Skip to main content

Characteristics of Carbon Nanotubes for Nanoelectronic Device Applications

  • Chapter
  • First Online:
Nanopackaging

Abstract

Carbon nanotubes (CNTs) have evolved into one of the most investigated nanostructures in the last decade for a wide range of applications. CNTs can be identified as helical microtubules of graphene sheets rolled around the chiral vector. The quasi-one-dimensional (1D) structure imparts to CNTs’ unique physical and chemical properties that have naturally led to their use in many nanoelectronic device applications. However, these properties of CNTs are determined by their synthesis methods, and this in turn determines their applicability. Their nanoscale size, unique structure, compositional elements, robustness, and immense surface area for functionalization are a few of the properties which give CNTs interesting prospects to be used in many varied applications. This chapter discusses the classification of CNTs based on their structural and electrical properties along with their fascinating applications in the development of biological, chemical and gas sensors, and field-effect transistors (FETs) and in integrated device fabrication such as memristors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) C60: buckminsterfullerene. Nature 318(6042):162–163

    Article  CAS  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  CAS  Google Scholar 

  3. Ebbesen TW, Ajayan PM (1992) Large-scale synthesis of carbon nanotubes. Nature 358(6383):220–222

    Article  CAS  Google Scholar 

  4. Maohui G, Klaus S (1994) Scanning tunneling microscopy of single-shell nanotubes of carbon. Appl Phys Lett 65(18):2284–2286

    Article  Google Scholar 

  5. Falvo MR et al (1997) Bending and buckling of carbon nanotubes under large strain. Nature 389(6651):582–584

    Article  CAS  Google Scholar 

  6. Kim P, Lieber CM (1999) Nanotube nanotweezers. Science 286(5447):2148–2150

    Article  CAS  Google Scholar 

  7. Yarlagadda G, Solasa G, Boanapalli R, Paladugu P, Babu S (2013) Three dimensional finite element (FE) model for armchair and zig-zag type single-walled carbon nanotubes. Int J Sci Res Publ 3(5):1–9

    Google Scholar 

  8. Dekker C (1999) Carbon nanotubes as molecular quantum wires. Phys Today 52:22–28

    Article  CAS  Google Scholar 

  9. Bachtold A, Hadley P, Nakanishi T, Dekker C (2001) Logic circuits with carbon nanotube transistors. Science 294(5545):1317–1320

    Article  CAS  Google Scholar 

  10. Kolmogorov AN, Crespi VH (2000) Smoothest bearings: interlayer sliding in multiwalled carbon nanotubes. Phys Rev Lett 85(22):4727–4730

    Article  CAS  Google Scholar 

  11. Yu MF, Kowalewski T, Ruoff RS (2001) Structural analysis of collapsed, and twisted and collapsed, multiwalled carbon nanotubes by atomic force microscopy. Phys Rev Lett 86(1):87–90

    Article  CAS  Google Scholar 

  12. Knopf GK, Bassi AS (2006) Smart biosensor technology. CRC press, Boca Raton

    Google Scholar 

  13. Green AA, Hersam MC (2011) Properties and application of double-walled carbon nanotubes sorted by outer-wall electronic type. ACS Nano 5(2):1459–1467

    Article  CAS  Google Scholar 

  14. Chen G et al (2003) Chemically doped double-walled carbon nanotubes: cylindrical molecular capacitors. Phys Rev Lett 90(25):257403

    Article  Google Scholar 

  15. Kwon Y-K, David T (1998) Electronic and structural properties of multiwall carbon nanotubes. Phys Rev B 58(24):R16001–R16004

    Article  CAS  Google Scholar 

  16. Bethune DS et al (1993) Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363(6430):605–607

    Article  CAS  Google Scholar 

  17. Ruoff RS, Tersoff J, Lorents DC, Subramoney S, Chan B (1993) Radial deformation of carbon nanotubes by van der Waals forces. Nature 364(6437):514–516

    Article  CAS  Google Scholar 

  18. Dresselhaus MS, Dresselhaus G, Eklund PC (1996) Science of fullerenes and carbon nanotubes. Academic, San Diego

    Google Scholar 

  19. Eatemadi A et al (2014) Carbon nanotubes: properties, synthesis, purification, and medical applications. Nanoscale Res Lett 9(1):393

    Article  Google Scholar 

  20. Harris PJF (2001) Carbon nanotubes and related structures: new materials for the twenty-first century. Cambridge University Press, Cambridge, UK

    Google Scholar 

  21. Saito R, Fujita M, Dresselhaus G, Dresselhaus M (1993) Electronic structure of double-layer graphene tubules. J Appl Phys 2:494–500

