Skip to main content

Flow and Distribution of Phosphorus in Soils from a Geochemical and Agronomic Approach

  • Chapter
  • First Online:
Innovations in Biotechnology for a Sustainable Future

Abstract

The residual effect of the added fertilizer phosphorus is described by two reactions, an initial fast reaction and a subsequent slow one, the magnitude of which is dependent on the phosphorus retention capacity of the soil. This suggests that the P added to the soil is subject to reactions (precipitation/dissolution, adsorption/desorption, immobilization/mineralization) that condition its distribution among the fractions that make up the soil phosphorus system, depending on the soil retention capacity and the characteristics of the fertilizer source (soluble and insoluble). In this way, the agronomic availability of phosphorus, estimated through routine laboratory methods, is the result of the distribution and subsequent balance of phosphorus added between the fractions that make up phosphorus in soils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ACPwithoutP:

Absorption of the crop in the plot without P

ACPwithP:

Absorption of the crop in the plot with P

CPA:

Amount of P added to the plot

DAP:

Diammonium phosphate

MAP:

Monoammonium phosphate

P:

Phosphorus

Pi :

Inorganic phosphorus

Po :

Organic phosphorus

PR:

Phosphate rock

Pt :

Total phosphorus

RP:

Recovery of P

TSP:

Triple superphosphate

References

  • Anghinoni, I., Baligar, V. C., & Wright, R. J. (1996). Phosphorus sorption isotherm characteristics and availability parameters of Appalachian acidic soils. Communications in Soil Science and Plant Analysis, 27(9), 2033–2048.

    Article  CAS  Google Scholar 

  • Azevedo, R. P., Salcedo, I. H., Lima, P. A., da Silva Fraga, V., & Lana, R. M. Q. (2018). Mobility of phosphorus from organic and inorganic source materials in a sandy soil. International Journal of Recycling of Organic Waste in Agriculture, 7(2), 153–163.

    Article  Google Scholar 

  • Barrow, N. J. (1983a). On the reversibility of phosphate sorption by soils. Journal of Soil Science, 34, 751–758.

    Article  CAS  Google Scholar 

  • Barrow, N. J. (1983b). A mechanistic model for describing the sorption and desorption of phosphate by soil. Journal of Soil Science, 34, 733–750.

    Article  CAS  Google Scholar 

  • Batjes, N. H. (2011). Overview of soil phosphorus data from a large international soil database. Report 2011/01. Plant Research International (PRI)/ISRIC - World Soil Information. 56 p.

    Google Scholar 

  • Bennett, E., Carpenter, S., & Caraco, N. (2001). Human impact on erodable phosphorus and eutrophication: A global perspective. Bioscience, 51(3), 227–234.

    Article  Google Scholar 

  • Bohn. (1993). Química del suelo. . Suelos ácidos. Limusa Noriega Editores. 370 p.

    Google Scholar 

  • Bolland, M. D. A., Allen, D. G., & Barrow, N. J. (2003). Sorption of phosphorus by soils. How it is measured in Western Australia. Government of Western Australia, Department of Agriculture, Bulletin 4591.

    Google Scholar 

  • Bowman, R. A., & Cole, C. V. (1978). Transformations of organic P substrates in soils as evaluated by Na-HCO3 extraction. Soil Science, 125, 49–54.

    Article  CAS  Google Scholar 

  • Brady, N. C., & Weil, R. R. (1999). The nature and properties of soils (12th ed.). Prentice Hall. 881 p.

    Google Scholar 

  • Buerkert, A., Bationo, A., & Piepho, H. (2001). Efficient phosphorus application strategies for increased crop production in Sub-Saharan West Africa. Field Crops Research, 72, 1–15.

    Article  Google Scholar 

  • Busman, L., Lamb, J., Randall, R., Rehm, G., & Schmitt, M. (2002). The nature of phosphorus in soils. University of Minnesota.

    Google Scholar 

  • Cade-Menun, B. (2005). Characterizing phosphorus in environmental and agricultural samples by 31P nuclear magnetic resonance spectroscopy. Talanta, 66, 359–371.

