Skip to main content

Carbon-Based Field-Effect Transistors

  • Chapter
  • First Online:
Springer Handbook of Semiconductor Devices

Part of the book series: Springer Handbooks ((SHB))

Abstract

Carbon-based nanomaterials such as graphene and carbon nanotubes (CNTs) are considered as promising candidates for various applications in electronics. This chapter provides a wide-range review of different devices and applications in this field, with a focus on high-frequency analog electronics as well as digital circuits. We start from the band structure of graphene as well as CNTs to explain why these materials may outperform conventional electronic materials in specific areas. Graphene-based field-effect transistors, hot electron transistors, and metal-insulator-graphene diodes are elaborated particularly for applications in high-frequency electronics. Graphene field-effect transistors on flexible substrates are also discussed, which could exploit the excellent mechanical properties of graphene. The scope is then expanded to digital circuits with CNTs. We describe CNT-based CMOS integrated circuits, including recent prototype microprocessors with high complexity. The purpose of this chapter is to provide readers with the basic concepts on carbon-based device physics, an understanding of typical characteristics of nanoelectronic devices, and an overview of the state of the art in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 309.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 399.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Ferrari, A.C., Bonaccorso, F., Falko, V., Novoselov, K.S., Roche, S., Bøggild, P., Borini, S., Koppens, F.H.L., Palermo, V., Pugno, N., Garrido, J.A., Sordan, R., Bianco, A., Ballerini, L., Prato, M., Lidorikis, E., Kivioja, J., Marinelli, C., Ryhänen, T., Morpurgo, A., Coleman, J.N., Nicolosi, V., Colombo, L., Fert, A., Garcia-Hernandez, M., Bachtold, A., Schneider, G.F., Guinea, F., Dekker, C., Barbone, M., Sun, Z., Galiotis, C., Grigorenko, A.N., Konstantatos, G., Kis, A., Katsnelson, M., Vandersypen, L., Loiseau, A., Morandi, V., Neumaier, D., Treossi, E., Pellegrini, V., Polini, M., Tredicucci, A., Williams, G.M., Hee Hong, B., Ahn, J.-H., Min Kim, J., Zirath, H., van Wees, B.J., van der Zant, H., Occhipinti, L., Di Matteo, A., Kinloch, I.A., Seyller, T., Quesnel, E., Feng, X., Teo, K., Rupesinghe, N., Hakonen, P., SRT, N., Tannock, Q., Löfwander, T., Kinaret, J.: Science and technology roadmap for graphene, related two-dimensional crystals, and hybrid systems. Nanoscale. 7, 4598–4810 (2015). https://doi.org/10.1039/C4NR01600A

    Article  Google Scholar 

  2. Neumaier, D., Pindl, S., Lemme, M.C.: Integrating graphene into semiconductor fabrication lines. Nat. Mater. 18, 525–529 (2019). https://doi.org/10.1038/s41563-019-0359-7

    Article  Google Scholar 

  3. Wang, L., Meric, I., Huang, P.Y., Gao, Q., Gao, Y., Tran, H., Taniguchi, T., Watanabe, K., Campos, L.M., Muller, D.A., Guo, J., Kim, P., Hone, J., Shepard, K.L., Dean, C.R.: One-Dimensional Electrical Contact to a Two-Dimensional Material. Science. 342, 614–617 (2013). https://doi.org/10.1126/science.1244358

    Article  Google Scholar 

  4. Yamoah, M.A., Yang, W., Pop, E., Goldhaber-Gordon, D.: High-Velocity Saturation in Graphene Encapsulated by Hexagonal Boron Nitride. ACS Nano. 11, 9914–9919 (2017). https://doi.org/10.1021/acsnano.7b03878

    Article  Google Scholar 

  5. Mehr, W., Dabrowski, J., Scheytt, J.C., Lippert, G., Xie, Y., Lemme, M.C., Ostling, M., Lupina, G.: Vertical Graphene Base Transistor. IEEE Electron. Device Lett. 33, 691–693 (2012). https://doi.org/10.1109/LED.2012.2189193

    Article  Google Scholar 

  6. Saito, R., Saito, R., Dresselhaus, M.S.: Physical Properties of Carbon Nanotubes. Imperial College Press (1998)

    Book  Google Scholar 

  7. Kataria, S., Wagner, S., Ruhkopf, J., Gahoi, A., Pandey, H., Bornemann, R., Vaziri, S., Smith, A.D., Ostling, M., Lemme, M.C.: Chemical vapor deposited graphene: From synthesis to applications. Phys. Status Solidi. A. 211, 2439–2449 (2014). https://doi.org/10.1002/pssa.201400049

    Article  Google Scholar 

  8. Shah, K.A., Tali, B.A.: Synthesis of carbon nanotubes by catalytic chemical vapour deposition: A review on carbon sources, catalysts and substrates. Mater. Sci. Semicond. Process. 41, 67–82 (2016). https://doi.org/10.1016/j.mssp.2015.08.013

