar 

  • Schena M, Davis R (1992) HD-Zip proteins: members of an Arabidopsis homeodomain protein superfamily. Proc Natl Acad Sci USA 89(9):3894–3898

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schindler U, Beckmann H, Cashmore AR (1993) HAT3.1, a novel Arabidopsis homeodomain protein containing a conserved cysteine-rich region. Plant J 4(1):137–150

    Google Scholar 

  • Searle L, Coupland G (2004) Induction of flowering by seasonal changes in photoperiod. Embo J 23:1217–1222

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi Y, Liu H, Gao Y et al (2019) Genome-wide identification of growth-regulating factors in moso bamboo (Phyllostachys edulis): in silico and experimental analyses. Peer J 7:e7510

    Google Scholar 

  • Shimizu R, Ji J, Kelsey E et al (2009) Tissue specificity and evolution of meristematic WOX3 function. Plant Physiol 149(2):841–850

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Somssich M, Je B, Simon R et al (2016) CLAVATA-WUSCHEL signaling in the shoot meristem. Development 143(18):3238–3248

    Article  CAS  PubMed  Google Scholar 

  • Song A, Wu D, Fan Q et al (2016) Transcriptome-wide identification and expression profiling analysis of chrysanthemum trihelix transcription factors. Int J Mol Sci 17(2)

    Google Scholar 

  • Spartz A, Lee S, Wenger J et al (2012) The SAUR19 subfamily of SMALL AUXIN UP RNA genes promote cell expansion. Plant J 70(6):978–990

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su X, Lu G, Guo H et al (2018) The dynamic transcriptome and metabolomics profiling in Verticillium dahliae inoculated Arabidopsis thaliana. Sci Rep 8(1):15404

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Sun C et al (2003) A novel WRKY transcription factor, SUSIBA2, participates in sugar signaling in barley by binding to the sugarresponsive elements of the iso1 promoter. Plant Cell 15:2076–2092

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sung S, Amasino RM (2004) Vernalization in Arabidopsis thaliana is mediated by the PHD finger protein VIN3. Nature 427(6970):159–164

    Article  CAS  PubMed  Google Scholar 

  • Talanian R, Mcknight C, Kim P (1990) Sequence-specific DNA-binding by a short peptide dimer. Science 249:769–771

    Article  CAS  PubMed  Google Scholar 

  • Tanaka W, Hirano H (2020) Antagonistic action of TILLERS ABSENT1 and FLORAL ORGAN NUMBER2 regulates stem cell maintenance during axillary meristem development in rice. New Phytol 225:974–984

    Article  CAS  PubMed  Google Scholar 

  • Tanaka W, Ohmori Y, Ushijima T et al (2015) Axillary meristem formation in rice requires the WUSCHEL ortholog TILLERS ABSENT1. Plant Cell 27(4):1173–1184

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tsubosa Y, Sato H, Tachimori Y et al (1997) Functional analysis of the Arabidopsis thaliana SBP-box gene SPL3: a novel gene involved in the floral transition. Plant J 12:367–377

    Article  Google Scholar 

  • Ueda M, Zhang Z, Laux T (2011) Transcriptional activation of Arabidopsis axis patterning genes WOX8/9 links zygote polarity to embryo development. Dev Cell 20(2):264–270

    Article  CAS  PubMed  Google Scholar 

  • Ulker B, Somssich I (2004) WRKY transcription factors: from DNA binding towards biological function. Curr Opin Plant Biol 2004(7):491–498

    Article  CAS  Google Scholar 

  • Van der Graaff E, Laux T, Rensing SA (2009) The WUS homeobox-containing (WOX) protein family. Genome Biol 10(12):248

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vollbrecht E, Veit B, Sinha N et al (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350(6315):241–243

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Liu J, Wang Y et al (2015) Systematic analysis of the maize PHD-finger gene family reveals a subfamily involved in abiotic stress response. Int J Mol Sci 16(10):23517–23544

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei W, Zhang Y, Tao J et al (2015) The Alfin-like homeodomain finger protein AL5 suppresses multiple negative factors to confer abiotic stress tolerance in Arabidopsis. Plant J 81(6):871–883