    Article  Google Scholar 

  22. Saito R et al (1992) Electronic structure of chiral graphene tubules. Appl Phys Lett 60:2204–2206

    Article  CAS  Google Scholar 

  23. Saito R, Fujita M, Dresselhaus G, Dresselhaus MS (1992) Electronic structure of graphene tubules based on C_{60}. Phys Rev B 46(3):1804

    Article  CAS  Google Scholar 

  24. Dresselhaus MS, Dresselhaus AG (1981) Intercalation compounds of graphite. Adv Phys 30:139–326

    Article  CAS  Google Scholar 

  25. Mintmire JW, Dunlap BI, White CT (1992) Are fullerene tubules metallic? Phys Rev Lett 68(5):631

    Article  CAS  Google Scholar 

  26. Frank S, Poncharal P, Wang ZL, Heer WA (1998) Carbon nanotube quantum resistors. Science 280(5370):1744–1746

    Article  CAS  Google Scholar 

  27. Sanvito S, Kwon Y-K, Tománek D, Lambert CJ (2000) Fractional quantum conductance in carbon nanotubes. Phys Rev Lett 84(9):1974

    Article  CAS  Google Scholar 

  28. Ristroph T, Goodsell A, Golovchenko JA, Haul L (2005) Detection and quantized conductance of neutral atoms near a charged carbon nanotube. Phys Rev Lett 94(6):66102-1–66102-4

    Article  Google Scholar 

  29. Che J, Agin T, Iii WAG (2000) Thermal conductivity of carbon nanotubes. Nanotechnology 11(2):65–69

    Article  CAS  Google Scholar 

  30. Berber S, Kwon Y-K, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84(20):4613

    Article  CAS  Google Scholar 

  31. Hone J et al (2002) Thermal properties of carbon nanotubes and nanotube-based materials. Appl Phys A Mater Sci Process 74(3):339–343

    Article  CAS  Google Scholar 

  32. Wang J (2005) Carbon-nanotube based electrochemical biosensors: a review. Electroanalysis 17(1):7–14

    Article  CAS  Google Scholar 

  33. Liu Z, Tabakman S, Welsher K, Dai H (2009) Carbon nanotubes in biology and medicine: in vitro and in vivo detection, imaging and drug delivery. Nano Res 2(2):85–120

    Article  CAS  Google Scholar 

  34. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1(2):180–192

    Article  CAS  Google Scholar 

  35. Sofia S, Chaniotakis NA (2003) Carbon nanotube array-based biosensor. Anal Bioanal Chem 375:103–105

    Article  Google Scholar 

  36. Cai H, Cao X, Jiang Y, He P, Fang Y (2003) Carbon nanotube-enhanced electrochemical DNA biosensor for DNA hybridization detection. Anal Bioanal Chem 375(2):287–293

    Article  CAS  Google Scholar 

  37. Tans SJ, Verschueren ARM, Dekker C (1998) Room-temperature transistor based on a single carbon nanotube. Nature 393:49

    Article  CAS  Google Scholar 

  38. Martel R et al (2001) Ambipolar electrical transport in semiconducting single-wall carbon nanotubes. Phys Rev Lett 87(25):256805

    Article  CAS  Google Scholar 

  39. Someya T, Small J, Kim P, Nuckolls C, Yardley JT (2003) Alcohol vapor sensors based on single-walled carbon nanotube field effect transistors. Nano Lett 3(7):877–881

    Article  CAS  Google Scholar 

  40. Javey A, Guo J, Wang Q, Lundstrom M, Dai H (2003) Ballistic carbon nanotube field-effect transistors. Nature 424:654–657

    Article  CAS  Google Scholar 

  41. Star A, Han TR, Joshi V, Gabriel JC, Grüner G (2004) Nanoelectronic carbon dioxide sensors. Adv Mater 16(22):2049–2052

    Article  CAS  Google Scholar 

  42. Léonard F, Tersoff J (2000) Role of Fermi-level pinning in nanotube Schottky diodes. Phys Rev Lett 84:4693–4696

    Article  Google Scholar 

  43. Anantram MP, Léonard F (2006) Physics of carbon nanotube electronic devices. Rep Prog Phys 69:507–561

    Article  CAS  Google Scholar 

  44. Zhang Y, Ichihashi T, Landree E, Nihey F, Iijima S (1999) Heterostructures of single-walled carbon nanotubes and carbide nanorods. Science 285(5434):1719–1722

    Article  CAS  Google Scholar 

  45. LĂ©onard F, Tersoff J (1999) Novel length scales in nanotube devices. Phys Rev Lett 83(24):5174

    Article  Google Scholar 

  46. LĂ©onard F, Tersoff J (2000) Negative differential resistance in nanotube devices. Phys Rev Lett 85(22):4767

    Article  Google Scholar 

  47. Lee JU, Gipp PP, Heller CM (2004) Carbon nanotube p-n junction diodes. Appl Phys Lett 85(1):145–147

    Article  CAS  Google Scholar 

  48. Zhou C, Kong J, Yenilmez E, Dai H, Léonard F, Tersoff J (2000) Modulated chemical doping of individual carbon nanotubes negative differential resistance in nanotube devices. Science 290:1552–1555

    Article  CAS  Google Scholar 

  49. Fuhrer MS et al (2000) Crossed nanotube junctions. Science 288:494–497

    Article  CAS  Google Scholar 

  50. Yamada T (2002) Modeling of kink-shaped carbon-nanotube Schottky diode with gate bias modulation. Appl Phys Lett 80:4027–4029

    Article  CAS  Google Scholar 

  51. Odintsov AA (2000) Schottky barriers in carbon nanotube heterojunctions. Phys Rev Lett 85(1):150

    Article  CAS  Google Scholar 

  52. Chico L, Crespi VH, Benedict LX, Louie SG, Cohen ML (1996) Pure carbon nanoscale devices: nanotube heterojunctions. Phys Rev Lett 76(6):971

    Article  CAS  Google Scholar 

  53. Yao Z, Postma HWC, Balents L, Dekker C (1999) Carbon nanotube intramolecular junctions. Nature 402:273–276

    Article  CAS  Google Scholar 

  54. Martel R et al (1998) Single- and multi-wall carbon nanotube field-effect transistors room-temperature transistor based on a single carbon nanotube. Appl Phys Lett 73:2447–2449

    Article  CAS  Google Scholar 

  55. Derycke V, Martel R, Appenzeller J, Avouris P (2002) Controlling doping and carrier injection in carbon nanotube transistors. Appl Phys Lett 80:2773–2775

    Article  CAS  Google Scholar 

  56. Babic B, Iqbal M, Schönenberger C (2003) Ambipolar field-effect transistor on as-grown single-wall carbon nanotubes. Nanotechnology 14:327–331

    Article  CAS  Google Scholar 

  57. LĂ©onard F, Tersoff J (2002) Multiple functionality in nanotube transistors. Phys Rev Lett 88(25):258302

    Article  Google Scholar 

  58. Appenzeller J, Knoch J, Derycke V, Martel R, Wind S, Avouris P (2002) Field-modulated carrier transport in carbon nanotube transistors. Phys Rev Lett 89:126801

    Article  CAS  Google Scholar 

  59. Heinze S, Tersoff J, Martel R, Derycke V, Appenzeller J, Avouris P (2002) Carbon nanotubes as Schottky barrier transistors. Phys Rev Lett 89:106801

    Article  CAS  Google Scholar 

  60. Appenzeller J, Lin YM, Knoch J, Avouris P (2004) Band-to-band tunneling in carbon nanotube field-effect transistors. Phys Rev Lett 93:196805

    Article  CAS  Google Scholar 

  61. Postma HWC, Teepen T, Yao Z, Grifoni M, Dekker C (2001) Carbon nanotube single-electron transistors at room temperature. Science 293(5527):76–79

    Article  CAS  Google Scholar 

  62. Bockrath M et al (1997) Single-electron transport in ropes of carbon nanotubes. Science 275(5308):1922–1925

    Article  CAS  Google Scholar 

  63. Tans SJ et al (1997) Individual single-wall carbon nanotubes as quantum wires. Nature 386(6624):474–477

    Article  CAS  Google Scholar 

  64. Rueckes T et al (2000) Carbon nanotube-based nonvolatile random access memory for molecular computing. Science 289:94–97

    Article  CAS  Google Scholar 

  65. Yaish Y, Park JY, Rosenblatt S, Sazonova V, Brink M, McEuen PL (2004) Electrical nanoprobing of semiconducting carbon nanotubes using an atomic force microscope. Phys Rev Lett 92:46401

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shalini Prasad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Shanmugam, N.R., Prasad, S. (2018). Characteristics of Carbon Nanotubes for Nanoelectronic Device Applications. In: Morris, J. (eds) Nanopackaging. Springer, Cham. https://doi.org/10.1007/978-3-319-90362-0_18

Download citation

Publish with us

Policies and ethics