    Article  Google Scholar 

  9. Backes, C., Abdelkader, A.M., Alonso, C., Andrieux-Ledier, A., Arenal, R., Azpeitia, J., Balakrishnan, N., Banszerus, L., Barjon, J., Bartali, R., Bellani, S., Berger, C., Berger, R., Ortega, M.M.B., Bernard, C., Beton, P.H., Beyer, A., Bianco, A., Bøggild, P., Bonaccorso, F., Barin, G.B., Botas, C., Bueno, R.A., Carriazo, D., Castellanos-Gomez, A., Christian, M., Ciesielski, A., Ciuk, T., Cole, M.T., Coleman, J., Coletti, C., Crema, L., Cun, H., Dasler, D., Fazio, D.D., Díez, N., Drieschner, S., Duesberg, G.S., Fasel, R., Feng, X., Fina, A., Forti, S., Galiotis, C., Garberoglio, G., García, J.M., Garrido, J.A., Gibertini, M., Gölzhäuser, A., Gómez, J., Greber, T., Hauke, F., Hemmi, A., Hernandez-Rodriguez, I., Hirsch, A., Hodge, S.A., Huttel, Y., Jepsen, P.U., Jimenez, I., Kaiser, U., Kaplas, T., Kim, H., Kis, A., Papagelis, K., Kostarelos, K., Krajewska, A., Lee, K., Li, C., Lipsanen, H., Liscio, A., Lohe, M.R., Loiseau, A., Lombardi, L., López, M.F., Martin, O., Martín, C., Martínez, L., Martin-Gago, J.A., Martínez, J.I., Marzari, N., Mayoral, Á., McManus, J., Melucci, M., Méndez, J., Merino, C., Merino, P., Meyer, A.P., Miniussi, E., Miseikis, V., Mishra, N., Morandi, V., Munuera, C., Muñoz, R., Nolan, H., Ortolani, L., Ott, A.K., Palacio, I., Palermo, V., Parthenios, J., Pasternak, I., Patane, A., Prato, M., Prevost, H., Prudkovskiy, V., Pugno, N., Rojo, T., Rossi, A., Ruffieux, P., Samorì, P., Schué, L., Setijadi, E., Seyller, T., Speranza, G., Stampfer, C., Stenger, I., Strupinski, W., Svirko, Y., Taioli, S., Teo, K.B.K., Testi, M., Tomarchio, F., Tortello, M., Treossi, E., Turchanin, A., Vazquez, E., Villaro, E., Whelan, P.R., Xia, Z., Yakimova, R., Yang, S., Yazdi, G.R., Yim, C., Yoon, D., Zhang, X., Zhuang, X., Colombo, L., Ferrari, A.C., Garcia-Hernandez, M.: Production and processing of graphene and related materials. 2D Mater. 7, 022001 (2020). https://doi.org/10.1088/2053-1583/ab1e0a

    Article  Google Scholar 

  10. Wallace, P.R.: The Band Theory of Graphite. Phys. Rev. 71, 622–634 (1947). https://doi.org/10.1103/physrev.71.622

    Article  MATH  Google Scholar 

  11. Castro Neto, A.H., Guinea, F., Peres, N.M.R., Novoselov, K.S., Geim, A.K.: The electronic properties of graphene. Rev. Mod. Phys. 81, 109–162 (2009). https://doi.org/10.1103/RevModPhys.81.109

    Article  Google Scholar 

  12. Lemme M.C., Echtermeyer T.J., Baus M., Kurz H.: A Graphene Field Effect Device, IEEE Electron Device Letters, 28(4), 282–284, (2007)

    Google Scholar 

  13. Martin, J., Akerman, N., Ulbricht, G., Lohmann, T., Smet, J.H., von Klitzing, K., Yacoby, A.: Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat. Phys. 4, 144–148 (2008)

    Article  Google Scholar 

  14. Vaziri, S., Ostling, M., Lemme, M.C.: A Hysteresis-Free High-k Dielectric and Contact Resistance Considerations for Graphene Field Effect Transistors. ECS Trans. 41, 165–171 (2011)

    Article  Google Scholar 

  15. Gahoi, A., Wagner, S., Bablich, A., Kataria, S., Passi, V., Lemme, M.C.: Contact Resistance Study of Various Metal Electrodes with CVD Graphene. Solid State Electron. (2016)

    Google Scholar 

  16. Bittle, E.G., Basham, J.I., Jackson, T.N., Jurchescu, O.D., Gundlach, D.J.: Mobility overestimation due to gated contacts in organic field-effect transistors. Nat. Commun. 7, 1–7 (2016). https://doi.org/10.1038/ncomms10908

    Article  Google Scholar 

  17. Thiele, S., Schwierz, F.: Modeling of the steady state characteristics of large-area graphene field-effect transistors. J. Appl. Phys. 110, 034506 (2011). https://doi.org/10.1063/1.3606583

    Article  Google Scholar 

  18. Yang, W., Berthou, S., Lu, X., Wilmart, Q., Denis, A., Rosticher, M., Taniguchi, T., Watanabe, K., Fève, G., Berroir, J.-M., Zhang, G., Voisin, C., Baudin, E., Plaçais, B.: A graphene Zener–Klein transistor cooled by a hyperbolic substrate. Nat. Nanotechnol. 13, 47–52 (2018). https://doi.org/10.1038/s41565-017-0007-9

    Article  Google Scholar 

  19. Venica, S., Driussi, F., Gahoi, A., Palestri, P., Lemme, M.C., Selmi, L.: On the adequacy of the transmission line model to describe the graphene–metal contact resistance. IEEE Trans. Electron. Devices. 65, 1589–1596 (2018). https://doi.org/10.1109/TED.2018.2802946

    Article  Google Scholar 

  20. Driussi, F., Venica, S., Gahoi, A., Gambi, A., Giannozzi, P., Kataria, S., Lemme, M.C., Palestri, P., Esseni, D.: Improved understanding of metal–graphene contacts. Microelectron. Eng. 216, 111035 (2019). https://doi.org/10.1016/j.mee.2019.111035

    Article  Google Scholar 

  21. Smith, J.T., Franklin, A.D., Farmer, D.B., Dimitrakopoulos, C.D.: Reducing Contact Resistance in Graphene Devices through Contact Area Patterning. ACS Nano. 7, 3661–3667 (2013). https://doi.org/10.1021/nn400671z

    Article  Google Scholar 

  22. Anzi, L., Mansouri, A., Pedrinazzi, P., Guerriero, E., Fiocco, M., Pesquera, A., Centeno, A., Zurutuza, A., Behnam, A., Carrion, E.A., Pop, E., Sordan, R.: Ultra-low contact resistance in graphene devices at the Dirac point. 2D Mater. 5, 025014 (2018). https://doi.org/10.1088/2053-1583/aaab96

    Article  Google Scholar 

  23. Passi, V., Gahoi, A., Marin, E.G., Cusati, T., Fortunelli, A., Iannaccone, G., Fiori, G., Lemme, M.C.: Ultralow specific contact resistivity in metal–graphene junctions via contact engineering. Adv. Mater. Interfaces. 6, 1801285 (2019). https://doi.org/10.1002/admi.201801285

    Article  Google Scholar 

  24. Giubileo, F., Bartolomeo, A.D.: The role of contact resistance in graphene field-effect devices. Prog. Surf. Sci. 92, 143–175 (2017). https://doi.org/10.1016/j.progsurf.2017.05.002

