Skip to main content

Progress in Ferrites Materials: The Past, Present, Future and Their Applications

  • Chapter
  • First Online:
Spinel Nanoferrites

Abstract

Ferrite is a magnetic substance consist essentially of an oxide of iron combined with one or more other metals such as manganese, copper, nickel, or zinc. They are being routinely utilized especially in electronic devices owing to its good magnetic properties along with high resistivity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ida N (2015) Engineering electromagnetics. Springer, London. ISBN 3319078062

    Google Scholar 

  2. Melfos V, Helly B, Voudouris P (2011) The ancient Greek names “Magnesia” and “Magnetes” and their origin from the magnetite occurrences at the Mavrovouni mountain of Thessaly, central Greece. A mineralogical–geochemical approach. Archaeol Anthropol Sci 3(2):165–172

    Article  Google Scholar 

  3. Hilpert S (1909) Correspondence as to structure and origin in magnetic properties of ferrite and iron oxide (in Ger.), Ber. Dtsch. Chem Ges 42:2248–61

    Google Scholar 

  4. Hilpert S, Lindner A (1933) Ferrites. II. Akaline, alkaline-earth, and lead ferrites (in Ger.), Z. Phys Chem B22:395–405

    Google Scholar 

  5. Hilpert S (1909) Manufacturing method of magnetic materials having small electric conductivity for electric and magnetic apparatus. German Pat. Nos. 226,347 and 227,787

    Google Scholar 

  6. Forestier H (1928) Magnetic transformations of the sesquioxide of iron, of its solid solution and of its ferromagnetic combinations (in Fr.). Ann Chim (Paris) 9:316–401

    Google Scholar 

  7. Herroun EF, Wilson E (1928) Ferromagnetic ferric oxide. Proc Phys Soc 41(1):100

    Article  CAS  Google Scholar 

  8. Kato Y, Takei T (1930) Studies on zinc ferrite. its formation, composition, and chemical and magnetic properties. Trans. Am. Electrochem. Soc. 57(1):297

    Google Scholar 

  9. Kato Y, Takei T (1933) Characteristics of metallic oxide magnet. J Inst Electr Eng Jpn 53:408–412

    Google Scholar 

  10. Iida S, Sekizawa H, Aiyama Y (1958) Uniaxial anisotropy in iron-cobalt ferrites. J Phys Soc Jpn 13(1):58–71

    Article  CAS  Google Scholar 

  11. Williams HJ, Heidenreich RD, Nesbitt EA (1956) Mechanism by which cobalt ferrite heat treats in a magnetic field. J Appl Phys 27(1):85–89

    Article  CAS  Google Scholar 

  12. Okamoto A (2009) The invention of ferrites and their contribution to the miniaturization of radios. In: 2009 IEEE Globecom workshops. IEEE, pp 1–6

    Google Scholar 

  13. Snoek JL (1936) On the Permalloy problem. Nature 137(3464):493–493

    Article  Google Scholar 

  14. Kleis JD (1936) Ferromagnetic anisotropy of nickel–iron crystals at various temperatures. Phys Rev 50(12):1178

    Article  Google Scholar 

  15. Williams HJ (1937) Magnetic properties of single crystals of silicon iron. Phys Rev 52(7):747

    Article  CAS  Google Scholar 

  16. Becker CR, Dӧring W (1939) Ferromagnetismus. Springer, Berlin, p 101

    Book  Google Scholar 

  17. McKeehan LW, Grabbe EM (1939) Ferromagnetic anisotropy in nickel-iron crystals. Evidence for superstructure near Ni3Fe. Phys Rev 55(5):505

    Google Scholar 

  18. Rathenau GW, Snoek JL (1941) Magnetic anisotropy phenomena in cold rolled nickel–iron. Physica 8(6):555–575

    Article  CAS  Google Scholar 

  19. Snoek JL (1936) Magnetic and electrical properties of the binary systems MO. Fe2O3. Physica 3(6):463–483

    Article  CAS  Google Scholar 

  20. Snoek JL (1938) Time effects in magnetization. Physica 5(8):663–688

    Article  Google Scholar 

  21. Snoek JL, Went JJ (1947) New developments in ferromagnetic materials. Elsevier

    Google Scholar 

  22. Snoek JL (1948) Dispersion and absorption in magnetic ferrites at frequencies above one Mc/s. Physica 14(4):207–217

    Article  CAS  Google Scholar 

  23. Kramers HA (1934) L’interaction entre les atomes magnétogènes dans un cristal paramagnétique. Physica 1(1–6):182–192

    Article  CAS  Google Scholar 

  24. Smart JS (1955) The Néel theory of ferrimagnetism. Am J Phys 23(6):356–370

    Article  CAS  Google Scholar 

  25. Anderson PW (1950) Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79(2):350

    Google Scholar 

  26. Yafet Y, Kittel C (1952) Antiferromagnetic arrangements in ferrites. Phys Rev 87(2):290

    Article  CAS  Google Scholar 

  27. Rado GT, Wright RW, Emerson WH (1950) Ferromagnetism at very high frequencies. III. Two mechanisms of dispersion in a ferrite. Phys Rev 80(2):273

    Google Scholar 

  28. Went JJ, Ratenau GW, Gorter EW, van Oosterhout GW (1952) Ferroxdure, a class of new permanent magnet materials. Philips Tech. Rev. 13:194–208