    Article  CAS  PubMed  Google Scholar 

  • Cade-Menun, B. J., Elkin, K. R., Liu, C. W., Bryant, R. B., Kleinman, P. J. A., & Moore, P. A., Jr. (2018). Characterizing the phosphorus forms extracted from soil by the Mehlich III soil test. Geochemical Transactions, 19, 1–17.

    Article  CAS  Google Scholar 

  • Chang, S., & Jackson, M. (1957). Fractionation of soil phosphorus. Soil Science Society of America Journal, 84, 133–144.

    Article  CAS  Google Scholar 

  • Cheesman, A. W., Turner, B. L., & Reddy, K. R. (2014). Forms of organic phosphorus in wetland soils. Biogeosciences, 11(23), 6697–6710.

    Article  Google Scholar 

  • Condron, L. M., & Goh, K. M. (1989). Effects of long-term phosphatic fertilizer applications on amounts and forms of phosphorus in soils under irrigated pasture in New Zealand. Journal of Soil Science, 40(2), 383–395.

    Article  CAS  Google Scholar 

  • Cordell, D., Drangert, J. O., & White, S. (2009). The story of phosphorus: Global food security and food for thought. Global Environmental Change, 19, 292–305.

    Article  Google Scholar 

  • Cross, A. F., & Schlesinger, W. H. (1995). A literature review and evaluation of the Hedley fractionation: Application to the biogeochemical cycle of soil phosphorus in natural ecosystems. Geoderma, 64, 197–214.

    Article  CAS  Google Scholar 

  • Dayton, E. A., Shrestha, R. K., Fulford, A. M., Love, K. R., Culman, W., & S. and Lindsey, L. E. (2020). Soil test phosphorus and phosphorus balance trends: A county-level analysis in Ohio. Agronomy Journal, 112(3), 1617–1624.

    Article  Google Scholar 

  • Drechsel, P., Gyiele, L., Kunze, D., & Cofie, O. (2001). Population density, soil nutrient depletion, and economic growth in sub-Saharan Africa. Ecological Economics, 38, 251–258.

    Article  Google Scholar 

  • FAO (Food and Agriculture Organization of the United Nations). (2009). Global agriculture towards 2050. High level expert forum—How to feed the world in 2050, Rome, IT.

    Google Scholar 

  • Fassbender, H. W. (1993). Modelos edafológicos de sistemas agroforestales (2nd ed.). Centro de Agronomía Tropical y Enseñanza. 491 p.

    Google Scholar 

  • Fixen, P. (1992). Dinámica suelo-cultivo del fósforo y manejo de los fertilizantes fosforados (Parte II). Informaciones Agronómicas No. 17.

    Google Scholar 

  • Frossard, E., Condron, L. M., Oberson, A., Sinaj, S., & Fardeau, J. C. (2000). Processes governing phosphorus availability in temperate soils. Journal of Environmental Quality, 29, 15–23.

    Article  CAS  Google Scholar 

  • Fuentes, B., Bolan, N., Naidu, R., & Mora, M. d. l. L. (2006). Phosphorus in organic waste–soil systems. Journal of Soil Science and Plant Nutrition, 6(2), 64–83.

    Google Scholar 

  • Ghosh, G. K., Mohan, K. S., & Sarkar, A. K. (1996). Characterization of soil-fertilizer P reaction products and their evaluation as sources of P for gram (Cicer arietinum L.). Nutrient Cycling in Agroecosystems, 46, 71–79.

    Article  Google Scholar 

  • Godfray, H. C., Beddington, J. R., Crute, I. R., Haddad, L., Lawrence, D., Muir, F., Pretty, J., Robinson, S., Thomas, S. M., & Toulmin, C. (2010). Food security: The challenge of feeding 9 billion people. Science, 327, 812–818.

    Article  CAS  PubMed  Google Scholar 

  • Hartemink, A. (2006). Assessing soil fertility decline in the tropics using soil chemical data. Advances in Agronomy, 89, 179–225.