    Article  Google Scholar 

  25. Schwierz, F.: Graphene Transistors: Status, Prospects, and Problems. Proc. IEEE. 101, 1567–1584 (2013). https://doi.org/10.1109/JPROC.2013.2257633

    Article  Google Scholar 

  26. Meric, I., Baklitskaya, P., Kim, P., Shepard, K.: RF performance of top-gated, zero-bandgap graphene field-effect transistor. Electron. Devices Meet IEDM, 1–4 (2008)

    Google Scholar 

  27. Moon, J.S., Curtis, D., Hu, M., Wong, D., McGuire, C., Campbell, P.M., Jernigan, G., Tedesco, J.L., VanMil, B., Myers-Ward, R., Eddy, C., Gaskill, D.K.: Epitaxial-Graphene RF Field-Effect Transistors on Si-Face 6H-SiC Substrates. IEEE Electron. Device Lett. 30, 650–652 (2009). https://doi.org/10.1109/LED.2009.2020699

    Article  Google Scholar 

  28. Wu, Y., Jenkins, K.A., Valdes-Garcia, A., Farmer, D.B., Zhu, Y., Bol, A.A., Dimitrakopoulos, C., Zhu, W., Xia, F., Avouris, P., Lin, Y.-M.: State-of-the-Art Graphene High-Frequency Electronics. Nano Lett. 12, 3062–3067 (2012). https://doi.org/10.1021/nl300904k

    Article  Google Scholar 

  29. Guo, Z., Dong, R., Chakraborty, P.S., Lourenco, N., Palmer, J., Hu, Y., Ruan, M., Hankinson, J., Kunc, J., Cressler, J.D., Berger, C., de Heer, W.A.: Record Maximum Oscillation Frequency in C-Face Epitaxial Graphene Transistors. Nano Lett. 13, 942–947 (2013). https://doi.org/10.1021/nl303587r

    Article  Google Scholar 

  30. Wu, Y., Zou, X., Sun, M., Cao, Z., Wang, X., Huo, S., Zhou, J., Yang, Y., Yu, X., Kong, Y., Yu, G., Liao, L., Chen, T.: 200 GHz Maximum Oscillation Frequency in CVD Graphene Radio Frequency Transistors. ACS Appl. Mater. Interfaces. 8, 25645–25649 (2016). https://doi.org/10.1021/acsami.6b05791

    Article  Google Scholar 

  31. Zheng, J., Wang, L., Quhe, R., Liu, Q., Li, H., Yu, D., Mei, W.-N., Shi, J., Gao, Z., Lu, J.: Sub-10 nm Gate Length Graphene Transistors: Operating at Terahertz Frequencies with Current Saturation. Sci. Rep. 3, 1314 (2013). https://doi.org/10.1038/srep01314

    Article  Google Scholar 

  32. Holland, K.D., Alam, A.U., Paydavosi, N., Wong, M., Rogers, C.M., Rizwan, S., Kienle, D., Vaidyanathan, M.: Impact of Contact Resistance on the fT and fmax of Graphene Versus MoS2 Transistors. IEEE Trans. Nanotechnol. 16, 94–106 (2017). https://doi.org/10.1109/TNANO.2016.2630698

    Article  Google Scholar 

  33. Andersson, M.A., Habibpour, O., Vukusic, J., Stake, J.: 10 dB small-signal graphene FET amplifier. Electron. Lett. 48, 861–863(2) (2012)

    Article  Google Scholar 

  34. Yu, C., He, Z.Z., Song, X.B., Liu, Q.B., Dun, S.B., Han, T.T., Wang, J.J., Zhou, C.J., Guo, J.C., Lv, Y.J., Cai, S.J., Feng, Z.H.: High-frequency noise characterization of graphene field effect transistors on SiC substrates. Appl. Phys. Lett. 111, 33502 (2017). https://doi.org/10.1063/1.4994324

    Article  Google Scholar 

  35. Lai, R., Mei, X.B., Deal, W.R., Yoshida, W., Kim, Y.M., Liu, P.H., Lee, J., Uyeda, J., Radisic, V., Lange, M., Gaier, T., Samoska, L., Fung, A.: Sub 50 nm InP HEMT Device with Fmax Greater than 1 THz. In: 2007 IEEE international electron devices meeting, pp. 609–611 (2007)

    Chapter  Google Scholar 

  36. Akinwande, D., Huyghebaert, C., Wang, C.-H., Serna, M.I., Goossens, S., Li, L.-J., Wong, H.-S.P., Koppens, F.H.L.: Graphene and two-dimensional materials for silicon technology. Nature. 573, 507–518 (2019). https://doi.org/10.1038/s41586-019-1573-9

    Article  Google Scholar 

  37. Lee, C., Wei, X., Kysar, J.W., Hone, J.: Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science. 321, 385–388 (2008). https://doi.org/10.1126/science.1157996

    Article  Google Scholar 

  38. Briggs, B.D., Nagabhirava, B., Rao, G., Geer, R., Gao, H., Xu, Y., Yu, B.: Electromechanical robustness of monolayer graphene with extreme bending. Appl. Phys. Lett. 97, 223102 (2010). https://doi.org/10.1063/1.3519982

    Article  Google Scholar 

  39. Liang, Y., Liang, X., Zhang, Z., Li, W., Huo, X., Peng, L.: High mobility flexible graphene field-effect transistors and ambipolar radio-frequency circuits. Nanoscale. 7(10954–10), 962 (2015). https://doi.org/10.1039/C5NR02292D

    Article  Google Scholar 

  40. Lee, S.-M., Kim, J.-H., Ahn, J.-H.: Graphene as a flexible electronic material: mechanical limitations by defect formation and efforts to overcome. Mater. Today. 18, 336–344 (2015). https://doi.org/10.1016/j.mattod.2015.01.017

    Article  Google Scholar 

  41. Jang, H., Park, Y.J., Chen, X., Das, T., Kim, M.-S., Ahn, J.-H.: Graphene-Based Flexible and Stretchable Electronics. Adv. Mater. 28, 4184–4202 (2016). https://doi.org/10.1002/adma.201504245

