Skip to main content

Unconfined Compressive Strength of Compacted Tropical Soil Bio-treated with Bacillus Megaterium

  • Conference paper
  • First Online:
Finding Solutions of the 21st Century Transportation Problems Through Research and Innovations (GeoChina 2021)

Part of the book series: Sustainable Civil Infrastructures ((SUCI))

  • 250 Accesses

Abstract

The environmental problem associated with the manufacturing and use of cement and other chemicals for soil stabilisation has led to an innovative and a more environmentally friendly technique called microbial induced calcite precipitation (MICP). MICP utilizes a biological process in soil improvement. Specimens of soil were bio-treated with 1/3 pore volume of stepped Bacillus megaterium (B. megaterium) suspension density 0, 1.5 × 108 cells/ml, 6 × 108 cells/ml, 12 × 108 cells/ml, 18 × 108 cells/ml and 24 × 108 cells/ml, respectively. The specimens were prepared at −2, 0, +2 and  +4% moulding water content (MWC) relative to optimum moisture content (OMC) and compacted with British Standard light, BSL (or standard Proctor) energy. 2/3 pore volume of cementation reagent was injected into the compacted specimens in 3 cycles at 6 h interval and allowed to flow by gravity until partial saturation was achieved. The results obtained indicate that the unconfined compressive strength (UCS) increased with increase in B. megaterium suspension density and with decrease in MWC relative to OMC. Typically for the specimens prepared at OMC, the UCS of specimens treated with stepped B. megaterium suspension density of 1.5 × 108 cells/ml, 6 × 108 cells/ml, 12 × 108 cells/ml, 18 × 108 cells/ml and 24 × 108 cells/ml increased by 33.83%, 40.76%, 52.24%, 58.06%, 59.06%, respectively, compared to the UCS of the untreated specimen (i.e., with 0 cells/ml). Overall, higher calcite content precipitated in specimens resulted in increased UCS and dry density values. The phase structure, composition and morphology characterized using the scanning electron microscopy (SEM)/energy dispersive spectroscopy (EDS) and Fourier transformation infra-red (FTIR) spectroscopy, indicated that calcite print was induced within the soil matrix. Specimens treated with B. megaterium suspension densities of 6 × 108 cells/ml, 12 × 108 cells/ml, 18 × 108 cells/ml and 24 × 108 cells/ml and prepared compacted at MWC −2, 0 and  +2 OMC, respectively, satisfied the minimum 200 kN/m2 design criterion for the use of materials in municipal solid waste (MSW) containment application.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. AASHTO. Standard Specification for Transportation, Material and Methods of Sampling and Testing. 14th Edition. Amsterdam Association of State Highway and transportation officia Washington D.C. (1986)

    Google Scholar 

  2. Achal, V., Pan, X., Lee, D.J., Kumari, D., Zhang, D.: Remediation of Cr (VI) from chromium slag by biocementation. Chemosphere 93(7), 1352–1358 (2013)

    Article  Google Scholar 

  3. Al Qabany, A., Soga, K., Santamarina, C.: Factors affecting efficiency of microbially induced calcite precipitation. J. Geotech. Geoenviron. Eng. 138(8), 992–1001 (2012). https://doi.org/10.1061/(ASCE)GT.1943-5606.0000666

    Article  Google Scholar 

  4. ASTM. Annual Book of Standards. Vol. 04.08, American Society for Testing and Materials, Philadelphia (1992)

    Google Scholar 

  5. BS 1377. Method of Testing Soils for Civil Engineering Purpose. British Standard Institute, BSI, London (1990)

    Google Scholar 

  6. BS 1924. Method of Test for Stabilized Soils. British Standard Institute BSI London (1990)

    Google Scholar 

  7. Burbank, M.B., Weaver, T.J., Green, T.L., Williams, B.C., Crawford, R.L.: Precipitation of calcite by indigenous microorganisms to strengthen liquefiable soils. Geomicrobiol. J. 28(4), 301–312 (2011). https://doi.org/10.1080/01490451.2010.499929

    Article  Google Scholar 

  8. Cheng, L., Shahin, M.A., Cord-Ruwisch, R., Addis, M., Hartanto, T., Elms, C.: Soil stabilisation by microbial induced calcium carbonate precipitation: investigation of some important physical and environmental aspects. In: 7th International Congress on Environmental Geotechnics, Australia (2014)

    Google Scholar 

  9. Choi, S.G., Park, S., Wu, S., Chu, J.: Methods for calcium carbonate content measurement of biocemented soils. J. Mater. Civil Eng. Tech. Note Eng. 29(11), 06017015 (2017). https://doi.org/10.1061/(asce)MT.1943-5533.0002064

    Article  Google Scholar 

  10. Cizer, Ö., Rodriguez-Navarro, C., Ruiz-Agudo, E., Elsen, J., Gemert, D.V., Balen, K.V.: Phase and morphology evolution of calcium carbonate precipitated by carbonation of hydrated lime. J. Mater. Sci. 47, 6151–6165 (2012). https://doi.org/10.1007/s10853-012-6535-7

    Article  Google Scholar 

  11. Daniel, D.E., Benson, C.H.: Water content density criteria for compacted soil liners. J. Geotech. Eng. ASCE 116(12), 1811–1830 (1990)

    Article  Google Scholar 

  12. Daniel, D.E., Wu, Y.K.: Compacted clay liners and covers for arid sites. J. Geotech. Engrg. ASCE 119(2), 223–237 (1993)

    Article  Google Scholar 

  13. Defay, R., Prigogine, I., Sanfeld, A.: Surface thermodynamics. J. Colloid. Interface Sci. 58, 498–510 (1977)

    Article  Google Scholar 

  14. Dejong, J.T., Soga, E., Kavazanjian, S., et al.: Biogeochemical processes and geotechnical applications: progress, opportunities, and challenges. Geotechnique 63(4), 287–301 (2013). https://doi.org/10.1680/geot.SIP13.P.017

    Article  Google Scholar 

  15. DeJong, J.T., Fritzges, M.B., Nusslein, K.: Microbially induced cementation to control sand response to undrained shear. J. Geotech. Geoenviron. Eng. 132(11), 1381–1392 (2006). https://doi.org/10.1061/(asce)1090-0241(2006)132:11(1381)

    Article  Google Scholar 

  16. Dhami, N.K., Reddy, M.S., Mukherjee, A.: Biomineralization of calcium carbonate polymorphs by the bacterial strains isolated from calcareous sites. J. Microbiol. Biotech. 23, 707–714 (2013)

    Article  Google Scholar 

  17. Djomgoue, P., Njopwouo, D.: FT-IR spectroscopy applied for surface clays characterization. J. Surf. Eng. Mater. Adv. Technol. 03(04), 275–282 (2013). https://doi.org/10.4236/jsemat.2013.34037

    Article  Google Scholar 

  18. Eberemu, A.O.: Evaluation of bagasse ash treated lateritic soil as a barrier material in waste containment application. Acta Geotechnica 8(4), 407–421 (2013). http://www.springerlink.com/openurl.asp?genre=article&id=doi:https://doi.org/10.1007/s11440-012-0204-5, https://doi.org/10.1007/s11440-012-0204-5, ISSN 1861–1125

  19. Ersan, Y.C., Hernandez-Sanabria, E., Boon, N., de Belie, N.: Enhanced crack closure performance of microbial mortar through nitrate reduction. Cement Concr. Compos. 70, 159–170 (2016)

    Article  Google Scholar 

  20. Etim, R.K., Attah, I.C., Yohanna, P.: Experimental study on potential of oyster shell ash in structural strength improvement of lateritic soil for road construction. Int. J. Pav. Res. Technol. 13(4), 341–351 (2020). https://doi.org/10.1007/s42947-020-0290-y

    Article  Google Scholar 

  21. Fujita, Y., et al.: Stimulation of microbial urea hydrolysis in groundwater to enhance calcite precipitation. Environ. Sci. Technol. 42, 3025–3032 (2008)

    Article  Google Scholar 

  22. Goswami, R.K., Mahanta, C.: Leaching characteristics of residual lateritic soils stabilised with fly ash and lime for geotechnical applications. Waste Manag. 27, 466–481 (2007). https://doi.org/10.1016/j.wasman.2006.07.006

    Article  Google Scholar 

  23. Hassan, A.A.: Hydraulic Performance of Compacted Clay Liners (CCLS) Under Simulated Landfill Conditions. M.sc Thesis Department of Civil and Environmental Engineering Carleton University, Ottawa-Carleton Institute of Civil and Environmental Engineering (2014)

    Google Scholar 

  24. Ivanov, V., Chu, J.: Applications of microorganisms to geotechnical engineering for bioclogging and biocementation of soil in situ. Rev. Environ. Sci. Bio/Technol. 7(2), 139–153 (2008). https://doi.org/10.1007/s11157-007-9126-3

    Article  Google Scholar 

  25. Madejová, J., Komadel, P.: Baseline studies of the clay minerals society source clays: Infrared methods. Clays Clay Miner. 49(5), 410–432 (2001). https://doi.org/10.1346/CCMN.2001.0490508

    Article  Google Scholar 

  26. Mitchell, J.K., Santamarina, J.C.: Biological consideration in geotechnical engineering. J. Geotech. Geoenviron. Eng. ASCE 131(10), 1222–1233 (2005). https://doi.org/10.1061/(ASCE)1090-0241(2005)131:10(1222)

    Article  Google Scholar 

  27. Mollamahmutoglu, M., Yilmaz, Y.: Potential use of fly ash and bentonite mixture as liner or cover at waste disposal areas. Environ. Geol. 40(11), 1316–1324 (2001). https://doi.org/10.1007/s002540100355

    Article  Google Scholar 

  28. Mortensen, B.M., Haber, M.J., DeJong, J.T., Caslake, L.F., Nelson, D.C.: Effects of environmental factors on microbial induced calcium carbonate precipitation. J. Appl. Microbiol. (2011). https://doi.org/10.1111/j.1365-2672.2011.05065.x

    Article  Google Scholar 

  29. Mutaftschiev, B.: Surface thermodynamics. In: Mutaftschiev, Boyan (ed.) Interfacial Aspects of Phase Transformations, pp. 63–102. Springer Netherlands, Dordrecht (1982). https://doi.org/10.1007/978-94-009-7870-6_3

  30. Neumann, A.W., David, R., Zuo, Y.: Applied surface thermodynamics. Focus Surf. 2011, 6 (2011)

    Google Scholar 

  31. Neville, A.M.: Properties of Concrete, 4th ed. (low-price ed.). Pearson Education Asia Publication, England, Produced by Longman Malaysia (2000)

    Google Scholar 

  32. Nik Daud, N.N., Muhammed, A.S., Kundiri, A.M.: Hydraulic conductivity of compacted granite residual soil mixed with palm oil fuel ash in landfill application. Geotech. Geol. Eng. 35(5), 1967–1976 (2017). https://doi.org/10.1007/s10706-017-0220-1

    Article  Google Scholar 

  33. Okwadha, G.D., Li, J.: Optimum conditions for microbial carbonate precipitation. Chemosphere 81(9), 1143–1148 (2010)

    Article  Google Scholar 

  34. Venda Oliveira, P.J., Neves, J.P.: Effect of organic matter content on enzymatic biocementation process applied to coarse-grained soils. J. Mater. Civil Eng. 31(7), 04019121 (2019). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002774

    Article  Google Scholar 

  35. Oluremi, J., Eberemu, A., Ijimdiya, S., Osinubi, K.: Lateritic soil treated with waste wood ash as liner in landfill construction. Environ. Eng. Geosci. 25(2), 127–139 (2019). https://doi.org/10.2113/EEG-2023

    Article  Google Scholar 

  36. Osinubi, K.J., Eberemu, A.O., Ijimdiya, T.S., Yakubu, S.E., Sani, J.E.: Potential use of B. Pumilus in microbial induced calcite precipitation improvement of lateritic soil. In: Proceedings of the 2nd Symposium on Coupled Phenomena in Environmental Geotechnics (CPEG2), Leeds, United Kingdom, 6–8 September 2017. Session: Clean-ups, Paper #64, pp. 1–6 (2017)

    Google Scholar 

  37. Osinubi, K.J., Eberemu, A.O., Amadi, A.A.: Compacted Lateritic soil treated with blast furnace slag as hydraulic barrier in waste containment systems. In: Proceedings International Conference on Infrastructure Deviations & the Environments (ICIDEN 2006), Abuja, Nigeria (2006)

    Google Scholar 

  38. Osinubi, K.J., Moses, G., Oriola, F.O.P., Liman, A.S.: Influence of molding water content on shear strength influence of molding water content on shear strength characteristics of compacted cement kiln dust treated lateritic soils for liners and covers. NIJOTECH. 34(2), 265–271 (2015). https://doi.org/10.4314/njt.v34i2.8

    Article  Google Scholar 

  39. Osinubi, K.J., Yohanna, P., Eberemu, A.O., Ijimdiya, T.S.: Unconfined compressive strength of lateritic soil treated with bacillus coagulans for use as liner and cover material in waste containment system. IOP Conf. Ser. Mater. Sci. Eng. 640, 012081 (2019). https://doi.org/10.1088/1757-899X/640/1/012081

    Article  Google Scholar 

  40. Osinubi, K.J., Gadzama, E.W., Eberemu, A.O., Ijimdiya, T.S.: Comparative evaluation of strength of compacted lateritic soil improved with microbial-induced calcite precipitate. In: Proceedings 3rd International Engineering Conference (IEC 2019). Federal University of Technology, Minna, Nigeria (2019)

    Google Scholar 

  41. Osinubi, K.J., Yohanna, P., Eberemu, A.O., Ijimdiya, T.S.: Evaluation of hydraulic conductivity of lateritic soil treated with Bacillus coagulans for use in waste containment applications. In: Zhan, L., Chen, Y., Bouazza, A. (eds.) Proceedings of the 8th International Congress on Environmental Geotechnics (ICEG 2018), “Towards a Sustainable Geoenvironment”, Hangzhou, China, 28th October–1st November, vol. 3, pp. 401–409. Springer, Cham (2019). https://doi.org/10.1007/978-98113-2227-3_50

  42. Osinubi, K.J., Nwaiwu, C.M.O.: Design of compacted lateritic soil liners and covers. J. Geotech. Geoenviron. Eng. ASCE 132(2), 203–213 (2006). https://doi.org/10.1061/(ASCE)1090-0241(2006)132:2(203)

    Article  Google Scholar 

  43. Pan, X., Chu, J., Yang, Y., Cheng, L.: A new biogrouting method for fine to coarse sand. Acta Geotech. 15(1), 1–16 (2019). https://doi.org/10.1007/s11440-019-00872-0

    Article  Google Scholar 

  44. Ramachandran, S.K., Ramakrishnan, V., Bang, S.S.: Remediation of Concrete Using Micro-Organisms. ACI Mater. J. 98(1), 3–9 (2001)

    Google Scholar 

  45. Rebata-Landa, V., Santamarina, J.C.: Mechanical limits to microbial activity in deep sediments. Geochem. Geophys. Geosyst. 7(11), 1–12 (2006)

    Article  Google Scholar 

  46. Rowshanbakhta, K., Khamehchiyana, M., Sajedib, R.H., Nikudela, M.R.: Effect of Injected bacterial Suspension Volume and Relative Density on Carbonate Precipitation Resulting from Microbial Treatment. J. Ecol. Eng. 89, 49–55 (2016). https://doi.org/10.1016/j.ecoleng.2016.01.010

    Article  Google Scholar 

  47. Rubinos, D.A., Spagnoli, G.: Utilization of waste products as alternative landfill liner and cover materials – a critical review. Crit. Rev. Environ. Sci. Technol. (2018). https://doi.org/10.1080/10643389.2018.1461495

    Article  Google Scholar 

  48. Sabat, A.K., Mohanta, S., Swain, S.: Effect of moulding water content on geotechnical properties of rice straw ash stabilized expansive soil. ARPN J. Eng. Appl. Sci. 10(22), 10427–10432 (2015)

    Google Scholar 

  49. Saikia, B.J., Parthasarathy, G.: Fourier transform infrared spectroscopic characterization of kaolinite from Assam and Meghalaya, north eastern India. J. Modern Phys. 1, 206–210 (2010)

    Article  Google Scholar 

  50. Sharma, L.K., Sirdesai, N.N., Sharma, K.M., Singh, T.N.: Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: a comparative study. Appl. Clay Sci. 152, 183–195 (2017)

    Article  Google Scholar 

  51. Stocks-Fischer, S., Galinat, J.K., Bang, S.S.: Microbiological precipitation of CaCO3. Soil Biol. Biochem. 31(11), 1563–1571 (1999)

    Article  Google Scholar 

  52. Umar, M., Kassim, K.A., Zango, M.U., Muhammed, A.S.: Performance evaluation of lime and microbial cementation in residual soil improvement. IOP Conf. Ser.: Mater. Sci. Eng. 527, 012005 (2019)

    Google Scholar 

  53. Wang, Z., Zhang, N., Cai, G., Jin, Y., Ding, N., Shen, D.: Review of ground improvement using microbial induced carbonate precipitation (MICP). Mar. Georesour. Geotechnol. (2017). https://doi.org/10.1080/1064119X.2017.1297877

    Article  Google Scholar 

  54. Wen, K., Li, Y., Amini, F., Li, L.: Impact of bacteria and urease concentration on precipitation kinetics and crystal morphology of calcium carbonate. Acta Geotech. 15(1), 17–27 (2019). https://doi.org/10.1007/s11440-019-00899-3

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Eberemu, A. (2021). Unconfined Compressive Strength of Compacted Tropical Soil Bio-treated with Bacillus Megaterium. In: Hossain, Z., Zaman, M., Zhang, J. (eds) Finding Solutions of the 21st Century Transportation Problems Through Research and Innovations. GeoChina 2021. Sustainable Civil Infrastructures. Springer, Cham. https://doi.org/10.1007/978-3-030-79638-9_4

Download citation

Publish with us

Policies and ethics