    Article  CAS  Google Scholar 

  • Haygarth, P. M., Harrison, A. F., & Turner, B. L. (2018). On the history and future of soil organic phosphorus research: A critique across three generations. European Journal of Soil Science, 69(1), 86–94.

    Article  Google Scholar 

  • Hedley, M. J., Stewart, J., & Chauhan, B. (1982). Changes in inorganic and organic phosphorus fractions induced by cultivation practices and by laboratory incubations. Soil Science Society of America Journal, 46, 970–976.

    Article  CAS  Google Scholar 

  • Henao, J., & Baanante, C. A. (1999). Nutrient depletion in the agricultural soils of Africa. International Food Policy Research Institute.

    Google Scholar 

  • Hopkins, B., & Ellsworth, J. (2005). Phosphorus availability with alkaline/calcareous soil. In Western Nutrient Management Conference (pp. 88–93).

    Google Scholar 

  • Howard, A. E. (2006). Agronomic thresholds for soil phosphorus in Alberta: A review. In Alberta Soil Phosphorus Limits Project, Alberta, Canada, 42 p.

    Google Scholar 

  • Ibrikci, H., Ryan, J., Ulger, A. C., Buyuk, G., Cakir, B., Korkmaz, K., Karnez, E., Ozgenturk, G., & Konuskan, O. (2005). Maintenance of phosphorus fertilizer and residual phosphorus effect on corn production. Nutrient Cycling in Agroecosystems, 72(3), 279–286.

    Article  CAS  Google Scholar 

  • Ivanoff, D. B., Reddy, K. R., & Robinson, S. (1998). Chemical fractionation of organic phosphorus in selected histosols. Soil Science, 163, 36–45.

    Article  CAS  Google Scholar 

  • Javid, S., & Rowell, D. L. (2002). A laboratory study of the effect of time and temperature on the decline in Olsen P following phosphate addition to calcareous soils. Soil Use and Management, 18, 127–134.

    Article  Google Scholar 

  • Jiao, Y., Hendershot, W. H., & Whalen, J. K. (2008). Modeling phosphate adsorption by agricultural and natural soils. Soil Science Society of America Journal, 72(4), 1078–1084.

    Article  CAS  Google Scholar 

  • Johnston, A. E., & Dawson, C. J. (2005). Phosphorus in agriculture and in relation to water quality. Agricultural Industries Confederation. 71 p.

    Google Scholar 

  • Johnston, A. E., & Syers, J. K. (2008). A new approach to assessing phosphorus use efficiency in agriculture. Better Crops, 93(3), 14–16.

    Google Scholar 

  • Jordan-Meille, L., Rubaek, G. H., Ehlert, P. A. I., Genot, V., Hofman, G., Goulding, K., Recknagel, J., Provolo, G., & Barraclough, P. (2012). An overview of fertilizer-P recommendations in Europe: Soil testing, calibration and fertilizer recommendations. Soil Use and Management, 28(4), 419–435.

    Article  Google Scholar 

  • Kumar, V., Gilkes, R. J., & Bolland, M. D. A. (1991). Residual phosphate fertilizer compounds in soils. II. Their influence on soil tests for available phosphate. Fertilizer Research, 30, 31–38.

    Article  CAS  Google Scholar 

  • Li, H., Huang, G., Meng, Q., Ma, L., Yuan, L., Wang, F., Zhang, W., Cui, Z., Shen, J., Chen, X., Jiang, R., & Zhang, F. (2011). Integrated soil and plant phosphorus management for crop and environment in China. A review. Plant and Soil, 349, 157–167.

    Article  CAS  Google Scholar 

  • Lindsay, W. L., Frazier, A. W., & Stephenson, H. F. (1962). Identification of reaction products from phosphate fertilizers in soils. Soil Science Society of America Journal, 26(5), 446–452.

    Article  CAS  Google Scholar 

  • Lynch, J. (2011). Root phenes for enhanced soil exploration and phosphorus acquisition: Tools for future crops. Plant Physiology, 156, 1041–1049.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • MacDonald, G. K., Bennett, E. M., Potter, P. A., & Ramankutty, N. (2011). Agronomic phosphorus imbalances across the world’s croplands. Proceedings of the National Academy of Sciences, 108(7), 3086–3091.