    Article  Google Scholar 

  42. Chen, J.-H., Ishigami, M., Jang, C., Hines, D.R., Fuhrer, M.S., Williams, E.D.: Printed Graphene Circuits. Adv. Mater. 19, 3623–3627 (2007). https://doi.org/10.1002/adma.200701059

    Article  Google Scholar 

  43. Kim, B.J., Jang, H., Lee, S.-K., Hong, B.H., Ahn, J.-H., Cho, J.H.: High-Performance Flexible Graphene Field Effect Transistors with Ion Gel Gate Dielectrics. Nano Lett. 10, 3464–3466 (2010). https://doi.org/10.1021/nl101559n

    Article  Google Scholar 

  44. Lee, S.-K., Kim, B.J., Jang, H., Yoon, S.C., Lee, C., Hong, B.H., Rogers, J.A., Cho, J.H., Ahn, J.-H.: Stretchable Graphene Transistors with Printed Dielectrics and Gate Electrodes. Nano Lett. 11, 4642–4646 (2011). https://doi.org/10.1021/nl202134z

    Article  Google Scholar 

  45. Kim, B.J., Lee, S.-K., Kang, M.S., Ahn, J.-H., Cho, J.H.: Coplanar-Gate Transparent Graphene Transistors and Inverters on Plastic. ACS Nano. 6, 8646–8651 (2012). https://doi.org/10.1021/nn3020486

    Article  Google Scholar 

  46. Lee, J., Tao, L., Hao, Y., Ruoff, R.S., Akinwande, D.: Embedded-gate graphene transistors for high-mobility detachable flexible nanoelectronics. Appl. Phys. Lett. 100, 152104 (2012). https://doi.org/10.1063/1.3702570

    Article  Google Scholar 

  47. Lee, J., Tao, L., Parrish, K.N., Hao, Y., Ruoff, R.S., Akinwande, D.: Multi-finger flexible graphene field effect transistors with high bendability. Appl. Phys. Lett. 101, 252109 (2012). https://doi.org/10.1063/1.4772541

    Article  Google Scholar 

  48. Lu, C.-C., Lin, Y.-C., Yeh, C.-H., Huang, J.-C., Chiu, P.-W.: High Mobility Flexible Graphene Field-Effect Transistors with Self-Healing Gate Dielectrics. ACS Nano. 6, 4469–4474 (2012). https://doi.org/10.1021/nn301199j

    Article  Google Scholar 

  49. Lee, S., Lee, K., Liu, C.-H., Kulkarni, G.S., Zhong, Z.: Flexible and transparent all-graphene circuits for quaternary digital modulations. Nat. Commun. 3, 1018 (2012). https://doi.org/10.1038/ncomms2021

    Article  Google Scholar 

  50. Lee, S.-K., Jang, H.Y., Jang, S., Choi, E., Hong, B.H., Lee, J., Park, S., Ahn, J.-H.: All Graphene-Based Thin Film Transistors on Flexible Plastic Substrates. Nano Lett. 12, 3472–3476 (2012). https://doi.org/10.1021/nl300948c

    Article  Google Scholar 

  51. Sire, C., Ardiaca, F., Lepilliet, S., Seo, J.-W.T., Hersam, M.C., Dambrine, G., Happy, H., Derycke, V.: Flexible Gigahertz Transistors Derived from Solution-Based Single-Layer Graphene. Nano Lett. 12, 1184–1188 (2012). https://doi.org/10.1021/nl203316r

    Article  Google Scholar 

  52. Kim, S.M., Song, E.B., Lee, S., Zhu, J., Seo, D.H., Mecklenburg, M., Seo, S., Wang, K.L.: Transparent and flexible graphene charge-trap memory. ACS Nano. 6, 7879–7884 (2012). https://doi.org/10.1021/nn302193q

    Article  Google Scholar 

  53. Zhu, W., Farmer, D.B., Jenkins, K.A., Ek, B., Oida, S., Li, X., Bucchignano, J., Dawes, S., Duch, E.A., Avouris, P.: Graphene radio frequency devices on flexible substrate. Appl. Phys. Lett. 102, 233102 (2013). https://doi.org/10.1063/1.4810008

    Article  Google Scholar 

  54. Petrone, N., Meric, I., Hone, J., Shepard, K.L.: Graphene Field-Effect Transistors with Gigahertz-Frequency Power Gain on Flexible Substrates. Nano Lett. 13, 121–125 (2013). https://doi.org/10.1021/nl303666m

    Article  Google Scholar 

  55. Lee, J., Ha, T., Parrish, K.N., Chowdhury, S.F., Tao, L., Dodabalapur, A., Akinwande, D.: High-Performance Current Saturating Graphene Field-Effect Transistor With Hexagonal Boron Nitride Dielectric on Flexible Polymeric Substrates. IEEE Electron. Device Lett. 34, 172–174 (2013). https://doi.org/10.1109/LED.2012.2233707

    Article  Google Scholar 

  56. Lee, J., Ha, T.-J., Li, H., Parrish, K.N., Holt, M., Dodabalapur, A., Ruoff, R.S., Akinwande, D.: 25 GHz Embedded-Gate Graphene Transistors with High-K Dielectrics on Extremely Flexible Plastic Sheets. ACS Nano. 7, 7744–7750 (2013). https://doi.org/10.1021/nn403487y

    Article  Google Scholar 

  57. Yeh, C.-H., Lain, Y.-W., Chiu, Y.-C., Liao, C.-H., Moyano, D.R., Hsu, S.S.H., Chiu, P.-W.: Gigahertz Flexible Graphene Transistors for Microwave Integrated Circuits. ACS Nano. 8, 7663–7670 (2014). https://doi.org/10.1021/nn5036087

    Article  Google Scholar 

  58. Lee, S., Iyore, O.D., Park, S., Lee, Y.G., Jandhyala, S., Kang, C.G., Mordi, G., Kim, Y., Quevedo-Lopez, M., Gnade, B.E., Wallace, R.M., Lee, B.H., Kim, J.: Rigid substrate process to achieve high mobility in graphene field-effect transistors on a flexible substrate. Carbon. 68, 791–797 (2014). https://doi.org/10.1016/j.carbon.2013.11.071