    CAS  Google Scholar 

  29. Folen VJ (1960) Influence of ionic order on the magnetocrystalline anisotropy and crystalline field parameters in lithium ferrite monocrystals. J Appl Phys 31(5):S166–S167

    Article  Google Scholar 

  30. Simsa Z (1969) Distribution of cations and phase transition in ferrite Cu0.5Fe2.5O4. IEEE Trans Magn 5(3):592–595

    Article  CAS  Google Scholar 

  31. Bacon GE, Roberts FF (1953) Neutron-diffraction studies of magnesium ferrite–aluminate powders. Acta Crystallogr A 6(1):57–62

    Article  CAS  Google Scholar 

  32. Corliss LM, Hastings JM, Brockman FG (1953) A neutron diffraction study of magnesium ferrite. Phys Rev 90(6):1013

    Article  CAS  Google Scholar 

  33. Hastings JM, Corliss LM (1953) Neutron diffraction studies of zinc ferrite and nickel ferrite. Rev Mod Phys 25(1):114

    Article  CAS  Google Scholar 

  34. Kedem D, Rothem T (1967) Internal fields in nickel ferrite. Phys Rev Lett 18(5):165

    Article  CAS  Google Scholar 

  35. Sawatzky GA, Van der Woude F, Morrish AH (1967) Note on cation distribution of MnFe2O4. Phys Lett A 25(2):147–148

    Article  CAS  Google Scholar 

  36. Hasegawa K, Satō T (1967) Particle-size distribution of CoFe2O4 formed by the coprecipitation method. J Appl Phys 38(12):4707–4713

    Article  CAS  Google Scholar 

  37. Dobson DC, Linnett JW, Rahman MM (1970) Mössbauer studies of the charge transfer process in the system ZnxFe3−xO4. J Phys Chem Solids 31(12):2727–2733

    Article  CAS  Google Scholar 

  38. Srivastava CM, Shringi SN, Srivastava RG, Nanadikar NG (1976) Magnetic ordering and domain-wall relaxation in zinc-ferrous ferrites. Phys Rev B 14(5):2032

    Article  CAS  Google Scholar 

  39. Evans BJ, Hafner (1968) Mössbauer resonance of Fe57 in oxidic spinels containing Cu and Fe. J Phys Chem Solids 29(9):1573–1588.hhh

    Google Scholar 

  40. Kulkarni RG, Patil VU (1982) Magnetic ordering in Cu–Zn ferrite. J Mater Sci 17(3):843–848

    Article  CAS  Google Scholar 

  41. Wilson VC, Kasper JS (1954) Neutron diffraction studies of a nickel zinc ferrite. Phys Rev 95(6):1408

    Article  CAS  Google Scholar 

  42. Daniels JM, Rosencwaig A (1970) Mössbauer study of the Ni–Zn ferrite system. Can J Phys 48(4):381–396

    Article  CAS  Google Scholar 

  43. Globus A, Pascard H, Cagan V (1977) Distance between magnetic ions and fundamental properties in ferrites. Le Journal de Physique Colloques 38(C1):C1–163

    Google Scholar 

  44. Eissa NA, Sallam HA, Fayek MK, Salah SH, Hassaan MY (1981) Study of magnetic properties and lattice dynamics of the CdxCo1−x ferrite system by Mössbauer effect. Acta Physica Academiae Scientiarum Hungaricae 51(3):313–318

    Article  CAS  Google Scholar 

  45. Mazen SA, Abd-el-Rahlem AE, Sabrah BA (1987) The structure and electrical conductivity of Mn–Cd ferrite. J Mater Sci 22(11):4177–4180

    Article  CAS  Google Scholar 

  46. Wieser E, Povitskii VA, Makarov EF, Kleinstück K (1968) Mössbauer investigations of Mg, Mn, and Mg–Mn ferrites in external magnetic fields. Physica Status Solidi (b) 25(2):607–611

    Google Scholar 

  47. Smit J, Wijn HPJ (1959) Ferrites, Philips technical library. Eindhoven, The Netherlands, p 278

    Google Scholar 

  48. Nivoix V, Gillot B (1998) Preparation, characterization and reactivity toward oxygen of new nanosized vanadium–iron spinels. Solid State Ionics 111(1–2):17–25

    Article  CAS  Google Scholar 

  49. Gerardin R, Bonazebi A, Millon E, Brice JF, Evrard O, Sanchez JP (1989) Etude des magne’ tites dope’ esala chaux: Substitution du fer par le calcium en site te’ trae’ drique. J Solid State Chem 78(1):154–163

    Article  CAS  Google Scholar 

  50. Hägg G (1935) Die Kristallstruktur des magnetischen Ferrioxyds, γ-Fe2O3. Z Phys Chem 29(1):95–103

    Article  Google Scholar 

  51. Verwey EJW (1935) The crystal structure of γ-Fe2O3 and γ-Al2O3. Zeitschrift für Kristallographie-Crystalline Materials 91(1–6):65–69

    Google Scholar 

  52. Sumiya K, Watatani S, Hayama F, Naono H, Matsumoto T (1979) Studies on recording magnetic materials and magnetic composite. 1. Incorporation of cobalt into acicular gamma-Fe2O3 particles. Nippon Kagaku Kaishi 8:1033–1038

    Article  Google Scholar 

  53. Sumiya K, Matsumoto T, Watatani S, Hayama F (1979) Crystal growth of Co ferrite on fine acicular γ-Fe2O3 particles. J Phys Chem Solids 40(12):1097–1102