    Article  CAS  Google Scholar 

  • McLaren, R. G., & Cameron, K. C. (1996). Soil science, sustainable production and environmental protection (2nd ed.). Oxford University Press. 304 p.

    Google Scholar 

  • McLaren, T. I., Smernik, R. J., McLaughlin, M. J., McBeath, T. M., Kirby, J. K., Simpson, R. J., Guppy, C. N., Doolette, A. L., & Richardson, A. E. (2015). Complex forms of soil organic phosphorus—A major component of soil phosphorus. Environmental Science & Technology, 49(22), 13238–13245.

    Article  CAS  Google Scholar 

  • McLaughlin, M., McBeath, T., Smernik, R., Stacey, S., Ajiboye, B., & Guppy, C. (2011). The chemical nature of P accumulation in agricultural soils-implications for fertilizer management and design: An Australian perspective. Plant and Soil, 349, 69–87.

    Article  CAS  Google Scholar 

  • Mueller, N. D., Gerber, J. S., Johnston, M., Ray, D. K., Ramankutty, N., & Foley, J. A. (2012). Closing yield gaps through nutrient and water management. Nature, 490(7419), 254–257.

    Article  CAS  PubMed  Google Scholar 

  • Naeem, A., Akhtar, M., & Ahmad, W. (2013). Optimizing available phosphorus in calcareous soils fertilized with diammonium phosphate and phosphoric acid using Freundlich adsorption isotherm. Scientific World Journal, 2013, 1–5.

    Article  CAS  Google Scholar 

  • Norton, R. (2014). Combating climate change through improved agronomic practices and input-use efficiency. Journal of Crop Improvement, 28, 575–618.

    Article  Google Scholar 

  • Penn, C. J., & Camberato, J. J. (2019). A critical review on soil chemical processes that control how soil pH affects phosphorus availability to plants. Agriculture, 9(6), 120.

    Article  Google Scholar 

  • Phong, L. T., Stoorvogel, J. J., Van Mensvoort, M. E. F., & Udo, H. M. J. (2011). Modeling the soil nutrient balance of integrated agriculture aquaculture systems in the Mekong Delta, Vietnam. Nutrient Cycling in Agroecosystems, 90, 33–49.

    Article  CAS  Google Scholar 

  • Pierzynski, J., Hettiarachchi, G., & Khatiwada, R. (2014). Can soil chemical changes influence plant growth? The Fluid Journal, 22(1), 9–12.

    Google Scholar 

  • Pinochet, D. (1995). The residual effect of applications of phosphate fertilizer measured by the Olsen method (Thesis of Doctor of Philosophy, The University of Reading).

    Google Scholar 

  • Posner, A. M., & Barrow, N. J. (1982). Simplification of a model for ion adsorption on oxide surfaces. Journal of Soil Science, 33, 211–217.

    Article  CAS  Google Scholar 

  • Rigo, A. Z., Corrêa, J. C., Mafra, Á. L., Hentz, P., Grohskopf, M. A., Gatiboni, L. C., & Bedendo, G. (2019). Phosphorus fractions in soil with organic and mineral fertilization in integrated crop-livestock system. Revista Brasileira de Ciência do Solo, 43, e0180130.

    Article  CAS  Google Scholar 

  • Riley, W. J., Ortiz-Monasterio, I., & Matson, P. A. (2001). Nitrogen leaching and soil nitrate, nitrite, and ammonium levels under irrigated wheat in Northern Mexico. Nutrient Cycling in Agroecosystems, 61, 223–236.

    CAS  Google Scholar 

  • Roberts, T. L. (2009). The role of fertilizer in growing the world’s food. Better Crops, 93(2), 12–15.

    Google Scholar 

  • Sá, J. M., Jantalia, C. P., Teixeira, P. C., Polidoro, J. C., Benites, V. d. M., & Araújo, A. P. (2017). Agronomic and P recovery efficiency of organomineral phosphate fertilizer from poultry litter in sandy and clayey soils. Pesquisa Agropecuária Brasileira, 52(9), 786–793.

    Article  Google Scholar 

  • Sandaña, P. A., Harcha, C. I., & Calderini, D. F. (2009). Sensitivity of yield and grain nitrogen concentration of wheat, lupin and pea to source reduction during grain filling. A comparative survey under high yielding conditions. Field Crop Research, 114, 233–243.

    Article  Google Scholar 

  • Schachtman, D. P., Reid, R. J., & Ayling, S. M. (1998). Phosphorus uptake by plants: From soil to cell. Plant Physiology, 116, 447–453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schröder, J. J., Smit, A. L., Cordell, D., & Rosemarin, A. (2011). Improved phosphorus use efficiency in agriculture: A key requirement for its sustainable use. Chemosphere, 84, 822–831.

    Article  PubMed  CAS  Google Scholar 

  • Sharma, S. B., Sayyed, R. Z., Trivedi, M. H., & Gobi, T. A. (2013). Phosphate solubilizing microbes: Sustainable approach for managing phosphorus deficiency in agricultural soils. Springerplus, 2, 1–14.

    Article  CAS  Google Scholar 

  • Sharpley, A. (2016). Managing agricultural phosphorus to minimize water quality impacts. Science in Agriculture, 73(1), 1–8.

    CAS  Google Scholar 

  • Sharpley, A., & Tunney, H. (2000). Phosphorus research strategies to meet agricultural and environmental challenges of the 21st century. Journal of Environmental Quality, 29, 176–181.

    Article  CAS  Google Scholar 

  • Sharpley, A. N., Withers, P. J. A., Abdalla, C. W., & Dodd, A. R. (2005). Strategies for the sustainable management of phosphorus. In J. T. Sims & A. N. Sharpley (Eds.), Agriculture and the environment (pp. 1069–1101). American Society of Agronomy; Crop Science Society of America; Soil Science Society of America.

    Google Scholar 

  • Shi, L., Shen, M., Lu, C., Wang, H., Zhou, X., Jin, M., & Wu, T. (2015). Soil phosphorus dynamic, balance and critical P values in long-term fertilization experiment in Taihu Lake region, China. Journal of Integrative Agriculture, 14(12), 2446–2455.

    Article  CAS  Google Scholar 

  • Simpson, R., Oberson, A., Culvenor, R., Ryan, M., Veneklaas, E., Lambers, H., Lynch, L., Ryan, P., Delhaize, E., Smith, F., Smith, S., Harvey, P., & Richardson, A. (2011). Strategies and agronomic interventions to improve the phosphorus-use efficiency of farming systems. Plant and Soil, 349, 89–120.

    Article  CAS  Google Scholar 

  • Syers, J. K., Johnston, A. E., & Curtin, D. (2008). Efficiency of soil and fertilizer phosphorus use: Reconciling changing concepts of soil phosphorus behaviour with agronomic information. FAO Fertilizer and Plant Nutrition. Bulletin 18.

    Google Scholar 

  • Tiessen, H., & Moir, J. O. (1993). Characterization of available phosphorus by sequential extraction. In M. R. Carter (Ed.), Soil sampling and methods of analysis (pp. 75–86). Canadian Society of Soil Science/CRC Press.

    Google Scholar 

  • Tiessen, H., Stweart, J., & Cole, C. V. (1984). Pathways of phosphorus transformations in soils of differing pedogenesis. Soil Science Society of America Journal, 48, 853–858.

    Article  CAS  Google Scholar 

  • Tóth, G., Guicharnaud, R. A., Tóth, B., & Hermann, T. (2014). Phosphorus levels in croplands of the European Union with implications for P fertilizer use. European Journal of Agronomy, 55, 42–52.

    Article  CAS  Google Scholar 

  • Valle, S., Carrasco, J., Pinochet, D., & Calderini, D. F. (2009). Grain yield, above-ground and root biomass of Al-tolerant and Al-sensitive wheat cultivars under different soil aluminum concentrations at field conditions. Plant and Soil, 318, 299–310.

    Article  CAS  Google Scholar 

  • van der Wiel, B. Z., Weijma, J., van Middelaar, C. E., Kleinke, M., Buisman, C. J. N., & Wichern, F. (2019). Restoring nutrient circularity: A review of nutrient stock and flow analyses of local agro-food-waste systems. In Resources, Conservation and Recycling: X (p. 100014).

    Google Scholar 

  • Van Dijk, K. C., Lesschen, J. P., & Oenema, O. (2016). Phosphorus flows and balances of the European Union Member States. Science of the Total Environment, 542, 1078–1093.

    Google Scholar 

  • van Ittersum, M., Leffelaar, P. A., Van, K. H., Kropff, M. J., Bastiaans, L., & Goudriaan, J. (2003). On approaches and applications of the Wageningen crop models. European Journal of Agronomy, 18(3), 201–234.

    Article  Google Scholar 

  • Wang, X., Liu, F., Tan, W., Li, W., Feng, X., & Sparks, D. L. (2013). Characteristics of phosphate adsorption-desorption on to ferrihydrite: Comparison with well-crystalline Fe (Hydr) oxides. Soil Science, 178, 1–11.

    Article  CAS  Google Scholar 

  • Watson, M., & Mullen, R. (2007). Understanding soil tests for plant available phosphorus. Ohio State University Extension.

    Google Scholar 

  • Whalen, J. K., & Chang, C. (2001). Phosphorus accumulation in cultivated soils from long-term annual applications of cattle feedlot manure. Journal of Environmental Quality, 30, 229–237.

    Article  CAS  PubMed  Google Scholar 

  • Yang, X., & Post, W. M. (2011). Phosphorus transformations as a function of pedogenesis: A synthesis of soil phosphorus data using Hedley fractionation method. Biogeosciences, 8, 2907–2916.

    Article  CAS  Google Scholar 

  • Zhan, X., Zhang, L., Zhou, B., Zhu, P., Zhang, S., & Xu, M. (2015). Changes in Olsen phosphorus concentration and its response to phosphorus balance in black soils under different long-term fertilization patterns. PLoS One, 10(7), e0131713.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang, W., Zhan, X., Zhang, S., Ibrahima, K. H. M., & Xu, M. (2019). Response of soil Olsen-P to P budget under different long-term fertilization treatments in a fluvo-aquic soil. Journal of Integrative Agriculture, 18(3), 667–676.

    Article  CAS  Google Scholar 

  • Zhang, X., Wang, Q., Xu, J., Gilliam, F. S., Tremblay, N., & Li, C. (2015). In situ nitrogen mineralization, nitrification, and ammonia volatilization in maize field fertilized with urea in Huanghuaihai Region of Northern China. PLoS One, 10(1), e0115649.

    Article  PubMed  PubMed Central  Google Scholar 

  • Ziadi, N., Whalen, J. K., Messiga, A. J., & Morel, C. (2013). Assessment and modeling of soil available phosphorus in sustainable cropping systems. Advances in Agronomy, 122, 85–126.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Corresponding author acknowledges the Ministry of Higher Education, Science and Technology (SENESCYT) of Ecuador for the scholarship received for doctoral study. Similarly, the authors express special thanks Editor Dr. Naga Raju Maddela (Main Professor the Universidad Técnica de Manabí, Portoviejo, Ecuador) for guidance and accepting our request to write this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gregorio Vásconez Montúfar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Vásconez Montúfar, G., Pinochet Tejos, D., Villamar-Torres, R.O., Molina Hidrovo, C.A., Segovia Motesdeoca, V., Jazayeri, S.M. (2021). Flow and Distribution of Phosphorus in Soils from a Geochemical and Agronomic Approach. In: Maddela, N.R., García, L.C. (eds) Innovations in Biotechnology for a Sustainable Future. Springer, Cham. https://doi.org/10.1007/978-3-030-80108-3_8

Download citation

Publish with us

Policies and ethics