    Article  Google Scholar 

  59. Kim, H.H., Chung, Y., Lee, E., Lee, S.K., Cho, K.: Water-Free Transfer Method for CVD-Grown Graphene and Its Application to Flexible Air-Stable Graphene Transistors. Adv. Mater. 26, 3213–3217 (2014). https://doi.org/10.1002/adma.201305940

    Article  Google Scholar 

  60. Meng, J., Chen, J.-J., Zhang, L., Bie, Y.-Q., Liao, Z.-M., Yu, D.-P.: Vertically Architectured Stack of Multiple Graphene Field-Effect Transistors for Flexible Electronics. Small. 11, 1660–1664 (2015). https://doi.org/10.1002/smll.201402422

    Article  Google Scholar 

  61. Petrone, N., Chari, T., Meric, I., Wang, L., Shepard, K.L., Hone, J.: Flexible Graphene Field-Effect Transistors Encapsulated in Hexagonal Boron Nitride. ACS Nano. 9, 8953–8959 (2015). https://doi.org/10.1021/acsnano.5b02816

    Article  Google Scholar 

  62. Petrone, N., Meric, I., Chari, T., Shepard, K.L., Hone, J.: Graphene Field-Effect Transistors for Radio-Frequency Flexible Electronics. IEEE J. Electron. Devices Soc. 3, 44–48 (2015). https://doi.org/10.1109/JEDS.2014.2363789

    Article  Google Scholar 

  63. Wei, W., Zhou, X., Deokar, G., Kim, H., Belhaj, M.M., Galopin, E., Pallecchi, E., Vignaud, D., Happy, H.: Graphene FETs With Aluminum Bottom-Gate Electrodes and Its Natural Oxide as Dielectrics. IEEE Trans. Electron. Devices. 62, 2769–2773 (2015). https://doi.org/10.1109/TED.2015.2459657

    Article  Google Scholar 

  64. Wei, W., Pallecchi, E., Haque, S., Borini, S., Avramovic, V., Centeno, A., Amaia, Z., Happy, H.: Mechanically robust 39 GHz cut-off frequency graphene field effect transistors on flexible substrates. Nanoscale. 8(14097–14), 103 (2016). https://doi.org/10.1039/C6NR01521B

    Article  Google Scholar 

  65. Park, S., Shin, S.H., Yogeesh, M.N., Lee, A.L., Rahimi, S., Akinwande, D.: Extremely High-Frequency Flexible Graphene Thin-Film Transistors. IEEE Electron. Device Lett. 37, 512–515 (2016). https://doi.org/10.1109/LED.2016.2535484

    Article  Google Scholar 

  66. Meric, I., Dean, C.R., Petrone, N., Wang, L., Hone, J., Kim, P., Shepard, K.L.: graphene field-effect transistors based on boron–nitride dielectrics. Proc. IEEE. 101, 1609–1619 (2013). https://doi.org/10.1109/JPROC.2013.2257634

    Article  Google Scholar 

  67. Yogeesh, M.N., Park, S., Akinwande, D.: Graphene based GHz flexible nanoelectronics and radio receiver systems (Invited). In: 2015 IEEE international symposium on circuits and systems (ISCAS), pp. 2916–2919 (2015)

    Chapter  Google Scholar 

  68. Klauk, H.: Organic thin-film transistors. Chem. Soc. Rev. 39, 2643–2666 (2010). https://doi.org/10.1039/B909902F

    Article  Google Scholar 

  69. Sun, L., Qin, G., Seo, J.-H., Celler, G.K., Zhou, W., Ma, Z.: 12-GHz Thin-Film Transistors on Transferrable Silicon Nanomembranes for High-Performance Flexible Electronics. Small. 6, 2553–2557 (2010). https://doi.org/10.1002/smll.201000522

    Article  Google Scholar 

  70. Wang, C., Chien, J.-C., Fang, H., Takei, K., Nah, J., Plis, E., Krishna, S., Niknejad, A.M., Javey, A.: Self-Aligned, Extremely High Frequency III–V Metal-Oxide-Semiconductor Field-Effect Transistors on Rigid and Flexible Substrates. Nano Lett. 12, 4140–4145 (2012). https://doi.org/10.1021/nl301699k

    Article  Google Scholar 

  71. Chang, H.-Y., Yogeesh, M.N., Ghosh, R., Rai, A., Sanne, A., Yang, S., Lu, N., Banerjee, S.K., Akinwande, D.: Large-Area Monolayer MoS2 for Flexible Low-Power RF Nanoelectronics in the GHz Regime. Adv. Mater. 28, 1818–1823 (2016). https://doi.org/10.1002/adma.201504309

    Article  Google Scholar 

  72. Wang, C., Chien, J.-C., Takei, K., Takahashi, T., Nah, J., Niknejad, A.M., Javey, A.: Extremely Bendable, High-Performance Integrated Circuits Using Semiconducting Carbon Nanotube Networks for Digital, Analog, and Radio-Frequency Applications. Nano Lett. 12, 1527–1533 (2012). https://doi.org/10.1021/nl2043375

    Article  Google Scholar 

  73. Mehr, W., Dabrowski, J., Christoph Scheytt, J., Lippert, G., Xie, Y.-H., Lemme, M.C., Ostling, M., Lupina, G.: Vertical Graphene Base Transistor. IEEE Electron. Device Lett. 33, 691–693 (2012). https://doi.org/10.1109/LED.2012.2189193

    Article  Google Scholar 

  74. Mead, C.A.: Operation of Tunnel-Emission Devices. J. Appl. Phys. 32, 646–652 (1961). https://doi.org/10.1063/1.1736064

    Article  Google Scholar 

  75. Heiblum, M.: Tunneling hot electron transfer amplifiers (theta): Amplifiers operating up to the infrared. Solid State Electron. 24, 343–366 (1981). https://doi.org/10.1016/0038-1101(81)90029-0

    Article  Google Scholar 

  76. Heiblum, M., Thomas, D.C., Knoedler, C.M., Nathan, M.I.: Tunneling hot-electron transfer amplifier: A hot-electron GaAs device with current gain. Appl. Phys. Lett. 47, 1105–1107 (1985). https://doi.org/10.1063/1.96344