    Article  CAS  Google Scholar 

  54. Kishimoto M, Sueyoshi T, Hirata J, Amemiya M, Hayama F (1979) Coercivity of γ-Fe2O3 particles growing iron-cobalt ferrite. J Appl Phys 50(1):450–452

    Article  CAS  Google Scholar 

  55. Bragg WH (1915) XXX. The structure of the spinel group of crystals. Lond Edinburgh Dublin Philos Mag J Sci 30(176):305–315

    Article  CAS  Google Scholar 

  56. Nishikawa S (1915) Structure of some crystals of spinel group. In: Proceedings of the Tokyo mathematico-physical society, 2nd series, vol 8, no 7, pp 199–209

    Google Scholar 

  57. Verwey EJW, Heilmann EL (1947) Physical properties and cation arrangement of oxides with spinel structures I. Cation arrangement in spinels. J Chem Phys 15(4):174–180

    Article  CAS  Google Scholar 

  58. A. Goldman, Modern ferrite technology. Springer Science & Business Media, 2006.

    Google Scholar 

  59. Barth TFW, Posnjak E (1932) Spinel structures: with and without variate atom equipoints. Zeitschrift Für Kristallographie-Crystalline Materials 82(1–6):325–341

    Google Scholar 

  60. Néel L (1948) Propriétés magnétiques des ferrites; ferrimagnétisme et antiferromagnétisme. Annales de physique 12(3):137–198

    Article  Google Scholar 

  61. Li X, Barbers VAM, De Boer FR (1992) In: Proceedings of 6th international conference on ferrites, Tokyo/Kyoto, Japan, p 674

    Google Scholar 

  62. Abe M, Kawachi M, Nomura S (1972) X-ray and neutron diffraction studies in spinel Fe2MoO4. J Phys Soc Jpn 33(5):1296–1302

    Article  CAS  Google Scholar 

  63. Bertaut EF (1951) Sur quelques progrès récents dans la cristallographie des spinelles, en particulier des ferrites. J de Phys Rad 12:252–255

    Article  CAS  Google Scholar 

  64. Néel L (1950) Aimantation a saturation de certains ferrites. CR Acad Sci Paris 230:190–194

    Google Scholar 

  65. Pauthenet R (1950) Variation Thermique de l’ Aimantation Spontanée des Ferrites de Nickel, Cobalt, Fer et Manganése. Compt R Ac Sc Paris 230:1842–1843

    CAS  Google Scholar 

  66. Weil L, Bertaut EF, Bochirol L (1950) Propriétés magnétiques et structure de la phase quadratique du ferrite de cuivre. J de Physique et le Radium 11(5):208–212

    Article  CAS  Google Scholar 

  67. Prince E, Treuting RG (1956) The structure of tetragonal copper ferrite. Acta Crystallogr A 9(12):1025–1028

    Article  CAS  Google Scholar 

  68. Brockman FG (1950) The cation distribution in ferrites with spinel structure. Phys Rev 77(6):841

    Article  CAS  Google Scholar 

  69. Hastings JM, Corliss LM (1956) Neutron diffraction study of manganese ferrite. Phys Rev 104(2):328

    Article  CAS  Google Scholar 

  70. Sawatzky GA, Van Der Woude F, Morrish AH (1968) Cation distributions in octahedral and tetrahedral sites of the ferrimagnetic spinel CoFe2O4. J Appl Phys 39(2):1204–1205

    Article  CAS  Google Scholar 

  71. Verwey EJW, De Boer F, Van Santen JH (1948) Cation arrangement in spinels. J Chem Phys 16(12):1091–1092

    Article  Google Scholar 

  72. De Boer F, Van Santen JH, Verwey EJW (1950) The electrostatic contribution to the lattice energy of some ordered spinels. J Chem Phys 18(8):1032–1034

    Article  Google Scholar 

  73. Brabers VAM (1995) Progress in spinel ferrite research. Handb Magn Mater 8:189–324

    Article  CAS  Google Scholar 

  74. Kriessman CJ, Harrison SE (1956) Cation distributions in ferrospinels. Magnesium-manganese ferrites. Phys Rev 103(4):857

    Google Scholar 

  75. Miller A (1959) Distribution of cations in spinels. J Appl Phys 30(4):S24–S25

    Article  Google Scholar 

  76. Driessens FCM (1968) Thermodynamics and defect chemistry of some oxide solid solutions Part III. Defect equilibria and the formalism of pair interactions. Ber Bunsenges Phys Chem 72(9–10):1123–1133

    CAS  Google Scholar 

  77. O’Neill HSC, Navrotsky A (1983) Simple spinels; crystallographic parameters, cation radii, lattice energies, and cation distribution. Am Miner 68(1–2):181–194

    CAS  Google Scholar 

  78. McClure DS (1957) The distribution of transition metal cations in spinels. J Phys Chem Solids 3(3–4):311–317

    Article  CAS  Google Scholar 

  79. Dunitz JD, Orgel LE (1957) Electronic properties of transition-metal oxides—I: distortions from cubic symmetry. J Phys Chem Solids 3(1–2):20–29

    Article  CAS  Google Scholar 

  80. Cormack AN, Lewis GV, Parker SC, Catlow CRA (1988) On the cation distribution of spinels. J Phys Chem Solids 49(1):53–57

    Article  CAS  Google Scholar 

  81. Anderson PW (1956) Ordering and antiferromagnetism in ferrites. Phys Rev 102(4):1008

    Article  CAS  Google Scholar 

  82. Furuhashi H, Inagaki M, Naka S (1973) Determination of cation distribution in spinels by X-ray diffraction method. J Inorg Nucl Chem 35(8):3009–3014

    Article  CAS  Google Scholar 

  83. Buerger MG (1960) Crystal structure analysis. Wiley, New York

    Google Scholar 

  84. Cullity BD (1956) Elements of X-ray diffraction. Addison-Wesley Publishing

    Google Scholar 

  85. Trivedi UN, Jani KH, Modi KB, Joshi HH (2000) Study of cation distribution in lithium doped nickel ferrite. J Mater Sci Lett 19(14):1271–1273

    Article  CAS  Google Scholar 

  86. Patange SM, Shirsath SE, Toksha BG, Jadhav SS, Shukla SJ, Jadhav KM (2009) Cation distribution by Rietveld, spectral and magnetic studies of chromium-substituted nickel ferrites. Appl Phys A 95(2):429–434

    Google Scholar 

  87. Patange SM, Shirsath SE, Jangam GS, Lohar KS, Jadhav SS, Jadhav KM (2011) Rietveld structure refinement, cation distribution and magnetic properties of Al3+ substituted NiFe2O4 nanoparticles. J Appl Phys 109(5):053909

    Google Scholar 

  88. Kavas H, Baykal A, Toprak MS, Köseoğlu Y, Sertkol M, Aktaş B (2009) Cation distribution and magnetic properties of Zn doped NiFe2O4 nanoparticles synthesized by PEG-assisted hydrothermal route. J Alloy Compd 479(1–2):49–55

    Article  CAS  Google Scholar 

  89. Gómez CAP, Meneses CAB, Matute A (2018) Structural parameters and cation distributions in solid state synthesized Ni–Zn ferrites. Mater Sci Eng, B 236:48–55

    Article  CAS  Google Scholar 

  90. Nikmanesh H, Eshraghi M (2019) Cation distribution, magnetic and structural properties of CoCrxFe2–xO4: effect of calcination temperature and chromium substitution. J Magn Magn Mater 471:294–303

    Article  CAS  Google Scholar 

  91. Cvejic Z, Rakic S, Kremenovic A, Antic B, Jovalekic C, Colomban P (2006) Nanosize ferrites obtained by ball milling: crystal structure, cation distribution, size-strain analysis and Raman investigations. Solid State Sci 8(8):908–915

    Article  CAS  Google Scholar 

  92. Kumar L, Kumar P, Narayan A, Kar M (2013) Rietveld analysis of XRD patterns of different sizes of nanocrystalline cobalt ferrite. Int Nano Letters 3(1):8

    Article  CAS  Google Scholar 

  93. Gismelseed AM, Yousif AA (2005) Mössbauer study of chromium-substituted nickel ferrites. Phys B 370(1–4):215–222

    Article  CAS  Google Scholar 

  94. Mittal VK, Chandramohan P, Bera S, Srinivasan MP, Velmurugan SVNS, Narasimhan SV (2006) Cation distribution in NixMg1−xFe2O4 studied by XPS and Mössbauer spectroscopy. Solid State Commun 137(1–2):6–10

    Google Scholar 

  95. Kumar RV, Anupama AV, Kumar R, Choudhary HK, Khopkar VB, Aravind G, Sahoo B (2018) Cation distributions and magnetism of Al-substituted CoFe2O4–NiFe2O4 solid solutions synthesized by sol-gel auto-combustion method. Ceram Int 44(17):20708–20715

    Article  CAS  Google Scholar 

  96. Tang GD, Ji DH, Yao YX, Liu SP, Li ZZ, Qi WH, Han QJ, Hou X, Hou DL (2011) Quantum-mechanical method for estimating ion distributions in spinel ferrites. Appl Phys Lett 98(7):072511

    Google Scholar 

  97. Han QJ, Ji DH, Tang GD, Li ZZ, Hou X, Qi WH, Liu SR, Bian RR (2012) Estimating the cation distributions in the spinel ferrites Cu0.5− xNi0. 5ZnxFe2O4 (0.0≤ x≤ 0.5). J Magn Magn Mater 324(12):1975–1981

    Article  CAS  Google Scholar 

  98. Ji DH, Tang GD, Li ZZ, Hou X, Han QJ, Qi WH, Liu SR, Bian RR (2013) Quantum mechanical method for estimating ionicity of spinel ferrites. J Magn Magn Mater 326:197–200

    Article  CAS  Google Scholar 

  99. Nandan B, Bhatnagar MC, Kashyap SC (2019) Cation distribution in nanocrystalline cobalt substituted nickel ferrites: X-ray diffraction and Raman spectroscopic investigations. J Phys Chem Solids 129:298–306

    Article  CAS  Google Scholar 

  100. Manjunatha M, Reddy GS, Damle R, Mallikarjunaiah KJ, Ramesh KP (2019) Estimation of structural composition of the inverse spinel ferrites using 57Fe-Zero Field Nuclear Magnetic Resonance. Ceram Int 45(7):9245–9253

    Article  CAS  Google Scholar 

  101. Gorter EW (1954) Saturation magnetization and crystal chemistry of ferrimagnetic oxides. I. II. Theory of ferrimagnetism. Philips Res Rep 9:295–320

    CAS  Google Scholar 

  102. Gilleo MA (1958) Superexchange interaction energy for Fe3+–O2−–Fe3+ linkages. Phys Rev 109(3):777

    Article  CAS  Google Scholar 

  103. Gilleo MA (1960) Superexchange interaction in ferrimagnetic garnets and spinels which contain randomly incomplete linkages. J Phys Chem Solids 13(1–2):33–39

    Article  CAS  Google Scholar 

  104. Ishikawa Y (1962) Magnetic properties of ilmenite-hematite system at low temperature. J Phys Soc Jpn 17(12):1835–1844

    Article  CAS  Google Scholar 

  105. Nowik I (1969) Saturation moments of mixed ferrites: a simple theory. J Appl Phys 40(2):872–874

    Article  CAS  Google Scholar 

  106. Geller S (1969) “Comments on” molecular-field theory for randomly substituted ferrimagnetic garnet systems “by I. Nowik.” Phys Rev 181(2):980

    Google Scholar 

  107. Guillaud C, Creveaux H (1950) Preparations et properietes magnetiques des ferrites de manganese et de cobalt. Compt R Ac Sc Paris 230(13):1256–1258

    CAS  Google Scholar 

  108. Guillaud C (1951) Propriétés magnétiques des ferrites. J de Physique et le Radium 12(3):239–248

    Article  Google Scholar 

  109. Guillaud C, Sage M (1951) Proprietes Magnetiques des Ferrites Mixtes de Magnesium et de Zinc. Compt R Ac Sc Paris 232:944–946

    Google Scholar 

  110. Pauthenet R, Bochirol L (1951) Aimantation spontanée des ferrites. Journal de Physique et le Radium 12(3):249–251

    Article  CAS  Google Scholar 

  111. Bacon GE (1975) Neutron diffraction. Clarendon (1975)

    Google Scholar 

  112. Maxwell LR, Pickart SJ (1953) Magnetization in nickel ferrite-aluminates and nickel ferrite-gallates. Phys Rev 92(5):1120

    Article  CAS  Google Scholar 

  113. Maxwell LR, Pickart SJ (1954) Magnetic and crystalline behavior of certain oxide systems with spinel and perovskite structures. Phys Rev 96(6):1501

    Article  CAS  Google Scholar 

  114. Lyons DH, Kaplan TA, Dwight K, Menyuk N (1962) Classical theory of the ground spin-state in cubic spinels. Phys Rev 126(2):540

    Article  CAS  Google Scholar 

  115. Zener C (1951) Interaction between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys Rev 82(3):403

    Google Scholar 

  116. Lotgering FK, Van Diepen AM (1977) Electron exchange between Fe2+ and Fe3+ ions on octahedral sites in spinels studied by means of paramagnetic Mössbauer spectra and susceptibility measurements. J Phys Chem Solids 38(6):565–572

    Article  CAS  Google Scholar 

  117. Leung LK, Evans BJ, Morrish AH (1973) Low-temperature Mössbauer study of a nickel-zinc ferrite: ZnxNi1−xFe2O4. Phys Rev B 8(1):29

    Article  CAS  Google Scholar 

  118. Morel JP (1967) Etude par l’effet mössbauer de l’aimantation spontanee des deux sous-reseaux de fer dans le ferrite NiFe2O4. J Phys Chem Solids 28(4):629–634

    Article  CAS  Google Scholar 

  119. Chinnasamy CN, Narayanasamy A, Ponpandian N, Chattopadhyay K, Shinoda K, Jeyadevan B, Tohji K, Nakatsuka K, Furubayashi T, Nakatani I (2001) Mixed spinel structure in nanocrystalline NiFe2O4. Phys Rev B 63(18):184108

    Google Scholar 

  120. Alarifi A, Deraz NM, Shaban S (2009) Structural, morphological and magnetic properties of NiFe2O4 nano-particles. J Alloy Compd 486(1–2):501–506

    Article  CAS  Google Scholar 

  121. Nawale AB, Kanhe NS, Patil KR, Bhoraskar SV, Mathe VL, Das AK (2011) Magnetic properties of thermal plasma synthesized nanocrystalline nickel ferrite (NiFe2O4). J Alloy Compd 509(12):4404–4413

    Article  CAS  Google Scholar 

  122. Zabotto FL, Gualdi AJ, Eiras JA, Aparecido de Oliveira AJ, Garcia D (2012) Influence of the sintering temperature on the magnetic and electric properties of NiFe2O4 ferrites. Mater Res 15(3):428–433

    Article  CAS  Google Scholar 

  123. Thakur S, Katyal SC, Singh M (2009) Structural and magnetic properties of nano nickel–zinc ferrite synthesized by reverse micelle technique. J Magn Magn Mater 321(1):1–7

    Article  CAS  Google Scholar 

  124. Dormann JL, Tomas A, Nogues M (1983) Cation ordering in LiFe5O8 studied by Mössbauer spectroscopy and X‐ray crystallography. Physica Status Solidi (a) 77(2):611–618

    Google Scholar 

  125. Kang KU, Hyun SW, Kim CS (2006) Size-dependent magnetic properties of ordered Li0.5Fe2.5O4 prepared by the sol-gel method. J Appl Phys 99(8):08M917

    Google Scholar 

  126. George M, Nair SS, John AM, Joy PA, Anantharaman MR (2006) Structural, magnetic and electrical properties of the sol-gel prepared Li0.5Fe2.5O4 fine particles. J Phys D: Appl Phys 39(5):900

    Google Scholar 

  127. Anantharaman MR, Jagatheesan S, Malini KA, Sindhu S, Narayanasamy A, Chinnasamy CN, Jacobs JP, Reijne S, Seshan K, Smits RHH, Brongersma HH (1998) On the magnetic properties of ultra-fine zinc ferrites. J Magn Magn Mater 189(1):83–88

    Article  CAS  Google Scholar 

  128. Shenoy SD, Joy PA, Anantharaman MR (2004) Effect of mechanical milling on the structural, magnetic and dielectric properties of coprecipitated ultrafine zinc ferrite. J Magn Magn Mater 269(2):217–226

    Article  CAS  Google Scholar 

  129. Janicki J, Pietrzak J, Porȩbska A, Suwalski J (1982) Mössbauer study of copper ferrites. Physica Status Solidi (a) 72(1):95–98

    Google Scholar 

  130. Hannoyer B, Lenglet M, Chopova R, Tellier JC (1985) Contribution de la spectrometrie mössbauer et de la spectrometrie d’absorption XA l’etude de la non-stoechiometrie de CuFe2O4. Mater Chem Phys 13(5):449–465

    Article  CAS  Google Scholar 

  131. Hoque SM, Choudhury MA, Islam MF (2002) Characterization of Ni–Cu mixed spinel ferrite. J Magn Magn Mater 251(3):292–303

    Article  CAS  Google Scholar 

  132. Kimura S, Mashino T, Hiroki T, Shigeoka D, Sakai N, Zhu L, Ichiyanagi Y (2012) Effect of heat treatment on Jahn-Teller distortion and magnetization in Cu ferrite nanoparticles. Thermochim Acta 532:119–122

    Article  CAS  Google Scholar 

  133. Abdellatif MH, Innocenti C, Liakos I, Scarpellini A, Marras S, Salerno M (2017) Effect of Jahn-Teller distortion on the short-range magnetic order in copper ferrite. J Magn Magn Mater 424:402–409

    Article  CAS  Google Scholar 

  134. Chatterjee BK, Bhattacharjee K, Dey A, Ghosh CK, Chattopadhyay KK (2014) Influence of spherical assembly of copper ferrite nanoparticles on magnetic properties: orientation of magnetic easy axis. Dalton Trans 43(21):7930–7944

    Article  CAS  Google Scholar 

  135. Balagurov AM, Bobrikov IA, Pomjakushin VY, Sheptyakov DV, Yushankhai VY (2015) Interplay between structural and magnetic phase transitions in copper ferrite studied with high-resolution neutron diffraction. J Magn Magn Mater 374:591–599

    Article  CAS  Google Scholar 

  136. De Grave E, Govaert A, Chambaere D, Robbrecht G (1979) A Mössbauer effect study of MgFe2O4. Physica B + C 96(1):103–110

    Google Scholar 

  137. Aliyan N, Mirkazemi SM, Masoudpanah SM, Akbari S (2017) The effect of post-calcination on cation distributions and magnetic properties of the coprecipitated MgFe2O4 nanoparticles. Appl Phys A 123(6):446

    Article  CAS  Google Scholar 

  138. Chandradass J, Jadhav AH, Kim KH, Kim H (2012) Influence of processing methodology on the structural and magnetic behavior of MgFe2O4 nanopowders. J Alloy Compd 517:164–169

    Article  CAS  Google Scholar 

  139. Aslibeiki B, Varvaro G, Peddis D, Kameli P (2017) Particle size, spin wave and surface effects on magnetic properties of MgFe2O4 nanoparticles. J Magn Magn Mater 422:7–12

    Article  CAS  Google Scholar 

  140. Prince E (1956) Neutron diffraction observation of heat treatment in cobalt ferrite. Phys Rev 102(3):674

    Article  CAS  Google Scholar 

  141. Petitt GA, Forester DW (1971) Mössbauer study of cobalt-zinc ferrites. Phys Rev B 4(11):3912

    Article  Google Scholar 

  142. Hauet A, Teillet J, Hannoyer B, Lenglet M (1987) Mössbauer study of Co and Ni ferrichromites. Physica Status Solidi A Appl Res 103(1):257–261

    Google Scholar 

  143. Persoons RM, De Grave E, De Bakker PMA, Vandenberghe RE (1993) Mössbauer study of the high-temperature phase of co-substituted magnetites, CoxFe3−xO4 II. x ≥ 0.1. Phys Rev B 47(10):5894

    Google Scholar 

  144. López JL, Pfannes, H-D, Paniago R, Sinnecker JP, Novak MA (2008) Investigation of the static and dynamic magnetic properties of CoFe2O4 nanoparticles. J Magnet Magnet Mater 320(14):e327–e330

    Google Scholar 

  145. Eshraghi M, Kameli P (2011) Magnetic properties of CoFe2O4 nanoparticles prepared by thermal treatment of ball-milled precursors. Curr Appl Phys 11(3):476–481

    Article  Google Scholar 

  146. Sawatzky GA, Van Der Woude F, Morrish AH (1969) Mössbauer study of several ferrimagnetic spinels. Phys Rev 187(2):747

    Article  CAS  Google Scholar 

  147. Lotgering FK, Van Diepen AM (1973) Valencies of manganese and iron ions in cubic ferrites as observed in paramagnetic Mössbauer spectra. J Phys Chem Solids 34(8):1369–1377

    Article  CAS  Google Scholar 

  148. Simsa Z, Brabers V (1975) Influence of the degree of inversion on magnetic properties of MnFe2O4. IEEE Trans Magn 11(5):1303–1305

    Article  Google Scholar 

  149. Li J, Yuan H, Li G, Liu Y, Leng J (2010) Cation distribution dependence of magnetic properties of sol-gel prepared MnFe2O4 spinel ferrite nanoparticles. J Magn Magn Mater 322(21):3396–3400

    Article  CAS  Google Scholar 

  150. Huang JR, Cheng C (2013) Cation and magnetic orders in MnFe2O4 from density functional calculations. J Appl Phys 113(3):033912

    Google Scholar 

  151. Sugimoto M (1999) The past, present, and future of ferrites. J Am Ceram Soc 82(2):269–280

    Article  CAS  Google Scholar 

  152. Wei F, Baoshun L, Jizhong Y, Xi L, Muyu Z (1998) Synthesis and microwave absorptive properties of lithium ferrite nanocrystals. J Magnet Soc Jpn 22(S1):366–368

    Google Scholar 

  153. Bertaut F, Forrat F (1956) Structure des ferrites ferrimagnetiques des terres rares. Comptes Rendus Hebdomadaires Des Seances De L Academie Des Sciences 242(3):382–384

    CAS  Google Scholar 

  154. Tsang C, Chen MM, Yogi T, Ju K (1990) Gigabit density recording using dual-element MR/inductive heads on thin-film disks. IEEE Trans Magn 26(5):1689–1693

    Article  Google Scholar 

  155. Nomura T, Takaya M (1987) Passive components and hybrid technology. Hybrids 3(1):16–19

    Article  Google Scholar 

  156. Nakamura T, Okano Y (1997) Low temperature sintered Ni–Zn–Cu Ferrite. Le J de Physique IV 7(C1): C1–91

    Google Scholar 

  157. Li L, Fang YK, Liu YJ (2015) Preparation and application on antenna of soft ferrite core for wireless sensor networks. IEEE Trans Magn 51(11):1–3

    Google Scholar 

  158. Patil SN, Pawar AM, Tilekar SK, Ladgaonkar BP (2016) Investigation of magnesium substituted nano particle zinc ferrites for relative humidity sensors. Sens Actuators, A 244:35–43

    Article  CAS  Google Scholar 

  159. Kumar E, Ranjith R, Jayaprakash, Sarala Devi G, Siva Prasada Reddy P (2014) Synthesis of Mn substituted CuFe2O4 nanoparticles for liquefied petroleum gas sensor applications. Sens Actuat B Chem 191:186–191

    Google Scholar 

  160. Waqas H, Qureshi AH, Subhan K, Shahzad M (2012) Nanograin Mn–Zn ferrite smart cores to miniaturize electronic devices. Ceram Int 38(2):1235–1240

    Article  CAS  Google Scholar 

  161. Huq MF, Saha DK, Ahmed R, Mahmood ZH (2013) Ni-Cu-Zn ferrite research: A brief review. J Sci Res 5(2):215–234

    Article  CAS  Google Scholar 

  162. Lebourgeois R (2014) Low losses ferrites for high integration level in power electronics. J Jpn Soc Powder Powder Metallurgy 61(S1): S211–S213

    Google Scholar 

  163. Gilani ZA, Warsi MF, Anjum MN, Shakir I, Naseem S, Riaz S, Khan MA (2015) Structural and electromagnetic behavior evaluation of Nd-doped lithium–cobalt nanocrystals for recording media applications. J Alloy Compd 639:268–273

    Article  CAS  Google Scholar 

  164. Dar MA, Majid K, Najar MH, Kotnala RK, Shah J (2016) Synthesis and characterization of Li0.5Fe2.5-xGdxO4 ferrite nano-particles as a potential candidate for microwave device applications. Mater Des 90:443–452

    Article  CAS  Google Scholar 

  165. Sharma R, Thakur P, Sharma P, Sharma V (2018) Mn2+ doped Mg–Zn ferrite nanoparticles for microwave device applications. IEEE Electron Device Lett 39(6):901–904

    Article  CAS  Google Scholar 

  166. Gaba S, Kumar A, Rana PS, Arora M (2018) Influence of La3+ ion doping on physical properties of magnesium nanoferrites for microwave absorption application. J Magn Magn Mater 460:69–77

    Article  CAS  Google Scholar 

  167. Bhongale SR, Ingawale HR, Shinde TJ, Pubby K, Narang SB, Vasambekar PN (2017) Nano-crystalline magnesium substituted cadmium ferrites as X-band microwave absorbers. J Magnet Magnet Mater 441:475–481

    Google Scholar 

  168. Wu H, Gang L, Wang X, Zhang J, Chen Y, Shi J, Yang H, Hu H, Yang S (2011) Solvothermal synthesis of cobalt ferrite nanoparticles loaded on multiwalled carbon nanotubes for magnetic resonance imaging and drug delivery. Acta Biomater 7(9):3496–3504

    Article  CAS  Google Scholar 

  169. Cai B, Zhao M, Ma Y, Ye Z, Huang J (2015) Bioinspired formation of 3D hierarchical CoFe2O4 porous microspheres for magnetic-controlled drug release. ACS Appl Mater Interfaces 7(2):1327–1333

    Article  CAS  Google Scholar 

  170. Amiri M, Salavati-Niasari M, Akbari A (2019) Magnetic nanocarriers: evolution of spinel ferrites for medical applications. Adv Coll Interface Sci 265:29–44

    Article  CAS  Google Scholar 

  171. Das H, Sakamoto N, Aono H, Shinozaki K, Suzuki H, Wakiya N (2015) Investigations of superparamagnetism in magnesium ferrite nano-sphere synthesized by ultrasonic spray pyrolysis technique for hyperthermia application. J Magn Magn Mater 392:91–100

    Article  CAS  Google Scholar 

  172. Arana M, Bercoff PG, Jacobo SE, Zélis PM, Pasquevich GA (2016) Mechanochemical synthesis of MnZn ferrite nanoparticles suitable for biocompatible ferrofluids. Ceram Int 42(1):1545–1551

    Article  CAS  Google Scholar 

  173. Monfared AH, Zamanian A, Sharifi I, Mozafari M (2019) Reversible multistimuli-responsive manganese–zinc ferrite/P (NIPAAM-AAc-AAm) core-shell nanoparticles: a programmed ferrogel system. Mater Chem Phys 226:44–50

    Article  CAS  Google Scholar 

  174. Anupama AV, Kumaran V, Sahoo B (2019) Synthesis of highly magnetic Mn-Zn ferrite (Mn0.7Zn0.3Fe2O4) ceramic powder and its use in smart magnetorheological fluid. Rheol Acta 58(5):273–280

    Article  CAS  Google Scholar 

  175. Zahid M, Nadeem N, Hanif MA, Bhatti IA, Bhatti HN, Mustafa G (2019) Metal ferrites and their graphene-based nanocomposites: synthesis, characterization, and applications in wastewater treatment. In: Magnetic nanostructures, pp 181–212. Springer, Cham

    Google Scholar 

  176. Mylarappa M, Lakshmi VV, Vishnu Mahesh KR, Nagaswarupa HP, Raghavendra N Synthesis and characterization of Mn–ZnFe2O4 and Mn–ZnFe2O4/rGO nanocomposites from waste batteries for photocatalytic, electrochemical and thermal studies. Mater Res Express 4(11):115603

    Google Scholar 

  177. Zhou X, Chuai D, Zhu D (2019) Electrospun synthesis of reduced graphene oxide (RGO)/NiZn ferrite nanocomposites for excellent microwave absorption properties. J Supercond Novel Magn 32(8):2687–2697

    Article  CAS  Google Scholar 

  178. Sreeprasad TS, Maliyekkal SM, Lisha KP, Pradeep T (2011) Reduced graphene oxide–metal/metal oxide composites: facile synthesis and application in water purification. J Hazard Mater 186(1):921–931

    Article  CAS  Google Scholar 

  179. Koduru JR, Karri RR, Mubarak NM () Smart materials, magnetic graphene oxide-based nanocomposites for sustainable water purification. In: Sustainable polymer composites and nanocomposites. Springer, Cham, pp 759–781

    Google Scholar 

  180. Gharibshahi E, Young B, Bhalla A, Guo R (2020) Theory, simulation and experiment of optical properties of cobalt ferrite nanoparticles. J Mater Sci Technol

    Google Scholar 

  181. Goldman JA (2014) The US rare earth industry: its growth and decline. Journal of Policy History 26(2):139–166

    Article  Google Scholar 

  182. Seaman J (2019) Rare earths and China. A review of changing criticality in the new economy

    Google Scholar 

  183. Li X, Lou L, Song W, Huang G, Hou F, Zhang Q, Zhang HT, Xiao J, Wen B, Zhang X (2017) Novel bimorphological anisotropic bulk nanocomposite materials with high energy products. Adv Mater 29(16):1606430

    Article  CAS  Google Scholar 

  184. Torkian S, Ghasemi A (2019) Energy product enhancement in sufficiently exchange-coupled nanocomposite ferrites. J Magn Magn Mater 469:119–127

    Article  CAS  Google Scholar 

  185. Radulescu MM (2019) Novel spoke-type ferrite-magnet generators for micro-wind power applications. In: 2019 6th International symposium on electrical and electronics engineering (ISEEE). IEEE, pp 1–6

    Google Scholar 

  186. Bhosale RR (2019) Thermodynamic analysis of Ni-ferrite based solar thermochemical H2O splitting cycle for H2 production. Int J Hydrogen Energy 44(1):61–71

    Article  CAS  Google Scholar 

  187. Goikoetxea NB, Gómez-Mancebo MB, Fernández-Saavedra R, Borlaf F, García-Pérez F, Jiménez JA, Llorente I, Rucandio I, Quejido AJ (2019) Understanding water-splitting thermochemical cycles based on nickel and cobalt ferrites for hydrogen production. Int J Hydrogen Energy 44(33):17578–17585

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SKS is thankful to PPGF-UFMA for motivation to work on this book project. The author would also like to thank the various publishers to provide copyright permission to reproduce figures in these chapters.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surender K. Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Manhas, A., Singh, M., Hussain, M.I., Javed, Y., Sharma, S.K. (2021). Progress in Ferrites Materials: The Past, Present, Future and Their Applications. In: Sharma, S.K. (eds) Spinel Nanoferrites. Topics in Mining, Metallurgy and Materials Engineering. Springer, Cham. https://doi.org/10.1007/978-3-030-79960-1_1

Download citation

Publish with us

Policies and ethics