    Article  CAS  PubMed  Google Scholar 

  • Xi J, Qiu Y, Du L et al (2012) Plant-specific trihelix transcription factor AtGT2L interacts with calcium/calmodulin and responds to cold and salt stresses. Plant Sci, pp 274–280

    Google Scholar 

  • Xiao C, Zhang J, Xu Y et al (2013) Cloning and functional analysis of Phyllostachys edulis MYB transcription factor PeMYB2. Hereditas 35:1217–1225

    CAS  PubMed  Google Scholar 

  • Xie L (2019) Function analysis of senescence-associated Genes PheORE1s and PheNAPs in Phyllostachys edulis. Chinese Academy of Forestry Science

    Google Scholar 

  • Xie Z, Zou H, Lei G, et al (2012) Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abiotic stresses in transgenic Arabidopsis. PloS one 4(9): e6898

    Google Scholar 

  • Xie L, Cai M, Gao J et al (2020) Overexpression of NAC transcription factor gene PheNAC3 from Phyllostachys edulis promotes leaf senescence and enhances abiotic stress tolerance in transgenic Arabidopsis. Peer J 8:e8716

    Google Scholar 

  • Yamasaki K, Kigawa T, Inoue M et al (2004) A novel zinc-binding motif revealed by solution structures of DNA-binding domains of Arabidopsis SBP-family transcription factors. J Mol Biol 337:49–63

    Article  CAS  PubMed  Google Scholar 

  • Yamashino T, Yamawaki S, Hagui E et al (2013) Clock-controlled and FLOWERING LOCUS T (FT)-dependent photoperiodic pathway in Lotus japonicus I: verification of the flowering associated function of an FT homolog. Biosci Biotechnol Biochem 77:747–753

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S (2002) The Dof family of plant transcription factors. Trends Plant Sci 7:555–560

    Article  CAS  PubMed  Google Scholar 

  • Yanagisawa S, Izui K (1993) Molecular cloning of two DNA-binding proteins of maize that are structurally different but interact with the same sequence motif. J Biol Chem 268:16028–16036

    Article  CAS  PubMed  Google Scholar 

  • Yang K, Li Y, Wang S et al (2019) Genome-wide identification and expression analysis of the MYB transcription factor in moso bamboo (Phyllostachys edulis). Peer J 6(9):e6242

    Google Scholar 

  • Yoshikawa T, Tanaka S, Masumoto Y et al (2016) Barley NARROW LEAFED DWARF1 encoding a WUSCHEL-RELATED HOMEOBOX 3 (WOX3) regulates the marginal development of lateral organs. Breeding Sci, p 16019

    Google Scholar 

  • Zhang YJ, Wang LJ (2005) The WRKY transcription factor super family: its origin in eukaryotes and expansion in plants. BMC Evol Biol 5:1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Zong J, Liu J et al (2010) Genome-wide analysis of WOX gene family in rice, sorghum, maize, Arabidopsis and poplar. J Integr Plant Biol 52(11):1016–1026

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Jiao Y, Jiao H et al (2016) Two-step functional innovation of the stem-cell factors WUS/WOX5 during plant evolution. Mol Biol Evol 34(3):640–653

    PubMed Central  Google Scholar 

  • Zhang H, Ying Y, Wang J et al (2018) Transcriptome analysis provides insights into xylogenesis formation in moso bamboo (Phyllostachys edulis) shoot. Sci Rep 8(1):3951

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Gao Z, Wang L et al (2018) Chromosome-level reference genome and alternative splicing atlas of moso bamboo (Phyllostachys edulis). GigaScience 7(10):giy115

    Google Scholar 

  • Zimmermann I, Heim M, Weisshaar B et al (2004) Comprehensive identification of Arabidopsis thaliana MYB transcription factors interacting with R/B-like BHLH proteins. Plant J 40(1):22–34

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jian Gao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gao, J. et al. (2021). Characterizations and Functions of Transcription Factor Gene Families. In: Gao, J. (eds) The Moso Bamboo Genome. Compendium of Plant Genomes. Springer, Cham. https://doi.org/10.1007/978-3-030-80836-5_8

Download citation

Publish with us

Policies and ethics