    Article  Google Scholar 

  77. Britnell, L., Gorbachev, R.V., Jalil, R., Belle, B.D., Schedin, F., Mishchenko, A., Georgiou, T., Katsnelson, M.I., Eaves, L., Morozov, S.V., Peres, N.M.R., Leist, J., Geim, A.K., Novoselov, K.S., Ponomarenko, L.A.: Field-Effect Tunneling Transistor Based on Vertical Graphene Heterostructures. Science. 335, 947–950 (2012). https://doi.org/10.1126/science.1218461

    Article  Google Scholar 

  78. Vaziri, S., Smith, A.D., Östling, M., Lupina, G., Dabrowski, J., Lippert, G., Mehr, W., Driussi, F., Venica, S., Di Lecce, V., Gnudi, A., König, M., Ruhl, G., Belete, M., Lemme, M.C.: Going ballistic: Graphene hot electron transistors. Solid State Commun. 224, 64–75 (2015). https://doi.org/10.1016/j.ssc.2015.08.012

    Article  Google Scholar 

  79. Vaziri, S., Lupina, G., Henkel, C., Smith, A.D., Östling, M., Dabrowski, J., Lippert, G., Mehr, W., Lemme, M.C.: A Graphene-Based Hot Electron Transistor. Nano Lett. 13, 1435–1439 (2013). https://doi.org/10.1021/nl304305x

    Article  Google Scholar 

  80. Alimardani, N., Conley, J.F.: Step tunneling enhanced asymmetry in asymmetric electrode metal-insulator-insulator-metal tunnel diodes. Appl. Phys. Lett. 102, 143501 (2013). https://doi.org/10.1063/1.4799964

    Article  Google Scholar 

  81. Vaziri, S., Belete, M., Dentoni Litta, E., Smith, A.D., Lupina, G., Lemme, M.C., Östling, M.: Bilayer insulator tunnel barriers for graphene-based vertical hot-electron transistors. Nanoscale. 7(13096–13), 104 (2015). https://doi.org/10.1039/C5NR03002A

    Article  Google Scholar 

  82. Di, L.V., Grassi, R., Gnudi, A., Gnani, E., Reggiani, S., Baccarani, G.: Graphene Base Transistors: A Simulation Study of DC and Small-Signal Operation. IEEE Trans. Electron. Devices. 60, 3584–3591 (2013). https://doi.org/10.1109/TED.2013.2274700

    Article  Google Scholar 

  83. Di, L.V., Grassi, R., Gnudi, A., Gnani, E., Reggiani, S., Baccarani, G.: Graphene-Base Heterojunction Transistor: An Attractive Device for Terahertz Operation. IEEE Trans. Electron. Devices. 60, 4263–4268 (2013). https://doi.org/10.1109/TED.2013.2285446

    Article  Google Scholar 

  84. Di, L.V., Gnudi, A., Gnani, E., Reggiani, S., Baccarani, G.: Graphene-base heterojunction transistors for post-CMOS high-speed applications: Hopes and challenges. In: 2015 73rd annual device research conference (DRC), pp. 91–92 (2015)

    Google Scholar 

  85. Schroter, M., Wedel, G., Heinemann, B., Jungemann, C., Krause, J., Chevalier, P., Chantre, A.: Physical and Electrical Performance Limits of High-Speed SiGeC HBTs—Part I: Vertical Scaling. IEEE Trans. Electron. Devices. 58, 3687–3696 (2011). https://doi.org/10.1109/TED.2011.2163722

    Article  Google Scholar 

  86. Shaygan, M., Wang, Z., Saeed Elsayed, M., Otto, M., Iannaccone, G., Hamed Ghareeb, A., Fiori, G., Negra, R., Neumaier, D.: High performance metal–insulator–graphene diodes for radio frequency power detection application. Nanoscale. 9(11944–11), 950 (2017). https://doi.org/10.1039/C7NR02793A

    Article  Google Scholar 

  87. Wang, Z., Uzlu, B., Shaygan, M., Otto, M., Ribeiro, M., Marín, E.G., Iannaccone, G., Fiori, G., Elsayed, M.S., Negra, R., Neumaier, D.: Flexible One-Dimensional Metal–Insulator–Graphene Diode. ACS Appl. Electron. Mater. 1, 945–950 (2019). https://doi.org/10.1021/acsaelm.9b00122

    Article  Google Scholar 

  88. Hwan Lee, S., Sup Choi, M., Lee, J., Ho Ra, C., Liu, X., Hwang, E., Hee Choi, J., Zhong, J., Chen, W., Jong Yoo, W.: High performance vertical tunneling diodes using graphene/hexagonal boron nitride/graphene hetero-structure. Appl. Phys. Lett. 104, 053103 (2014). https://doi.org/10.1063/1.4863840

    Article  Google Scholar 

  89. Urcuyo, R., Duong, D.L., Jeong, H.Y., Burghard, M., Kern, K.: High Performance Graphene–Oxide–Metal Diode through Bias-Induced Barrier Height Modulation. Adv. Electron. Mater. 2, 1600223 (2016). https://doi.org/10.1002/aelm.201600223

    Article  Google Scholar 

  90. Saeed, M., Hamed, A., Wang, Z., Shaygan, M., Neumaier, D., Negra, R.: Zero-Bias 50-dB Dynamic Range Linear-in-dB V-Band Power Detector Based on CVD Graphene Diode on Glass. IEEE Trans. Microw. Theory Tech. 66, 2018–2024 (2018). https://doi.org/10.1109/TMTT.2018.2792439

    Article  Google Scholar 

  91. Saeed, M., Hamed, A., Qayyum, S., Wang, Z., Shaygan, M., Neumaier, D., Negra, R.: 0.15 mm2, DC-70GHz, graphene-based power detector with improved sensitivity and dynamic range. In: 2018 IEEE/MTT-S international microwave symposium – IMS. IEEE (2018)

    Google Scholar 

  92. Saeed, M., Hamed, A., Wang, Z., Shaygan, M., Neumaier, D., Negra, R.: Graphene integrated circuits: new prospects towards receiver realisation. Nanoscale. 10, 93–99 (2018). https://doi.org/10.1039/C7NR06871A

    Article  Google Scholar 

  93. Saeed, M., Hamed, A., Wang, Z., Shaygan, M., Neumaier, D., Negra, R.: Metal–Insulator–Graphene Diode Mixer Based on CVD Graphene-on-Glass. IEEE Electron. Device Lett. 39, 1104–1107 (2018). https://doi.org/10.1109/LED.2018.2838451

    Article  Google Scholar 

  94. Hamed, A., Saeed, M., Wang, Z., Shaygan, M., Neumaier, D., Negra, R.: 6–12 GHz MMIC Double-Balanced Upconversion Mixer based on Graphene Diode. In: 2018 IEEE/MTT-S international microwave symposium - IMS. IEEE (2018)

    Google Scholar 

  95. Hamed, A., Saeed, M., Wang, Z., Shaygan, M., Neumaier, D., Negra, R.: X-Band MMIC Balanced Frequency Doubler based on Graphene Diodes. In: 2019 IEEE MTT-S international microwave symposium (IMS), pp. 930–933 (2019)

    Chapter  Google Scholar 

  96. Chin, M.L., Periasamy, P., O’Regan, T.P., Amani, M., Tan, C., O’Hayre, R.P., Berry, J.J., Osgood, R.M., Parilla, P.A., Ginley, D.S., Dubey, M.: Planar metal–insulator–metal diodes based on the Nb/Nb2O5/X material system. J. Vac. Sci .Technol. B. 31, 051204 (2013). https://doi.org/10.1116/1.4818313

    Article  Google Scholar 

  97. Periasamy, P., Berry, J.J., Dameron, A.A., Bergeson, J.D., Ginley, D.S., O’Hayre, R.P., Parilla, P.A.: Fabrication and Characterization of MIM Diodes Based on Nb/Nb2O5 Via a Rapid Screening Technique. Adv. Mater. 23, 3080–3085 (2011). https://doi.org/10.1002/adma.201101115

    Article  Google Scholar 

  98. Gupta, N., Gupta, S.M., Sharma, S.K.: Carbon nanotubes: synthesis, properties and engineering applications. Carbon Lett. 29, 419–447 (2019). https://doi.org/10.1007/s42823-019-00068-2

    Article  Google Scholar 

  99. Venkataraman, A., Amadi, E.V., Chen, Y., Papadopoulos, C.: Carbon Nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 14, 220 (2019). https://doi.org/10.1186/s11671-019-3046-3

    Article  Google Scholar 

  100. Kamran, U., Heo, Y.-J., Lee, J.W., Park, S.-J.: Functionalized Carbon Materials for Electronic Devices: A Review. Micromachines. 10, 234 (2019). https://doi.org/10.3390/mi10040234

    Article  Google Scholar 

  101. Miranda, A., Barekar, N., McKay, B.J.: MWCNTs and their use in Al-MMCs for ultra-high thermal conductivity applications: A review. J. Alloys Compd. 774, 820–840 (2019). https://doi.org/10.1016/j.jallcom.2018.09.202

    Article  Google Scholar 

  102. Prasek, J., Drbohlavova, J., Chomoucka, J., Hubalek, J., Jasek, O., Adam, V., Kizek, R.: Methods for carbon nanotubes synthesis—review. J. Mater. Chem. 21(15872–15), 884 (2011). https://doi.org/10.1039/C1JM12254A

    Article  Google Scholar 

  103. Ouyang, M.: Energy Gaps in “Metallic” Single-Walled Carbon Nanotubes. Science. 292, 702–705 (2001). https://doi.org/10.1126/science.1058853

    Article  Google Scholar 

  104. Avouris, P., Appenzeller, J., Martel, R., Wind, S.J.: Carbon nanotube electronics. Proc. IEEE. 91, 1772–1784 (2003). https://doi.org/10.1109/JPROC.2003.818338

    Article  Google Scholar 

  105. Tans, S.J., Verschueren, A.R.M., Dekker, C.: Room-temperature transistor based on a single carbon nanotube. Nature. 672, 669–672 (1998)

    Google Scholar 

  106. Martel, R., Schmidt, T., Shea, H.R., Hertel, T., Avouris, P.: Single- and multi-wall carbon nanotube field-effect transistors. Appl. Phys. Lett. 73, 2447 (1998)

    Article  Google Scholar 

  107. Javey, A., Guo, J., Wang, Q., Lundstrom, M., Dai, H.: Ballistic carbon nanotube field-effect transistors. Nature. 424, 654–657 (2003). https://doi.org/10.1038/nature01797

    Article  Google Scholar 

  108. Zhang, Z., Liang, X., Wang, S., Yao, K., Hu, Y., Zhu, Y., Chen, Q., Zhou, W., Li, Y., Yao, Y., Zhang, J., Peng, L.-M.: Doping-Free Fabrication of Carbon Nanotube Based Ballistic CMOS Devices and Circuits. Nano Lett. 7, 3603–3607 (2007)

    Article  Google Scholar 

  109. Zhang, Z., Wang, S., Ding, L., Liang, X., Pei, T., Shen, J., Xu, H., Chen, Q., Cui, R., Li, Y., Peng, L.-M.: Self-aligned ballistic n-type single-walled carbon nanotube field-effect transistors with adjustable threshold voltage. Nano Lett. 8, 3696–3701 (2008)

    Article  Google Scholar 

  110. Ding, L., Wang, S., Zhang, Z., Zeng, Q., Wang, Z., Pei, T., Yang, L., Liang, X., Shen, J., Chen, Q., Cui, R., Li, Y., Peng, L.-M.: Y-Contacted High-Performance n-Type Single-Walled Carbon Nanotube Field-Effect Transistors: Scaling and Comparison with Sc-Contacted Devices. Nano Lett. 9, 4209–4214 (2009)

    Article  Google Scholar 

  111. Zhang, Z., Wang, S., Wang, Z., Ding, L., Pei, T., Hu, Z., Liang, X., Chen, Q., Li, Y., Peng, L.: Almost Perfectly Symmetric SWCNT-Based CMOS Devices and Scaling. ACS Nano. 3, 3781–3787 (2009)

    Article  Google Scholar 

  112. Chen, Z., Appenzeller, J., Lin, Y.-M., Sippel-Oakley, J., Rinzler, A.G., Tang, J., Wind, S.J., Solomon, P.M., Avouris, P.: An Integrated Logic Circuit Assembled on a Single Carbon Nanotube. Science. 311, 1735 (2006)

    Article  Google Scholar 

  113. Ding, L., Zhang, Z., Liang, S., Pei, T., Wang, S., Li, Y., Zhou, W., Liu, J., Peng, L.-M.: CMOS-based carbon nanotube pass-transistor logic integrated circuits. Nat. Commun. 3, 677 (2012)

    Article  Google Scholar 

  114. Qiu, C., Zhang, Z., Xiao, M., Yang, Y., Zhong, D., Peng, L.-M.: Scaling carbon nanotube complementary transistors to 5-nm gate lengths. Science. 355, 271–276 (2017). https://doi.org/10.1126/science.aaj1628

    Article  Google Scholar 

  115. Cao, Q., Kim, H., Pimparkar, N., Kulkarni, J.P., Wang, C., Shim, M., Roy, K., Alam, M.A., Rogers, J.A.: Medium-scale carbon nanotube thin-film integrated circuits on flexible plastic substrates. Nature. 454 (2008)

    Google Scholar 

  116. Sun, D., Timmermans, M.Y., Tian, Y., Nasibulin, A.G., Kauppinen, E.I., Kishimoto, S., Mizutani, T., Ohno, Y.: Flexible high-performance carbon nanotube integrated circuits. Nat. Nanotechnol. 6, 156–161 (2011). https://doi.org/10.1038/nnano.2011.1

    Article  Google Scholar 

  117. Chen, B., Zhang, P., Ding, L., Han, J., Qiu, S., Li, Q., Zhang, Z., Peng, L.-M.: Highly Uniform Carbon Nanotube Field-Effect Transistors and Medium Scale Integrated Circuits. Nano Lett. 16, 5120–5128 (2016). https://doi.org/10.1021/acs.nanolett.6b02046

    Article  Google Scholar 

  118. Yang, Y., Ding, L., Han, J., Zhang, Z., Peng, L.-M.: High-Performance Complementary Transistors and Medium-Scale Integrated Circuits Based on Carbon Nanotube Thin Films. ACS Nano. 11, 4124–4132 (2017). https://doi.org/10.1021/acsnano.7b00861

    Article  Google Scholar 

  119. Zhong, D., Zhang, Z., Ding, L., Han, J., Xiao, M., Si, J., Xu, L., Qiu, C., Peng, L.-M.: Gigahertz integrated circuits based on carbon nanotube films. Nat. Electron. 1, 40–45 (2018). https://doi.org/10.1038/s41928-017-0003-y

    Article  Google Scholar 

  120. Xiang, L., Zhang, H., Dong, G., Zhong, D., Han, J., Liang, X., Zhang, Z., Peng, L.-M., Hu, Y.: Low-power carbon nanotube-based integrated circuits that can be transferred to biological surfaces. Nat. Electron. 1, 237–245 (2018). https://doi.org/10.1038/s41928-018-0056-6

    Article  Google Scholar 

  121. Rao, R., Pint, C.L., Islam, A.E., Weatherup, R.S., Hofmann, S., Meshot, E.R., Wu, F., Zhou, C., Dee, N., Amama, P.B., Carpena-Nuñez, J., Shi, W., Plata, D.L., Penev, E.S., Yakobson, B.I., Balbuena, P.B., Bichara, C., Futaba, D.N., Noda, S., Shin, H., Kim, K.S., Simard, B., Mirri, F., Pasquali, M., Fornasiero, F., Kauppinen, E.I., Arnold, M., Cola, B.A., Nikolaev, P., Arepalli, S., Cheng, H.-M., Zakharov, D.N., Stach, E.A., Zhang, J., Wei, F., Terrones, M., Geohegan, D.B., Maruyama, B., Maruyama, S., Li, Y., Adams, W.W., Hart, A.J.: Carbon Nanotubes and Related Nanomaterials: Critical Advances and Challenges for Synthesis toward Mainstream Commercial Applications. ACS Nano. 12(11756–11), 784 (2018). https://doi.org/10.1021/acsnano.8b06511

    Article  Google Scholar 

  122. Peng, L.-M., Zhang, Z., Qiu, C.: Carbon nanotube digital electronics. Nat. Electron. 2, 499–505 (2019). https://doi.org/10.1038/s41928-019-0330-2

    Article  Google Scholar 

  123. Hills, G., Lau, C., Wright, A., Fuller, S., Bishop, M.D., Srimani, T., Kanhaiya, P., Ho, R., Amer, A., Stein, Y., Murphy, D., Arvind, C.A., Shulaker, M.M.: Modern microprocessor built from complementary carbon nanotube transistors. Nature. 572, 595–602 (2019). https://doi.org/10.1038/s41586-019-1493-8

    Article  Google Scholar 

  124. Lei, T., Shao, L.-L., Zheng, Y.-Q., Pitner, G., Fang, G., Zhu, C., Li, S., Beausoleil, R., Wong, H.-S.P., Huang, T.-C., Cheng, K.-T., Bao, Z.: Low-voltage high-performance flexible digital and analog circuits based on ultrahigh-purity semiconducting carbon nanotubes. Nat. Commun. 10, 1–10 (2019). https://doi.org/10.1038/s41467-019-10,145-9

    Article  Google Scholar 

  125. Shulaker, M.M., Hills, G., Park, R.S., Howe, R.T., Saraswat, K., Wong, H.-S.P., Mitra, S.: Three-dimensional integration of nanotechnologies for computing and data storage on a single chip. Nature. 547, 74–78 (2017). https://doi.org/10.1038/nature22994

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Max Christian Lemme .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2023 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, Z., Neumaier, D., Lemme, M.C. (2023). Carbon-Based Field-Effect Transistors. In: Rudan, M., Brunetti, R., Reggiani, S. (eds) Springer Handbook of Semiconductor Devices . Springer Handbooks. Springer, Cham. https://doi.org/10.1007/978-3-030-79827-7_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79827-7_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79826-0

  • Online ISBN: 978-3-030-79827-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics