Skip to main content

Complications of Obesity

  • Chapter
  • First Online:
Thyroid, Obesity and Metabolism

Abstract

Obesity is a chronic, complex disease associated with a constellation of systemic complications that deeply impact health status and quality of life. Besides being associated with “classical” cardiometabolic complications such as type 2 diabetes, hypertension and ischaemic heart disease, obesity directly and indirectly affects the respiratory, gastrointestinal, urinary, musculoskeletal, reproductive, nervous and immune systems. Increased rates of nutritional deficiencies, psychological disorders, cancer and infections have also been reported in individuals with obesity. Excess visceral adiposity plays a key role, being a major determinant of insulin resistance, haemodynamic changes, mechanical loading, subclinical chronic low-grade inflammation and oxidative stress. Gut dysbiosis has also emerged as a possible link between obesity and its complications. Weight loss interventions may prevent, revert or reduce most complications of obesity. This chapter provides a thorough overview of obesity-related complications, with reference to the mechanisms involved.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Eddy DM, Schlessinger L, Heikes K. The metabolic syndrome and cardiovascular risk: implications for clinical practice. Int J Obes (Lond). 2008;32(Suppl 2):S5–10. https://doi.org/10.1038/Ijo.2008.28.

    Article  CAS  Google Scholar 

  2. Ford ES, Schulze MB, Pischon T, Bergmann MM, Joost HG, Boeing H. Metabolic syndrome and risk of incident diabetes: findings from The European Prospective Investigation into Cancer And Nutrition-Potsdam Study. Cardiovasc Diabetol. 2008;7:35. https://doi.org/10.1186/1475-2840-7-35.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Van Vliet-Ostaptchouk JV, Nuotio ML, Slagter SN, et al. The prevalence of metabolic syndrome and metabolically healthy obesity in Europe: a collaborative analysis of ten large cohort studies. BMC Endocr Disord. 2014;14:9. https://doi.org/10.1186/1472-6823-14-9.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Carey VJ, Walters EE, Colditz GA, et al. Body fat distribution and risk of non-insulin-dependent diabetes mellitus in women. The Nurses’ Health Study. Am J Epidemiol. 1997;145:614–9. https://doi.org/10.1093/Oxfordjournals.Aje.A009158.

    Article  CAS  PubMed  Google Scholar 

  5. Hu FB, Manson JE, Stampfer MJ, et al. Diet, lifestyle, and the risk of type 2 diabetes mellitus in women. N Engl J Med. 2001;345:790–7. https://doi.org/10.1056/Nejmoa010492.

    Article  CAS  PubMed  Google Scholar 

  6. Zheng Y, Manson JE, Yuan C, et al. Associations of weight gain from early to middle adulthood with major health outcomes later in life. JAMA. 2017;318:255–69. https://doi.org/10.1001/Jama.2017.7092.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Conte C, Fabbrini E, Kars M, Mittendorfer B, Patterson BW, Klein S. Multiorgan insulin sensitivity in lean and obese subjects. Diabetes Care. 2012;35:1316–21. https://doi.org/10.2337/Dc11-1951.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Centers For Disease Control and Prevention. Prevalence of overweight and obesity among adults with diagnosed diabetes--United States, 1988-1994 and 1999-2002. MMWR Morb Mortal Wkly Rep. 2004;53:1066–8.

    Google Scholar 

  9. Singh GM, Danaei G, Farzadfar F, et al. The age-specific quantitative effects of metabolic risk factors on cardiovascular diseases and diabetes: a pooled analysis. PLoS One. 2013;8:E65174. https://doi.org/10.1371/Journal.Pone.0065174.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Gancheva S, Jelenik T, Alvarez-Hernandez E, Roden M. Interorgan metabolic crosstalk in human insulin resistance. Physiol Rev. 2018;98:1371–415. https://doi.org/10.1152/Physrev.00015.2017.

    Article  CAS  PubMed  Google Scholar 

  11. Petersen MC, Shulman GI. Mechanisms of insulin action and insulin resistance. Physiol Rev. 2018;98:2133–223. https://doi.org/10.1152/Physrev.00063.2017.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Tilg H, Zmora N, Adolph TE, Elinav E. The intestinal microbiota fuelling metabolic inflammation. Nat Rev Immunol. 2020;20:40–54. https://doi.org/10.1038/S41577-019-0198-4.

    Article  CAS  PubMed  Google Scholar 

  13. Crewe C, An YA, Scherer PE. The ominous triad of adipose tissue dysfunction: inflammation, fibrosis, and impaired angiogenesis. J Clin Invest. 2017;127:74–82. https://doi.org/10.1172/Jci88883.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Bodis K, Roden M. Energy metabolism of white adipose tissue and insulin resistance in humans. Eur J Clin Investig. 2018;48:E13017. https://doi.org/10.1111/Eci.13017.

    Article  Google Scholar 

  15. Chavez JA, Summers SA. A ceramide-centric view of insulin resistance. Cell Metab. 2012;15:585–94. https://doi.org/10.1016/J.Cmet.2012.04.002.

    Article  CAS  PubMed  Google Scholar 

  16. Magkos F, Su X, Bradley D, et al. Intrahepatic diacylglycerol content is associated with hepatic insulin resistance in obese subjects. Gastroenterology. 2012;142:1444–6. E2. https://doi.org/10.1053/J.Gastro.2012.03.003.

    Article  CAS  PubMed  Google Scholar 

  17. Muoio DM, Neufer PD. Lipid-induced mitochondrial stress and insulin action in muscle. Cell Metab. 2012;15:595–605. https://doi.org/10.1016/J.Cmet.2012.04.010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Donnelly KL, Smith CI, Schwarzenberg SJ, Jessurun J, Boldt MD, Parks EJ. Sources of fatty acids stored in liver and secreted via lipoproteins in patients with nonalcoholic fatty liver disease. J Clin Invest. 2005;115:1343–51. https://doi.org/10.1172/Jci23621.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Jacome-Sosa MM, Parks EJ. Fatty acid sources and their fluxes As they contribute to plasma triglyceride concentrations and fatty liver in humans. Curr Opin Lipidol. 2014;25:213–20. https://doi.org/10.1097/Mol.0000000000000080.

    Article  CAS  PubMed  Google Scholar 

  20. Bjornson E, Adiels M, Taskinen MR, Boren J. Kinetics of plasma triglycerides in abdominal obesity. Curr Opin Lipidol. 2017;28:11–8. https://doi.org/10.1097/Mol.0000000000000375.

    Article  PubMed  Google Scholar 

  21. Eslam M, Newsome PN, Sarin SK, et al. A new definition for metabolic dysfunction-associated fatty liver disease: an international expert consensus statement. J Hepatol. 2020;73:202–9. https://doi.org/10.1016/J.Jhep.2020.03.039.

    Article  PubMed  Google Scholar 

  22. Eslam M, Sanyal AJ, George J, International Consensus Panel. Mafld: a consensus-driven proposed nomenclature for metabolic associated fatty liver disease. Gastroenterology. 2020;158:1999–2014. E1. https://doi.org/10.1053/J.Gastro.2019.11.312.

    Article  CAS  PubMed  Google Scholar 

  23. Younossi ZM, Rinella ME, Sanyal A, et al. From NAFLD to MAFLD: implications of a premature change in terminology. Hepatology. 2020;73:1194–8. https://doi.org/10.1002/Hep.31420.

    Article  Google Scholar 

  24. Younossi Z, Anstee QM, Marietti M, et al. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:11–20. https://doi.org/10.1038/Nrgastro.2017.109.

    Article  PubMed  Google Scholar 

  25. Bedogni G, Miglioli L, Masutti F, et al. Incidence and natural course of fatty liver in the general population: the Dionysos study. Hepatology. 2007;46:1387–91. https://doi.org/10.1002/Hep.21827.

    Article  PubMed  Google Scholar 

  26. Chalasani N, Younossi Z, Lavine JE, et al. The diagnosis and management of non-alcoholic fatty liver Disease: practice guideline by the American Association for the Study of Liver Diseases, American College of Gastroenterology, and the American Gastroenterological Association. Hepatology. 2012;55:2005–23. https://doi.org/10.1002/Hep.25762.

    Article  PubMed  Google Scholar 

  27. Wai-Sun Wong V, Lai-Hung Wong G, Woo J, et al. Impact of the new definition of metabolic associated fatty liver disease on the epidemiology of the disease. Clin Gastroenterol Hepatol. 2020;S1542–3565(20)31504-4. https://doi.org/10.1016/j.cgh.2020.10.046.

  28. Liu Z, Suo C, Shi O, et al. The health impact of MAFLD, a novel disease cluster of NAFLD, is amplified by the integrated effect of fatty liver disease related genetic variants. Clin Gastroenterol Hepatol. 2020;S1542–3565(20)31729-8.

    Google Scholar 

  29. Kuchay MS, Choudhary NS, Mishra SK. Pathophysiological mechanisms underlying MAFLD. Diabetes Metab Syndr. 2020;14:1875–87. https://doi.org/10.1016/J.Dsx.2020.09.026.

    Article  PubMed  Google Scholar 

  30. Miele L, Biolato M, Conte C, et al. Etiopathogenesis of NAFLD: diet, gut, and NASH. In: Bugianesi E, editor. Non-alcoholic fatty liver disease. Cham: Springer; 2020.

    Google Scholar 

  31. Nicoletti A, Ponziani FR, Biolato M, et al. Intestinal permeability in the pathogenesis of liver damage: from non-alcoholic fatty liver disease to liver transplantation. World J Gastroenterol. 2019;25:4814–34. https://doi.org/10.3748/Wjg.V25.I33.4814.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Roden M, Shulman GI. The integrative biology of type 2 diabetes. Nature. 2019;576:51–60. https://doi.org/10.1038/S41586-019-1797-8.

    Article  CAS  PubMed  Google Scholar 

  33. Garrison RJ, Kannel WB, Stokes J III, Castelli WP. Incidence and precursors of hypertension in young adults: the Framingham Offspring Study. Prev Med. 1987;16:235–51. https://doi.org/10.1016/0091-7435(87)90087-9.

    Article  CAS  PubMed  Google Scholar 

  34. Hall JE, Do Carmo JM, Da Silva AA, Wang Z, Hall ME. Obesity-induced hypertension: interaction of neurohumoral and renal mechanisms. Circ Res. 2015;116:991–1006. https://doi.org/10.1161/Circresaha.116.305697.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Hall JE, Do Carmo JM, Da Silva AA, Wang Z, Hall ME. Obesity, kidney dysfunction and hypertension: mechanistic links. Nat Rev Nephrol. 2019;15:367–85. https://doi.org/10.1038/S41581-019-0145-4.

    Article  PubMed  PubMed Central  Google Scholar 

  36. Grassi G, Biffi A, Seravalle G, et al. Sympathetic neural overdrive in the obese and overweight state. Hypertension. 2019;74:349–58. https://doi.org/10.1161/Hypertensionaha.119.12885.

    Article  CAS  PubMed  Google Scholar 

  37. Lambert GW, Schlaich MP, Eikelis N, Lambert EA. Sympathetic activity in obesity: a brief review of methods and supportive data. Ann N Y Acad Sci. 2019;1454:56–67. https://doi.org/10.1111/Nyas.14140.

    Article  PubMed  Google Scholar 

  38. Costa J, Moreira A, Moreira P, Delgado L, Silva D. Effects of weight changes in the autonomic nervous system: a systematic review and meta-analysis. Clin Nutr. 2019;38:110–26. https://doi.org/10.1016/J.Clnu.2018.01.006.

    Article  PubMed  Google Scholar 

  39. Cabandugama PK, Gardner MJ, Sowers JR. The renin angiotensin aldosterone system in obesity and hypertension: roles in the cardiorenal metabolic syndrome. Med Clin North Am. 2017;101:129–37. https://doi.org/10.1016/J.Mcna.2016.08.009.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Schutten MT, Houben AJ, De Leeuw PW, Stehouwer CD. The link between adipose tissue renin-angiotensin-aldosterone system signaling and obesity-associated hypertension. Physiology (Bethesda). 2017;32:197–209. https://doi.org/10.1152/Physiol.00037.2016.

    Article  Google Scholar 

  41. Koliaki C, Liatis S, Kokkinos A. Obesity and cardiovascular disease: revisiting an old relationship. Metabolism. 2019;92:98–107. https://doi.org/10.1016/J.Metabol.2018.10.011.

    Article  CAS  PubMed  Google Scholar 

  42. Saliba LJ, Maffett S. Hypertensive heart disease and obesity: a review. Heart Fail Clin. 2019;15:509–17. https://doi.org/10.1016/J.Hfc.2019.06.003.

    Article  PubMed  Google Scholar 

  43. Bluher M. Metabolically healthy obesity. Endocr Rev. 2020;41:405. https://doi.org/10.1210/Endrev/Bnaa004.

    Article  Google Scholar 

  44. Lin H, Zhang L, Zheng R, Zheng Y. The prevalence, metabolic risk and effects of lifestyle intervention for metabolically healthy obesity: a systematic review and meta-analysis: a prisma-compliant article. Medicine (Baltimore). 2017;96:E8838. https://doi.org/10.1097/Md.0000000000008838.

    Article  Google Scholar 

  45. Opio J, Croker E, Odongo GS, Attia J, Wynne K, Mcevoy M. Metabolically healthy overweight/obesity are associated with increased risk of cardiovascular disease in adults, even in the absence of metabolic risk factors: a systematic review and meta-analysis of prospective cohort studies. Obes Rev. 2020;21:E13127. https://doi.org/10.1111/Obr.13127.

    Article  PubMed  Google Scholar 

  46. Bell JA, Kivimaki M, Hamer M. Metabolically healthy obesity and risk of incident type 2 diabetes: a meta-analysis of prospective cohort studies. Obes Rev. 2014;15:504–15. https://doi.org/10.1111/Obr.12157.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Neeland IJ, Ross R, Despres JP, et al. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 2019;7:715–25. https://doi.org/10.1016/S2213-8587(19)30084-1.

    Article  PubMed  Google Scholar 

  48. Mahabadi AA, Berg MH, Lehmann N, et al. Association of epicardial fat with cardiovascular risk factors and incident myocardial infarction in the general population: the Heinz Nixdorf recall study. J Am Coll Cardiol. 2013;61:1388–95. https://doi.org/10.1016/J.Jacc.2012.11.062.

    Article  PubMed  Google Scholar 

  49. Prospective Studies Collaboration, Whitlock G, Lewington S, et al. Body-mass index and cause-specific mortality in 900 000 adults: collaborative analyses of 57 prospective studies. Lancet. 2009;373:1083–96. https://doi.org/10.1016/S0140-6736(09)60318-4.

    Article  PubMed Central  Google Scholar 

  50. Khan SS, Ning H, Wilkins JT, et al. Association of body mass index with lifetime risk of cardiovascular disease and compression of morbidity. JAMA Cardiol. 2018;3:280–7. https://doi.org/10.1001/Jamacardio.2018.0022.

    Article  PubMed  PubMed Central  Google Scholar 

  51. Neeland IJ, Poirier P, Despres JP. Cardiovascular and metabolic heterogeneity of obesity: clinical challenges and implications for management. Circulation. 2018;137:1391–406. https://doi.org/10.1161/Circulationaha.117.029617.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Ross R, Neeland IJ, Yamashita S, et al. Waist circumference as a vital sign in clinical practice: a consensus statement from the IAS and ICCR Working Group on Visceral Obesity. Nat Rev Endocrinol. 2020;16:177–89. https://doi.org/10.1038/S41574-019-0310-7.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Gregson J, Kaptoge S, Bolton T, et al. Cardiovascular risk factors associated with venous thromboembolism. JAMA Cardiol. 2019;4:163–73. https://doi.org/10.1001/Jamacardio.2018.4537.

    Article  PubMed  Google Scholar 

  54. Yuan S, Bruzelius M, Xiong Y, Hakansson N, Akesson A, Larsson SC. Overall and abdominal obesity in relation to venous thromboembolism. J Thromb Haemost. 2020;19:460–9. https://doi.org/10.1111/Jth.15168.

    Article  PubMed  PubMed Central  Google Scholar 

  55. Willenberg T, Schumacher A, Amann-Vesti B, et al. Impact of obesity on venous hemodynamics of the lower limbs. J Vasc Surg. 2010;52:664–8. https://doi.org/10.1016/J.Jvs.2010.04.023.

    Article  PubMed  Google Scholar 

  56. Olson NC, Cushman M, Lutsey PL, et al. Inflammation markers and incident venous thromboembolism: the reasons for geographic and racial differences in stroke (regards) cohort. J Thromb Haemost. 2014;12:1993–2001. https://doi.org/10.1111/Jth.12742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Zheng Z, Nakamura K, Gershbaum S, et al. Interacting hepatic PAI-1/Tpa gene regulatory pathways influence impaired fibrinolysis severity in obesity. J Clin Invest. 2020;130:4348–59. https://doi.org/10.1172/Jci135919.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Klovaite J, Benn M, Nordestgaard BG. Obesity as a causal risk factor for deep venous thrombosis: a Mendelian randomization study. J Intern Med. 2015;277:573–84. https://doi.org/10.1111/Joim.12299.

    Article  CAS  PubMed  Google Scholar 

  59. Lindstrom S, Germain M, Crous-Bou M, et al. Assessing the causal relationship between obesity and venous thromboembolism through a Mendelian randomization study. Hum Genet. 2017;136:897–902. https://doi.org/10.1007/S00439-017-1811-X.

    Article  PubMed  PubMed Central  Google Scholar 

  60. Dixon AE, Peters U. The effect of obesity on lung function. Expert Rev Respir Med. 2018;12:755–67. https://doi.org/10.1080/17476348.2018.1506331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Moon JH, Kong MH, Kim HJ. Implication of sarcopenia and sarcopenic obesity on lung function in healthy elderly: using Korean National Health and Nutrition Examination Survey. J Korean Med Sci. 2015;30:1682–8. https://doi.org/10.3346/Jkms.2015.30.11.1682.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Gami AS, Olson EJ, Shen WK, et al. Obstructive sleep apnea and the risk of sudden cardiac death: a longitudinal study of 10,701 adults. J Am Coll Cardiol. 2013;62:610–6. https://doi.org/10.1016/J.Jacc.2013.04.080.

    Article  PubMed  Google Scholar 

  63. Somers VK, White DP, Amin R, et al. Sleep apnea and cardiovascular disease: an American Heart Association/American College of Cardiology Foundation Scientific Statement from the American Heart Association Council for High Blood Pressure Research Professional Education Committee, Council on Clinical Cardiology, Stroke Council, and Council on Cardiovascular Nursing. In collaboration with the National Heart, Lung, and Blood Institute National Center on Sleep Disorders Research (National Institutes of Health). Circulation. 2008;118:1080–111. https://doi.org/10.1161/Circulationaha.107.189375.

    Article  PubMed  Google Scholar 

  64. Song SO, He K, Narla RR, Kang HG, Ryu HU, Boyko EJ. Metabolic consequences of obstructive sleep apnea especially pertaining to diabetes mellitus and insulin sensitivity. Diabetes Metab J. 2019;43:144–55. https://doi.org/10.4093/Dmj.2018.0256.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Chang WP, Liu ME, Chang WC, et al. Sleep apnea and the risk of dementia: a population-based 5-year follow-up study in Taiwan. PLoS One. 2013;8:E78655. https://doi.org/10.1371/Journal.Pone.0078655.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Leng Y, Mcevoy C, Allen IE, Yaffe K. Association of sleep-disordered breathing with cognitive function and risk of cognitive impairment: a systematic review and meta-analysis. JAMA Neurol. 2017;74:1237–45. https://doi.org/10.1001/Jamaneurol.2017.2180.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Drager LF, Togeiro SM, Polotsky VY, Lorenzi-Filho G. Obstructive sleep apnea: a cardiometabolic risk in obesity and the metabolic syndrome. J Am Coll Cardiol. 2013;62:569–76. https://doi.org/10.1016/J.Jacc.2013.05.045.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Veasey SC, Rosen IM. Obstructive sleep apnea in adults. N Engl J Med. 2019;380:1442–9. https://doi.org/10.1056/Nejmcp1816152.

    Article  PubMed  Google Scholar 

  69. Masa JF, Pepin JL, Borel JC, Mokhlesi B, Murphy PB, Sanchez-Quiroga MA. Obesity hypoventilation syndrome. Eur Respir Rev. 2019;28:180097. https://doi.org/10.1183/16000617.0097-2018.

    Article  PubMed  Google Scholar 

  70. Mokhlesi B, Masa JF, Brozek JL, et al. Evaluation and management of obesity hypoventilation syndrome. an official American Thoracic Society Clinical Practice Guideline. Am J Respir Crit Care Med. 2019;200:E6–E24. https://doi.org/10.1164/Rccm.201905-1071st.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Masa JF, Corral J, Alonso ML, et al. Efficacy of different treatment alternatives for obesity hypoventilation syndrome. Pickwick study. Am J Respir Crit Care Med. 2015;192:86–95. https://doi.org/10.1164/Rccm.201410-1900oc.

    Article  PubMed  Google Scholar 

  72. Ayinapudi K, Singh T, Motwani A, Le Jemtel TH, Oparil S. Obesity and pulmonary hypertension. Curr Hypertens Rep. 2018;20:99. https://doi.org/10.1007/S11906-018-0899-2.

    Article  PubMed  Google Scholar 

  73. Barros R, Moreira P, Padrao P, et al. Obesity increases the prevalence and the incidence of asthma and worsens asthma severity. Clin Nutr. 2017;36:1068–74. https://doi.org/10.1016/J.Clnu.2016.06.023.

    Article  CAS  PubMed  Google Scholar 

  74. Peters U, Dixon AE, Forno E. Obesity and asthma. J Allergy Clin Immunol. 2018;141:1169–79. https://doi.org/10.1016/J.Jaci.2018.02.004.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Jacobson BC, Somers SC, Fuchs CS, Kelly CP, Camargo CA Jr. Body-mass index and symptoms of gastroesophageal reflux in women. N Engl J Med. 2006;354:2340–8. https://doi.org/10.1056/Nejmoa054391.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Sharara AI, Rustom LBO, Bou Daher H, et al. Prevalence of gastroesophageal reflux and risk factors for erosive esophagitis in obese patients considered for bariatric surgery. Dig Liver Dis. 2019;51:1375–9. https://doi.org/10.1016/J.Dld.2019.04.010.

    Article  PubMed  Google Scholar 

  77. Eusebi LH, Ratnakumaran R, Yuan Y, Solaymani-Dodaran M, Bazzoli F, Ford AC. Global prevalence of, and risk factors for, gastro-oesophageal reflux symptoms: a meta-analysis. Gut. 2018;67:430–40. https://doi.org/10.1136/Gutjnl-2016-313589.

    Article  PubMed  Google Scholar 

  78. Singh S, Sharma AN, Murad MH, et al. Central adiposity is associated with increased risk of esophageal inflammation, metaplasia, and adenocarcinoma: a systematic review and meta-analysis. Clin Gastroenterol Hepatol. 2013;11:1399–412. E7. https://doi.org/10.1016/J.Cgh.2013.05.009.

    Article  PubMed  Google Scholar 

  79. Katzka DA, Kahrilas PJ. Advances in the diagnosis and management of gastroesophageal reflux disease. BMJ. 2020;371:M3786. https://doi.org/10.1136/Bmj.M3786.

    Article  PubMed  Google Scholar 

  80. Camilleri M, Malhi H, Acosta A. Gastrointestinal complications of obesity. Gastroenterology. 2017;152:1656–70. https://doi.org/10.1053/J.Gastro.2016.12.052.

    Article  PubMed  Google Scholar 

  81. Mashayekhi R, Bellavance DR, Chin SM, et al. Obesity, but not physical activity, is associated with higher prevalence of asymptomatic diverticulosis. Clin Gastroenterol Hepatol. 2018;16:586–7. https://doi.org/10.1016/J.Cgh.2017.09.005.

    Article  PubMed  Google Scholar 

  82. Wijarnpreecha K, Ahuja W, Chesdachai S, et al. Obesity and the risk of colonic diverticulosis: a meta-analysis. Dis Colon Rectum. 2018;61:476–83. https://doi.org/10.1097/Dcr.0000000000000999.

    Article  PubMed  Google Scholar 

  83. Singh S, Dulai PS, Zarrinpar A, Ramamoorthy S, Sandborn WJ. Obesity in IBD: epidemiology, pathogenesis, disease course and treatment outcomes. Nat Rev Gastroenterol Hepatol. 2017;14:110–21. https://doi.org/10.1038/Nrgastro.2016.181.

    Article  CAS  PubMed  Google Scholar 

  84. Figueiredo JC, Haiman C, Porcel J, et al. Sex and ethnic/racial-specific risk factors for gallbladder disease. BMC Gastroenterol. 2017;17:153. https://doi.org/10.1186/S12876-017-0678-6.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Stinton LM, Shaffer EA. Epidemiology of gallbladder disease: cholelithiasis and cancer. Gut Liver. 2012;6:172–87. https://doi.org/10.5009/Gnl.2012.6.2.172.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Aune D, Norat T, Vatten LJ. Body mass index, abdominal fatness and the risk of gallbladder disease. Eur J Epidemiol. 2015;30:1009–19. https://doi.org/10.1007/S10654-015-0081-Y.

    Article  PubMed  Google Scholar 

  87. Ahmed HA, Jazrawi RP, Goggin PM, Dormandy J, Northfield TC. Intrahepatic biliary cholesterol and phospholipid transport in humans: effect of obesity and cholesterol cholelithiasis. J Lipid Res. 1995;36:2562–73.

    Article  CAS  PubMed  Google Scholar 

  88. Angelin B, Backman L, Einarsson K, Eriksson L, Ewerth S. Hepatic cholesterol metabolism in obesity: activity of microsomal 3-hydroxy-3-methylglutaryl coenzyme a reductase. J Lipid Res. 1982;23:770–3.

    Article  CAS  PubMed  Google Scholar 

  89. Cortes VA, Barrera F, Nervi F. Pathophysiological connections between gallstone disease, insulin resistance, and obesity. Obes Rev. 2020;21:E12983. https://doi.org/10.1111/Obr.12983.

    Article  PubMed  Google Scholar 

  90. Garofalo C, Borrelli S, Minutolo R, Chiodini P, De Nicola L, Conte G. A systematic review and meta-analysis suggests obesity predicts onset of chronic kidney disease in the general population. Kidney Int. 2017;91:1224–35. https://doi.org/10.1016/J.Kint.2016.12.013.

    Article  PubMed  Google Scholar 

  91. Kambham N, Markowitz GS, Valeri AM, Lin J, D’agati VD. Obesity-related glomerulopathy: an emerging epidemic. Kidney Int. 2001;59:1498–509. https://doi.org/10.1046/J.1523-1755.2001.0590041498.X.

    Article  CAS  PubMed  Google Scholar 

  92. Lin L, Peng K, Du R, et al. Metabolically healthy obesity and incident chronic kidney disease: the role of systemic inflammation in a prospective study. Obesity (Silver Spring). 2017;25:634–41. https://doi.org/10.1002/Oby.21768.

    Article  CAS  Google Scholar 

  93. Zhang J, Jiang H, Chen J. Combined effect of body mass index and metabolic status on the risk of prevalent and incident chronic kidney disease: a systematic review and meta-analysis. Oncotarget. 2017;8:35619–29. https://doi.org/10.18632/Oncotarget.10915.

    Article  PubMed  Google Scholar 

  94. Camara NO, Iseki K, Kramer H, Liu Z, Sharma K. Kidney disease and obesity: epidemiology, mechanisms and treatment. Nat Rev Nephrol. 2017;13:181–90. https://doi.org/10.1038/Nrneph.2016.191.

    Article  PubMed  Google Scholar 

  95. Subak LL, Richter HE, Hunskaar S. Obesity and urinary incontinence: epidemiology and clinical research update. J Urol. 2009;182:S2–7. https://doi.org/10.1016/J.Juro.2009.08.071.

    Article  PubMed  PubMed Central  Google Scholar 

  96. Lai HH, Helmuth ME, Smith AR, et al. Relationship between central obesity, general obesity, overactive bladder syndrome and urinary incontinence among male and female patients seeking care for their lower urinary tract symptoms. Urology. 2019;123:34–43. https://doi.org/10.1016/J.Urology.2018.09.012.

    Article  PubMed  Google Scholar 

  97. Fuselier A, Hanberry J, Margaret Lovin J, Gomelsky A. Obesity and stress urinary incontinence: impact on pathophysiology and treatment. Curr Urol Rep. 2018;19:10. https://doi.org/10.1007/S11934-018-0762-7.

    Article  PubMed  Google Scholar 

  98. Elbaset MA, Taha DE, Sharaf DE, Ashour R, El-Hefnawy AS. Obesity and overactive bladder: is it a matter of body weight, fat distribution or function? A preliminary results. Urology. 2020;143:91–6. https://doi.org/10.1016/J.Urology.2020.04.115.

    Article  PubMed  Google Scholar 

  99. Taylor EN, Stampfer MJ, Curhan GC. Obesity, weight gain, and the risk of kidney stones. JAMA. 2005;293:455–62. https://doi.org/10.1001/Jama.293.4.455.

    Article  CAS  PubMed  Google Scholar 

  100. Kadlec AO, Greco K, Fridirici ZC, Hart ST, Vellos T, Turk TM. Metabolic syndrome and urinary stone composition: what factors matter most? Urology. 2012;80:805–10. https://doi.org/10.1016/J.Urology.2012.05.011.

    Article  PubMed  Google Scholar 

  101. Zhou T, Watts K, Agalliu I, Divito J, Hoenig DM. Effects of visceral fat area and other metabolic parameters on stone composition in patients undergoing percutaneous nephrolithotomy. J Urol. 2013;190:1416–20. https://doi.org/10.1016/J.Juro.2013.05.016.

    Article  PubMed  Google Scholar 

  102. Kelly C, Geraghty RM, Somani BK. Nephrolithiasis in the obese patient. Curr Urol Rep. 2019;20:36. https://doi.org/10.1007/S11934-019-0898-0.

    Article  PubMed  Google Scholar 

  103. Jain D, Berven S. Effect of obesity on the development, management, and outcomes of spinal disorders. J Am Acad Orthop Surg. 2019;27:E499–506. https://doi.org/10.5435/Jaaos-D-17-00837.

    Article  PubMed  Google Scholar 

  104. Silverwood V, Blagojevic-Bucknall M, Jinks C, Jordan JL, Protheroe J, Jordan KP. Current evidence on risk factors for knee osteoarthritis in older adults: a systematic review and meta-analysis. Osteoarthr Cartil. 2015;23:507–15. https://doi.org/10.1016/J.Joca.2014.11.019.

    Article  CAS  Google Scholar 

  105. Zheng H, Chen C. Body mass index and risk of knee osteoarthritis: systematic review and meta-analysis of prospective studies. BMJ Open. 2015;5:E007568. https://doi.org/10.1136/Bmjopen-2014-007568.

    Article  PubMed  PubMed Central  Google Scholar 

  106. Thottam GE, Krasnokutsky S, Pillinger MH. Gout and metabolic syndrome: a tangled web. Curr Rheumatol Rep. 2017;19:60. https://doi.org/10.1007/S11926-017-0688-Y.

    Article  PubMed  Google Scholar 

  107. Evans PL, Prior JA, Belcher J, Mallen CD, Hay CA, Roddy E. Obesity, hypertension and diuretic use as risk factors for incident gout: a systematic review and meta-analysis of cohort studies. Arthritis Res Ther. 2018;20:136. https://doi.org/10.1186/S13075-018-1612-1.

    Article  PubMed  PubMed Central  Google Scholar 

  108. Oliveira MC, Vullings J, Van De Loo FAJ. Osteoporosis and osteoarthritis are two sides of the same coin paid for obesity. Nutrition. 2020;70:110486. https://doi.org/10.1016/J.Nut.2019.04.001.

    Article  CAS  PubMed  Google Scholar 

  109. Napoli N, Conte C, Pedone C, et al. Effect of insulin resistance on BMD and fracture risk in older adults. J Clin Endocrinol Metab. 2019;104:3303–10. https://doi.org/10.1210/Jc.2018-02539.

    Article  PubMed  PubMed Central  Google Scholar 

  110. Barazzoni R, Bischoff S, Boirie Y, et al. Sarcopenic obesity: time to meet the challenge. Obes Facts. 2018;11:294–305. https://doi.org/10.1159/000490361.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Booth FW, Roberts CK, Thyfault JP, Ruegsegger GN, Toedebusch RG. Role of inactivity in chronic diseases: evolutionary insight and pathophysiological mechanisms. Physiol Rev. 2017;97:1351–402. https://doi.org/10.1152/Physrev.00019.2016.

    Article  PubMed  PubMed Central  Google Scholar 

  112. Donini LM, Busetto L, Bauer JM, et al. Critical appraisal of definitions and diagnostic criteria for sarcopenic obesity based on a systematic review. Clin Nutr. 2020;39:2368–88. https://doi.org/10.1016/J.Clnu.2019.11.024.

    Article  PubMed  Google Scholar 

  113. Roh E, Choi KM. Health consequences of sarcopenic obesity: a narrative review. Front Endocrinol (Lausanne). 2020;11:332. https://doi.org/10.3389/Fendo.2020.00332.

    Article  Google Scholar 

  114. Malmstrom TK, Miller DK, Simonsick EM, Ferrucci L, Morley JE. Sarc-F: a symptom score to predict persons with sarcopenia at risk For poor functional outcomes. J Cachexia Sarcopenia Muscle. 2016;7:28–36. https://doi.org/10.1002/Jcsm.12048.

    Article  PubMed  Google Scholar 

  115. Otto M, Kautt S, Kremer M, Kienle P, Post S, Hasenberg T. Handgrip strength as a predictor for post bariatric body composition. Obes Surg. 2014;24:2082–8. https://doi.org/10.1007/S11695-014-1299-6.

    Article  PubMed  Google Scholar 

  116. Leitner DR, Fruhbeck G, Yumuk V, et al. Obesity and type 2 diabetes: two diseases with a need for combined treatment strategies - EASO can lead the way. Obes Facts. 2017;10:483–92. https://doi.org/10.1159/000480525.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Gambineri A, Laudisio D, Marocco C, et al. Female infertility: which role for obesity? Int J Obes Suppl. 2019;9:65–72. https://doi.org/10.1038/S41367-019-0009-1.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Quennell JH, Mulligan AC, Tups A, et al. Leptin indirectly regulates gonadotropin-releasing hormone neuronal function. Endocrinology. 2009;150:2805–12. https://doi.org/10.1210/En.2008-1693.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Tziomalos K, Dinas K. Obesity and outcome of assisted reproduction in patients with polycystic ovary syndrome. Front Endocrinol (Lausanne). 2018;9:149. https://doi.org/10.3389/Fendo.2018.00149.

    Article  Google Scholar 

  120. Ogunwole SM, Zera CA, Stanford FC. Obesity management in women of reproductive age. JAMA. 2021;325:433–4. https://doi.org/10.1001/Jama.2020.21096.

    Article  PubMed  Google Scholar 

  121. Metwally M, Tuckerman EM, Laird SM, Ledger WL, Li TC. Impact of high body mass index on endometrial morphology and function in the peri-implantation period in women with recurrent miscarriage. Reprod Biomed Online. 2007;14:328–34. https://doi.org/10.1016/S1472-6483(10)60875-9.

    Article  CAS  PubMed  Google Scholar 

  122. Smith J, Cianflone K, Biron S, et al. Effects of maternal surgical weight loss in mothers on intergenerational transmission of obesity. J Clin Endocrinol Metab. 2009;94:4275–83. https://doi.org/10.1210/Jc.2009-0709.

    Article  CAS  PubMed  Google Scholar 

  123. Carrageta DF, Oliveira PF, Alves MG, Monteiro MP. Obesity and male hypogonadism: tales of a vicious cycle. Obes Rev. 2019;20:1148–58. https://doi.org/10.1111/Obr.12863.

    Article  PubMed  Google Scholar 

  124. Sarwer DB, Hanson AJ, Voeller J, Steffen K. Obesity and sexual functioning. Curr Obes Rep. 2018;7:301–7. https://doi.org/10.1007/S13679-018-0319-6.

    Article  PubMed  PubMed Central  Google Scholar 

  125. Dye L, Boyle NB, Champ C, Lawton C. The relationship between obesity and cognitive health and decline. Proc Nutr Soc. 2017;76:443–54. https://doi.org/10.1017/S0029665117002014.

    Article  PubMed  Google Scholar 

  126. Miller AA, Spencer SJ. Obesity and neuroinflammation: a pathway to cognitive impairment. Brain Behav Immun. 2014;42:10–21. https://doi.org/10.1016/J.Bbi.2014.04.001.

    Article  CAS  PubMed  Google Scholar 

  127. Xu Q, Anderson D, Lurie-Beck J. The relationship between abdominal obesity and depression in the general population: a systematic review and meta-analysis. Obes Res Clin Pract. 2011;5:E267–360. https://doi.org/10.1016/J.Orcp.2011.04.007.

    Article  PubMed  Google Scholar 

  128. Milaneschi Y, Simmons WK, Van Rossum EFC, Penninx BW. Depression and obesity: evidence of shared biological mechanisms. Mol Psychiatry. 2019;24:18–33. https://doi.org/10.1038/S41380-018-0017-5.

    Article  CAS  PubMed  Google Scholar 

  129. Tomiyama AJ, Carr D, Granberg EM, et al. How and why weight stigma drives the obesity ‘epidemic’ and harms health. BMC Med. 2018;16:123. https://doi.org/10.1186/S12916-018-1116-5.

    Article  PubMed  PubMed Central  Google Scholar 

  130. Wu Y, Berry DC. Impact of weight stigma on physiological and psychological health outcomes for overweight and obese adults: a systematic review. J Adv Nurs. 2018;74:1030–42. https://doi.org/10.1111/Jan.13511.

    Article  PubMed  Google Scholar 

  131. Callaghan BC, Xia R, Reynolds E, et al. Association between metabolic syndrome components and polyneuropathy in an obese population. JAMA Neurol. 2016;73:1468–76. https://doi.org/10.1001/Jamaneurol.2016.3745.

    Article  PubMed  PubMed Central  Google Scholar 

  132. Yadav RL, Sharma D, Yadav PK, et al. Somatic neural alterations in non-diabetic obesity: a cross-sectional study. BMC Obes. 2016;3:50. https://doi.org/10.1186/S40608-016-0131-3.

    Article  PubMed  PubMed Central  Google Scholar 

  133. Pereira-Santos M, Costa PR, Assis AM, Santos CA, Santos DB. Obesity and vitamin D deficiency: a systematic review and meta-analysis. Obes Rev. 2015;16:341–9. https://doi.org/10.1111/Obr.12239.

    Article  CAS  PubMed  Google Scholar 

  134. Pourshahidi LK. Vitamin D and Obesity: current perspectives and future directions. Proc Nutr Soc. 2015;74:115–24. https://doi.org/10.1017/S0029665114001578.

    Article  CAS  PubMed  Google Scholar 

  135. Migliaccio S, Di Nisio A, Mele C, et al. Obesity and hypovitaminosis D: causality or casualty? Int J Obes Suppl. 2019;9:20–31. https://doi.org/10.1038/S41367-019-0010-8.

    Article  PubMed  PubMed Central  Google Scholar 

  136. CMA C, Conte C, Sorice GP, et al. Effect of vitamin D supplementation on obesity-induced insulin resistance: a double-blind, randomized, placebo-controlled trial. Obesity (Silver Spring). 2018;26:651–7. https://doi.org/10.1002/Oby.22132.

    Article  Google Scholar 

  137. Mousa A, Naderpoor N, De Courten MP, et al. Vitamin D supplementation has no effect on insulin sensitivity or secretion in vitamin D-deficient, overweight or obese adults: a randomized placebo-controlled trial. Am J Clin Nutr. 2017;105:1372–81. https://doi.org/10.3945/Ajcn.117.152736.

    Article  CAS  PubMed  Google Scholar 

  138. Bradbury KE, Williams SM, Mann JI, Brown RC, Parnell W, Skeaff CM. Estimation of serum and erythrocyte folate concentrations in the New Zealand adult population within a background of voluntary folic acid fortification. J Nutr. 2014;144:68–74. https://doi.org/10.3945/Jn.113.182105.

    Article  CAS  PubMed  Google Scholar 

  139. Flancbaum L, Belsley S, Drake V, Colarusso T, Tayler E. Preoperative nutritional status of patients undergoing roux-En-Y gastric bypass for morbid obesity. J Gastrointest Surg. 2006;10:1033–7. https://doi.org/10.1016/J.Gassur.2006.03.004.

    Article  PubMed  Google Scholar 

  140. Mahawar KK, Bhasker AG, Bindal V, et al. Zinc deficiency after gastric bypass For morbid obesity: a systematic review. Obes Surg. 2017;27:522–9. https://doi.org/10.1007/S11695-016-2474-8.

    Article  PubMed  Google Scholar 

  141. Schweiger C, Weiss R, Berry E, Keidar A. Nutritional deficiencies in bariatric surgery candidates. Obes Surg. 2010;20:193–7. https://doi.org/10.1007/S11695-009-0008-3.

    Article  PubMed  Google Scholar 

  142. Lauby-Secretan B, Scoccianti C, Loomis D, et al. Body fatness and cancer--viewpoint of the IARC Working Group. N Engl J Med. 2016;375:794–8. https://doi.org/10.1056/Nejmsr1606602.

    Article  PubMed  PubMed Central  Google Scholar 

  143. Steele CB, Thomas CC, Henley SJ, et al. Vital signs: trends in incidence of cancers associated with overweight and obesity - United States, 2005-2014. MMWR Morb Mortal Wkly Rep. 2017;66:1052–8. https://doi.org/10.15585/Mmwr.Mm6639e1.

    Article  PubMed  PubMed Central  Google Scholar 

  144. Avgerinos KI, Spyrou N, Mantzoros CS, Dalamaga M. Obesity and cancer risk: emerging biological mechanisms and perspectives. Metabolism. 2019;92:121–35. https://doi.org/10.1016/J.Metabol.2018.11.001.

    Article  CAS  PubMed  Google Scholar 

  145. Quail DF, Dannenberg AJ. The obese adipose tissue microenvironment in cancer development and progression. Nat Rev Endocrinol. 2019;15:139–54. https://doi.org/10.1038/S41574-018-0126-X.

    Article  PubMed  PubMed Central  Google Scholar 

  146. International Agency for Research on Cancer (IARC). Absence of excess body fatness. IARC handbooks of cancer prevention, vol 16. 2018. https://Publications.Iarc.Fr/Book-And-Report-Series/Iarc-Handbooks-Of-Cancer-Prevention/Absence-Of-Excess-Body-Fatness-2018.

  147. Huttunen R, Syrjanen J. Obesity and the risk and outcome of infection. Int J Obes. 2013;37:333–40. https://doi.org/10.1038/Ijo.2012.62.

    Article  CAS  Google Scholar 

  148. Bhattacharya I, Ghayor C, Perez Dominguez A, Weber FE. From influenza virus to novel corona virus (Sars-Cov-2)-the contribution of obesity. Front Endocrinol (Lausanne). 2020;11:556962. https://doi.org/10.3389/Fendo.2020.556962.

    Article  Google Scholar 

  149. Luzi L, Radaelli MG. Influenza and obesity: its odd relationship and the lessons for Covid-19 pandemic. Acta Diabetol. 2020;57:759–64. https://doi.org/10.1007/S00592-020-01522-8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Popkin BM, Du S, Green WD, et al. Individuals with obesity and Covid-19: a global perspective on the epidemiology and biological relationships. Obes Rev. 2020;21:E13128. https://doi.org/10.1111/Obr.13128.

    Article  CAS  PubMed  Google Scholar 

  151. Alwarawrah Y, Kiernan K, Maciver NJ. Changes in nutritional status impact immune cell metabolism and function. Front Immunol. 2018;9:1055. https://doi.org/10.3389/Fimmu.2018.01055.

    Article  PubMed  PubMed Central  Google Scholar 

  152. Battisti S, Pedone C, Napoli N, et al. Computed tomography highlights increased visceral adiposity associated with critical illness in Covid-19. Diabetes Care. 2020;43:E129–30. https://doi.org/10.2337/Dc20-1333.

    Article  CAS  PubMed  Google Scholar 

  153. Foldi M, Farkas N, Kiss S, et al. Visceral adiposity elevates the risk of critical condition in Covid-19: a systematic review and meta-analysis. Obesity (Silver Spring). 2020; https://doi.org/10.1002/Oby.23096.

  154. Song RH, Wang B, Yao QM, Li Q, Jia X, Zhang JA. The impact of obesity on thyroid autoimmunity and dysfunction: a systematic review and meta-analysis. Front Immunol. 2019;10:2349. https://doi.org/10.3389/Fimmu.2019.02349.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  155. Gupta S, Richard L, Forsythe A. The humanistic and economic burden associated with increasing body mass index in the Eu5. Diabetes Metab Syndr Obes. 2015;8:327–38. https://doi.org/10.2147/Dmso.S83696.

    Article  PubMed  PubMed Central  Google Scholar 

  156. Padwal RS, Pajewski NM, Allison DB, Sharma AM. Using the Edmonton Obesity staging system to predict mortality in a population-representative cohort of people with overweight and obesity. CMAJ. 2011;183:E1059–66. https://doi.org/10.1503/Cmaj.110387.

    Article  PubMed  PubMed Central  Google Scholar 

  157. Guo F, Moellering DR, Garvey WT. The progression of cardiometabolic disease: validation of a new cardiometabolic disease staging system applicable to obesity. Obesity (Silver Spring). 2014;22:110–8. https://doi.org/10.1002/Oby.20585.

    Article  Google Scholar 

  158. Ma C, Avenell A, Bolland M, et al. Effects of weight loss interventions for adults who are obese on mortality, cardiovascular disease, and cancer: systematic review and meta-analysis. BMJ. 2017;359:J4849. https://doi.org/10.1136/Bmj.J4849.

    Article  PubMed  PubMed Central  Google Scholar 

  159. Nguyen NT, Varela JE. Bariatric surgery for obesity and metabolic disorders: state of the art. Nat Rev Gastroenterol Hepatol. 2017;14:160–9. https://doi.org/10.1038/Nrgastro.2016.170.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Caterina Conte .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Conte, C. (2021). Complications of Obesity. In: Luzi, L. (eds) Thyroid, Obesity and Metabolism. Springer, Cham. https://doi.org/10.1007/978-3-030-80267-7_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-80267-7_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-80266-0

  • Online ISBN: 978-3-030-80267-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics