Skip to main content

Internet of Things (IoT) and Sensors Technologies in Smart Agriculture: Applications, Opportunities, and Current Trends

  • Chapter
  • First Online:
Building Climate Resilience in Agriculture

Abstract

For sustainable agricultural production and timely preparations to mitigate the climate change impacts, innovative modern technologies can be used. These technologies have great potential for monitoring agricultural systems and valuable solutions to combat climate change in order to offset the adverse impacts on agricultural production. Farmers need continuous information throughout the crop life cycle for implementing profitable farming decisions. Internet of things (IoT) is one of the advanced technologies in smart agriculture. IoT is the network of Internet connected devices to obtain and transfer real-time data. Now, the manual and conventional procedures are being replaced with automated technologies globally. IoT is becoming popular in agriculture sector as compared to conventional agriculture due to its distinguishing features such as less energy requirement, good global connectivity, and real-time data collection. On the other hand, device compatibility is the major limitation in IoT but now the solutions are being developed with technological advancements. This chapter focuses on the role of information communication technology (ICT) and IoT in agriculture domain and proposes the benefits of these wireless technologies. Use of IoT technology in smart farming can serve as a solution for several management and decision-making for building climate resilience in agriculture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi AZ, Islam N, Shaikh ZA (2014) A review of wireless sensors and networks' applications in agriculture. Computer Standards & Interfaces 36 (2):263-270

    ArticleĀ  Google ScholarĀ 

  • Adhikari R, Li C, Kalbaugh K, Nemali K (2020) A low-cost smartphone controlled sensor based on image analysis for estimating whole-plant tissue nitrogen (N) content in floriculture crops. Comput Electron Agric 169:105173

    ArticleĀ  Google ScholarĀ 

  • Ahmad S, Hasanuzzaman A (2020) Cotton production and uses. Springer Nature Singapore Pte Ltd. https://doi.org/10.1007/978-981-15-1472-2

  • Ahmed M, Hassan FU (2011) APSIM and DSSAT models as decision support tools. 19th International Congress on Modelling and Simulation, Perth, Australia, 12ā€“16 December 2011,http://mssanz.org.au/modsim2011

  • Ahmed M (2012) Improving Soil Fertility Recommendations in Africa Using the Decision Support System for Agrotechnology Transfer (DSSAT); A Book Review. Exp Agri. 48 (4): 602-603

    Google ScholarĀ 

  • Ahmed M, Asif M, Hirani AH, Akram MN, Goyal A (2013) Modeling for Agricultural Sustainability: A Review. In Gurbir S. Bhullar GS, Bhullar NK (ed) Agricultural Sustainability Progress and Prospects in Crop Research. Elsevier, 32 Jamestown Road, London NW1 7BY, UK

    Google ScholarĀ 

  • Ahmed, M., Stockle, C.O. (2016). Quantification of climate variability, adaptation, and mitigation for agricultural sustainability. Springer Nature Switzerland AG.part of Springer Nature.

    Google ScholarĀ 

  • Ahmed M (2017) Greenhouse Gas Emissions and Climate Variability: An Overview. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer International Publishing, Cham, pp 1-26. doi:https://doi.org/10.1007/978-3-319-32059-5_1

    ChapterĀ  Google ScholarĀ 

  • Ahmed M, Fayyaz-ul-Hassan, Ahmad S (2017) Climate Variability Impact on Rice Production: Adaptation and Mitigation Strategies. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer International Publishing, Cham, pp 91-111. doi:https://doi.org/10.1007/978-3-319-32059-5_5

    ChapterĀ  Google ScholarĀ 

  • Ahmed M, Ijaz W, Ahmad S (2018) Adapting and evaluating APSIM-SoilP-Wheat model for response to phosphorus under rainfed conditions of Pakistan. Journal of Plant Nutrition 41, 2069-2084.

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Ahmed M, Ahmad S (2019) Carbon Dioxide Enrichment and Crop Productivity. In: Hasanuzzaman M (ed) Agronomic Crops: Volume 2: Management Practices. Springer Singapore, Singapore, pp 31-46. doi:https://doi.org/10.1007/978-981-32-9783-8_3

    ChapterĀ  Google ScholarĀ 

  • Ahmed M (2020a) Introduction to Modern Climate Change. Andrew E. Dessler: Cambridge University Press, 2011, 252 pp, ISBN-10: 0521173159. Sci Total Environ 734, 139397. https://doi.org/10.1016/j.scitotenv.2020.139397

  • Ahmed M (2020b) Systems Modeling, Springer Nature Singapore Pvt. Ltd., pp. 409. https://doi.org/10.1007/978-981-15-4728-7

  • Ahmed M, Hasanuzzaman M, Raza MA, Malik A, Ahmad S (2020a) Plant Nutrients for Crop Growth, Development and Stress Tolerance. R. Roychowdhury et al. (eds.), Sustainable Agriculture in the Era of Climate Change, https://doi.org/10.1007/978-3-030-45669-6_3

  • Ahmed K, Shabbir G, Ahmed M, Shah KN (2020b) Phenotyping for drought resistance in bread wheat using physiological and biochemical traits. Sci Total Environ 729, 139082. https://doi.org/10.1016/j.scitotenv.2020.139082

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  ADSĀ  Google ScholarĀ 

  • Ahmed M, Ahmad S (2020). Systems Modeling. In: Ahmed M (ed.), Systems Modeling, Springer Nature Singapore Pvt. Ltd.. pp. 1-44. https://doi.org/10.1007/978-981-15-4728-7_1

    ChapterĀ  Google ScholarĀ 

  • Ahmed M, Raza MA, Hussain T (2020c) Dynamic Modeling. In: Ahmed M (ed.), Systems Modeling, Springer Nature Singapore Pvt. Ltd., pp. 111-148. https://doi.org/10.1007/978-981-15-4728-7_4

    ChapterĀ  Google ScholarĀ 

  • Ahmed M, Ahmad S, Raza MA, Kumar U, Ansar M, Shah GA, Parsons D, Hoogenboom G, Palosuo T, Seidel S (2020d) Models Calibration and Evaluation. In: Ahmed M (ed.), Systems Modeling, Springer Nature Singapore Pvt. Ltd.. pp. 149-176. https://doi.org/10.1007/978-981-15-4728-7_5

    ChapterĀ  Google ScholarĀ 

  • Ahmed M, Ahmad S, Waldrip HM, Ramin M, Raza MA (2020e). Whole Farm Modeling: A Systems Approach to Understanding and Managing Livestock for Greenhouse Gas Mitigation, Economic Viability and Environmental Quality. In Animal Manure (eds H. Waldrip, P. Pagliari and Z. He). doi:https://doi.org/10.2134/asaspecpub67.c25

  • Ahmed M, Fayyaz-ul-Hassan, Van Ogtrop FF (2014) Can models help to forecast rainwater dynamics for rainfed ecosystem? Weather and Climate Extremes 5ā€“6 (0):48-55. doi: https://doi.org/10.1016/j.wace.2014.07.001

  • Akram R, Turan V, Hammad HM, Ahmad S, Hussain S, Hasnain A, Maqbool MM, Rehmani MIA, Rasool A, Masood N, Mahmood F, Mubeen M, Sultana SR, Fahad S, Amanet K, Saleem M, Abbas Y, Akhtar HM, Hussain S, Waseem F, Murtaza R, Amin A, Zahoor SA, Sami ul Din M, Nasim W (2018) Fate of Organic and Inorganic Pollutants in Paddy Soils. In: Hashmi MZ, Varma A (eds) Environmental Pollution of Paddy Soils. Springer International Publishing, Cham, pp 197-214. doi: https://doi.org/10.1007/978-3-319-93671-0_13

    ChapterĀ  Google ScholarĀ 

  • Ali S, Eum H-I, Cho J, Dan L, Khan F, Dairaku K, Shrestha ML, Hwang S, Nasim W, Khan IA, Fahad S (2019) Assessment of climate extremes in future projections downscaled by multiple statistical downscaling methods over Pakistan. Atmospheric Research 222:114-133. doi: https://doi.org/10.1016/j.atmosres.2019.02.009

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Alonso RS, SittĆ³n-Candanedo I, GarcĆ­a Ɠ, Prieto J, RodrĆ­guez-GonzĆ”lez S (2020) An intelligent Edge-IoT platform for monitoring livestock and crops in a dairy farming scenario. Ad Hoc Networks 98:102047

    ArticleĀ  Google ScholarĀ 

  • Amin A, Nasim W, Fahad S, Ali S, Ahmad S, Rasool A, Saleem N, Hammad HM, Sultana SR, Mubeen M, Bakhat HF, Ahmad N, Shah GM, Adnan M, Noor M, Basir A, Saud S, Habib ur Rahman M, Paz JO (2018) Evaluation and analysis of temperature for historical (1996ā€“2015) and projected (2030ā€“2060) climates in Pakistan using SimCLIM climate model: Ensemble application. Atmospheric Research 213:422-436. doi: https://doi.org/10.1016/j.atmosres.2018.06.021

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Andreev S, Galinina O, Pyattaev A, Gerasimenko M, Tirronen T, Torsner J, Sachs J, Dohler M, Koucheryavy Y (2015) Understanding the IoT connectivity landscape: a contemporary M2M radio technology roadmap. IEEE Communications Magazine 53 (9):32-40

    ArticleĀ  Google ScholarĀ 

  • Ashraf R, Fayyaz-ul-Hassan, Ahmed M, Shabbir G (2017) Wheat Physiological Response Under Drought. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer International Publishing, Cham, pp 211-231. doi:https://doi.org/10.1007/978-3-319-32059-5_10

    ChapterĀ  Google ScholarĀ 

  • Aslam MU, Shehzad A, Ahmed M, Iqbal M, Asim M, Aslam M (2017a) QTL Modelling: An Adaptation Option in Spring Wheat for Drought Stress. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer International Publishing, Cham, pp 113-136. doi:https://doi.org/10.1007/978-3-319-32059-5_6

    ChapterĀ  Google ScholarĀ 

  • Aslam Z, Khattak JZK, Ahmed M, Asif M (2017b) A Role of Bioinformatics in Agriculture. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer International Publishing, Cham, pp 413-434. doi:https://doi.org/10.1007/978-3-319-32059-5_17

    ChapterĀ  Google ScholarĀ 

  • Asseng S, Martre P, Maiorano A, Rƶtter RP, Oā€™Leary GJ, Fitzgerald GJ, Girousse C, Motzo R, Giunta F, Babar MA, Reynolds MP, Kheir AMS, Thorburn PJ, Waha K, Ruane AC, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jabloun M, Jones CD, Kassie BT, Kersebaum K-C, Klein C, Koehler A-K, Liu B, Minoli S, Montesino San Martin M, MĆ¼ller C, Naresh Kumar S, Nendel C, Olesen JE, Palosuo T, Porter JR, Priesack E, Ripoche D, Semenov MA, Stƶckle C, Stratonovitch P, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Ewert F (2019) Climate change impact and adaptation for wheat protein. Global Change Biology 25 (1):155-173. doi:https://doi.org/10.1111/gcb.14481

    ArticleĀ  PubMedĀ  ADSĀ  Google ScholarĀ 

  • Bacenetti J, Paleari L, Tartarini S, Vesely FM, Foi M, Movedi E, Ravasi RA, Bellopede V, Durello S, Ceravolo C, Amicizia F, Confalonieri R (2020) May smart technologies reduce the environmental impact of nitrogen fertilization? A case study for paddy rice. Science of The Total Environment 715:136956. doi:https://doi.org/10.1016/j.scitotenv.2020.136956

  • Baggio A Wireless sensor networks in precision agriculture. In: ACM Workshop on Real-World Wireless Sensor Networks (REALWSN 2005), Stockholm, Sweden, 2005. Citeseer,

    Google ScholarĀ 

  • Bregaglio S, Frasso N, Pagani V, Stella T, Francone C, Cappelli G, Acutis M, Balaghi R, Ouabbou H, Paleari L (2015) New multi-model approach gives good estimations of wheat yield under semi-arid climate in Morocco. Agronomy for sustainable development 35 (1):157-167

    ArticleĀ  Google ScholarĀ 

  • Brewster C, Roussaki I, Kalatzis N, Doolin K, Ellis K (2017) IoT in agriculture: Designing a Europe-wide large-scale pilot. IEEE communications magazine 55 (9):26-33

    ArticleĀ  Google ScholarĀ 

  • Campoy J, Campos I, Plaza C, Calera M, Bodas V, Calera A (2020) Estimation of harvest index in wheat crops using a remote sensing-based approach. Field Crops Res 256:107910

    ArticleĀ  Google ScholarĀ 

  • Cancela J, FandiƱo M, Rey B, MartĆ­nez E (2015) Automatic irrigation system based on dual crop coefficient, soil and plant water status for Vitis vinifera (cv Godello and cv MencĆ­a). Agric Water Manage 151:52-63

    ArticleĀ  Google ScholarĀ 

  • Carbone C, Garibaldi O, Kurt Z (2018) Swarm robotics as a solution to crops inspection for precision agriculture. KnE Engineering:552-562

    Google ScholarĀ 

  • Chen Y, Tao F (2020) Improving the practicability of remote sensing data-assimilation-based crop yield estimations over a large area using a spatial assimilation algorithm and ensemble assimilation strategies. Agricultural and Forest Meteorology 291:108082

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Chung S-O, Kang S-W, Bae K-S, Ryu M-J, Kim Y-J (2015) The potential of remote monitoring and control of protected crop production environment using mobile phone under 3G and Wi-Fi communication conditions. Engineering in Agriculture, Environment and Food 8 (4):251-256

    ArticleĀ  Google ScholarĀ 

  • Dlodlo N, Kalezhi J The internet of things in agriculture for sustainable rural development. In: 2015 international conference on emerging trends in networks and computer communications (ETNCC), 2015. IEEE, pp 13-18

    Google ScholarĀ 

  • Dusadeerungsikul PO, Liakos V, Morari F, Nof SY, Bechar A (2020) Chapter 5 - Smart action. In: CastrignanĆ² A, Buttafuoco G, Khosla R, Mouazen AM, Moshou D, Naud O (eds) Agricultural Internet of Things and Decision Support for Precision Smart Farming. Academic Press, pp 225ā€“277. doi:https://doi.org/10.1016/B978-0-12-818373-1.00005-6

  • Franch B, Vermote EF, Skakun S, Roger J-C, Becker-Reshef I, Murphy E, Justice C (2019) Remote sensing based yield monitoring: Application to winter wheat in United States and Ukraine. International Journal of Applied Earth Observation and Geoinformation 76:112-127

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Gakuru M, Winters K, Stepman F Inventory of innovative farmer advisory services using ICTs. In 2009. Forum for Agricultural Research in Africa (FARA), Accra, GH

    Google ScholarĀ 

  • Geethanjali B, Muralidhara B (2020) A Wireless Sensor System to Monitor Banana Growth Based on the Temperature. In: Information and Communication Technology for Sustainable Development. Springer, pp 271-278

    Google ScholarĀ 

  • Guerrero JM, Guijarro M, Montalvo M, Romeo J, Emmi L, Ribeiro A, Pajares G (2013) Automatic expert system based on images for accuracy crop row detection in maize fields. Expert Systems with Applications 40 (2):656-664

    ArticleĀ  Google ScholarĀ 

  • Guo J, Yang X, Niu J, Jin Y, Xu B, Shen G, Zhang W, Zhao F, Zhang Y (2019) Remote sensing monitoring of green-up dates in the Xilingol grasslands of northern China and their correlations with meteorological factors. Int J Remote Sens 40 (5-6):2190-2211

    ArticleĀ  Google ScholarĀ 

  • GutiĆ©rrez J, Villa-Medina JF, Nieto-Garibay A, Porta-GĆ”ndara MƁ (2014) Automated irrigation system using a wireless sensor network and GPRS module. IEEE transactions on instrumentation and measurement 63 (1):166-176

    ArticleĀ  Google ScholarĀ 

  • Hammond KJ, Crompton LA, Bannink A, Dijkstra J, YƔƱez-Ruiz DR, Oā€™Kiely P, Kebreab E, EugĆØne MA, Yu Z, Shingfield KJ, Schwarm A, Hristov AN, Reynolds CK (2016) Review of current in vivo measurement techniques for quantifying enteric methane emission from ruminants. Animal Feed Science and Technology 219:13-30. doi: https://doi.org/10.1016/j.anifeedsci.2016.05.018

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Han C, Zhang B, Chen H, Liu Y, Wei Z (2020) Novel approach of upscaling the FAO AquaCrop model into regional scale by using distributed crop parameters derived from remote sensing data. Agric Water Manage 240:106288

    ArticleĀ  Google ScholarĀ 

  • Hassan-Esfahani L, Torres-Rua A, Ticlavilca AM, Jensen A, McKee M Topsoil moisture estimation for precision agriculture using unmanned aerial vehicle multispectral imagery. In: 2014 IEEE Geoscience and Remote Sensing Symposium, 2014. IEEE, pp 3263-3266

    Google ScholarĀ 

  • Hill J, McSweeney C, Wright A-DG, Bishop-Hurley G, Kalantar-zadeh K (2016) Measuring Methane Production from Ruminants. Trends in Biotechnology 34 (1):26-35. doi: https://doi.org/10.1016/j.tibtech.2015.10.004

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Holman F, Riche A, Michalski A, Castle M, Wooster M, Hawkesford M (2016) High throughput field phenotyping of wheat plant height and growth rate in field plot trials using UAV based remote sensing. Remote Sensing 8 (12):1031

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Hoogenboom G, Porter C, Boote K, Shelia V, Wilkens PW. (2019) The DSSAT crop modeling ecosystem. Burleigh dodds Science Publishing. UK

    Google ScholarĀ 

  • Huhtanen P, Cabezas-Garcia EH, Utsumi S, Zimmerman S (2015) Comparison of methods to determine methane emissions from dairy cows in farm conditions. Journal of Dairy Science 98 (5):3394-3409. doi: https://doi.org/10.3168/jds.2014-9118

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ijaz W, Ahmed M, Fayyaz-ul-Hassan, Asim M, Aslam M (2017) Models to Study Phosphorous Dynamics Under Changing Climate. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer International Publishing, Cham, pp 371-386. doi:https://doi.org/10.1007/978-3-319-32059-5_15

    ChapterĀ  Google ScholarĀ 

  • Ilie-Ablachim D, Pătru GC, Florea I-M, Rosner D Monitoring device for culture substrate growth parameters for precision agriculture: Acronym: MoniSen. In: RoEduNet Conference: Networking in Education and Research, 2016 15th, 2016. IEEE, pp 1-7

    Google ScholarĀ 

  • Jabeen M, Gabriel HF, Ahmed M, Mahboob MA, Iqbal J (2017) Studying Impact of Climate Change on Wheat Yield by Using DSSAT and GIS: A Case Study of Pothwar Region. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer International Publishing, Cham, pp 387-411. doi:https://doi.org/10.1007/978-3-319-32059-5_16

    ChapterĀ  Google ScholarĀ 

  • Jawad H, Nordin R, Gharghan S, Jawad A, Ismail M (2017) Energy-efficient wireless sensor networks for precision agriculture: A review. Sensors 17 (8):1781

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Jiang J-A Becoming technologically advanced-IOT applications in smart agriculture. In: 38th meeting of, 2014.

    Google ScholarĀ 

  • Jones JW, Hoogenboom G, Porter CH, Boote KJ, Batchelor WD, Hunt LA, Wilkens PW, Singh U, Gijsman AJ, Ritchie JT (2003) The DSSAT cropping system model. European Journal of Agronomy 18 (3):235-265. doi:https://doi.org/10.1016/S1161-0301(02)00107-7.

  • Kasampalis D, Alexandridis T, Deva C, Challinor A, Moshou D, Zalidis G (2018) Contribution of remote sensing on crop models: a review. Journal of Imaging 4 (4):52

    ArticleĀ  Google ScholarĀ 

  • Keating BA, Carberry PS, Hammer GL, Probert ME, Robertson MJ, Holzworth D, Huth NI, Hargreaves JNG, Meinke H, Hochman Z, McLean G, Verburg K, Snow V, Dimes JP, Silburn M, Wang E, Brown S, Bristow KL, Asseng S, Chapman S, McCown RL, Freebairn DM, Smith CJ (2003) An overview of APSIM, a model designed for farming systems simulation. European Journal of Agronomy 18 (3ā€“4):267ā€“288. doi:http://dx.doi.org/10.1016/S1161-0301(02)00108-9

  • Kelman EE, Linker R (2014) Vision-based localisation of mature apples in tree images using convexity. Biosys Eng 118:174-185

    ArticleĀ  Google ScholarĀ 

  • Kim Y, Evans R (2009) Software design for wireless sensor-based site-specific irrigation. Comput Electron Agric 66 (2):159-165

    ArticleĀ  Google ScholarĀ 

  • Kopetz H (2011) Internet of things. In: Real-time systems. Springer, pp 307-323

    Google ScholarĀ 

  • Kumari V, Iqbal M (2020) Development of Model for Sustainable Development in Agriculture Using IoT-Based Smart Farming. In: New Paradigm in Decision Science and Management. Springer, pp 303-310

    Google ScholarĀ 

  • Leroux L, Castets M, Baron C, Escorihuela M-J, BĆ©guĆ© A, Seen DL (2019) Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices. European Journal of Agronomy 108:11-26

    ArticleĀ  Google ScholarĀ 

  • Liao G, Wang X, Jin J, Li J Potato size and shape detection using machine vision. In: MATEC Web of Conferences, 2015. EDP Sciences, p 15003

    Google ScholarĀ 

  • Lipper L, Thornton P, Campbell BM, Baedeker T, Braimoh A, Bwalya M, Caron P, Cattaneo A, Garrity D, Henry K (2014) Climate-smart agriculture for food security. Nature climate change 4 (12):1068-1072

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Liu B, Martre P, Ewert F, Porter JR, Challinor AJ, MĆ¼ller C, Ruane AC, Waha K, Thorburn PJ, Aggarwal PK, Ahmed M, Balkovič J, Basso B, Biernath C, Bindi M, Cammarano D, De Sanctis G, Dumont B, Espadafor M, Eyshi Rezaei E, Ferrise R, Garcia-Vila M, Gayler S, Gao Y, Horan H, Hoogenboom G, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, Montesino San Martin M, Naresh Kumar S, Nendel C, Oā€™Leary GJ, Palosuo T, Priesack E, Ripoche D, Rƶtter RP, Semenov MA, Stƶckle C, Streck T, Supit I, Tao F, Van der Velde M, Wallach D, Wang E, Webber H, Wolf J, Xiao L, Zhang Z, Zhao Z, Zhu Y, Asseng S (2019) Global wheat production with 1.5 and 2.0 Ā°C above pre-industrial warming. Global Change Biology 25 (4):1428-1444. doi: https://doi.org/10.1111/gcb.14542

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Mahmood FH, Belhouchette, W., Nasim, T., Shazad, S., Hussain, O., Therond, S., Fahad, Wery J. (2017) Economic and environmental impacts of introducing grain legumes in farming systems of Midi-Pyrenees region (France): a simulation approach. International Journal of Plant Production 11 (1):65-87. doi: https://doi.org/10.22069/ijpp.2017.3310

    ArticleĀ  Google ScholarĀ 

  • Malavade VN, Akulwar PK (2016) Role of IoT in agriculture. IOSR Journal of Computer Engineering (IOSR-JCE):56-57

    Google ScholarĀ 

  • Me C, Balasundram SK, Hanif AHM (2017) Detecting and monitoring plant nutrient stress using remote sensing approaches: A review. Asian J Plant Sci 16:1-8

    Google ScholarĀ 

  • Mehmood A, Ahmed M, Fayyaz-ul-Hassan, Akmal M, ur Rehman O (2017) Soil and Water Assessment Tool (SWAT) for Rainfed Wheat Water Productivity. In: Ahmed M, Stockle CO (eds) Quantification of Climate Variability, Adaptation and Mitigation for Agricultural Sustainability. Springer International Publishing, Cham, pp 137-163. doi:https://doi.org/10.1007/978-3-319-32059-5_7

    ChapterĀ  Google ScholarĀ 

  • Mehmood MZ, Afzal O, Aslam MA, Riaz H, Raza MA, Ahmed S, Qadir G, Ahmad M, Shaheen FA, Shah ZH (2020) Disease Modeling as a Tool to Assess the Impacts of Climate Variability on Plant Diseases and Health. In: Systems Modeling. Springer, pp 327ā€“351

    Google ScholarĀ 

  • Mizushima A, Lu R (2013) An image segmentation method for apple sorting and grading using support vector machine and Otsuā€™s method. Comput Electron Agric 94:29-37

    ArticleĀ  Google ScholarĀ 

  • Mohapatra AG, Lenka SK (2016) Neural network pattern classification and weather dependent fuzzy logic model for irrigation control in WSN based precision agriculture. Procedia Computer Science 78:499-506

    ArticleĀ  Google ScholarĀ 

  • Mubarak H, Mirza N, Chai L-Y, Yang Z-H, Yong W, Tang C-J, Mahmood Q, Pervez A, Farooq U, Fahad S, Nasim W, Siddique KHM (2016) Biochemical and Metabolic Changes in Arsenic Contaminated Boehmeria nivea L. BioMed Research International 2016:1423828. doi:https://doi.org/10.1155/2016/1423828

    ArticleĀ  CASĀ  PubMedĀ  PubMed CentralĀ  Google ScholarĀ 

  • Mubeen M, Ahmad A, Khaliq T, Sultana SR, Hussain S, Ali A, Ali H, Nasim W (2013) Effect of Growth Stage-Based Irrigation Schedules on Biomass Accumulation and Resource Use Efficiency of Wheat Cultivars. American Journal of Plant Sciences Vol. 04 No. 07:8. doi:https://doi.org/10.4236/ajps.2013.47175

    ArticleĀ  Google ScholarĀ 

  • Nasim W, Ahmad A, Wajid A, Akhtar J, Muhammad D (2011) Nitrogen effects on growth and development of sunflower hybrids under agro-climatic conditions of Multan. Pak J Bot 43 (4):2083-2092

    Google ScholarĀ 

  • Nayak P, Kavitha K, Rao CM (2020) IoT-Enabled Agricultural System Applications, Challenges and Security Issues. In: IoT and Analytics for Agriculture. Springer, pp 139-163

    Google ScholarĀ 

  • Nlerum F, Onowu E (2014) Information Communication Technologies in Agricultural Extension Delivery of Agricultural Transformation Agenda. International Journal of Agricultural Science, Research and Technology in Extension and Education Systems 4 (4):221-228

    Google ScholarĀ 

  • Ojha T, Misra S, Raghuwanshi NS (2015) Wireless sensor networks for agriculture: The state-of-the-art in practice and future challenges. Comput Electron Agric 118:66-84

    ArticleĀ  Google ScholarĀ 

  • Oteng-Darko P, Yeboah S, Addy S, Amponsah S, Danquah EO (2013) Crop modeling: A tool for agricultural researchā€“A. J Agricultural Res Develop 2 (1):001-006

    ArticleĀ  Google ScholarĀ 

  • Othaman NC, Isa MM, Murad S, Harun A, Mohyar S Electrical conductivity (EC) sensing system for paddy plant using the internet of things (IoT) connectivity. In: AIP Conference Proceedings, 2020. vol 1. AIP Publishing LLC, p 020005

    Google ScholarĀ 

  • Panda CK, Bhatnagar R (2020) Social Internet of Things in Agriculture: An Overview and Future Scope. In: Toward Social Internet of Things (SIoT): Enabling Technologies, Architectures and Applications. Springer, pp 317-334

    Google ScholarĀ 

  • Pastrana JC, Rath T (2013) Novel image processing approach for solving the overlapping problem in agriculture. Biosys Eng 115 (1):106-115

    ArticleĀ  Google ScholarĀ 

  • Patil K, Kale N A model for smart agriculture using IoT. In: 2016 International Conference on Global Trends in Signal Processing, Information Computing and Communication (ICGTSPICC), 2016. IEEE, pp 543-545

    Google ScholarĀ 

  • Pederi Y, Cheporniuk H Unmanned aerial vehicles and new technological methods of monitoring and crop protection in precision agriculture. In: 2015 IEEE International Conference Actual Problems of Unmanned Aerial Vehicles Developments (APUAVD), 2015. IEEE, pp 298-301

    Google ScholarĀ 

  • PitƬ A, Verticale G, Rottondi C, Capone A, Lo Schiavo L (2017) The role of smart meters in enabling real-time energy services for households: The Italian case. Energies 10 (2):199

    ArticleĀ  Google ScholarĀ 

  • Potrino G, Palmieri N, Antonello V, Serianni A Drones Support in Precision Agriculture for Fighting Against Parasites. In: 2018 26th Telecommunications Forum (TELFOR), 2018. IEEE, pp 1-4

    Google ScholarĀ 

  • Puranik V, Ranjan A, Kumari A Automation in Agriculture and IoT. In: 2019 4th International Conference on Internet of Things: Smart Innovation and Usages (IoT-SIU), 2019. IEEE, pp 1-6

    Google ScholarĀ 

  • Rahman MHu, Ahmad I, Ghaffar A, Haider G, Ahmad A, Ahmad B, Tariq M, Nasim W, Rasul G, Fahad S, Ahmad S, Hoogenboom G (2020) Climate Resilient Cotton Production System: A Case Study in Pakistan. In: Ahmad S, Hasanuzzaman M (eds) Cotton Production and Uses: Agronomy, Crop Protection, and Postharvest Technologies. Springer Singapore, Singapore, pp 447-484. doi:https://doi.org/10.1007/978-981-15-1472-2_22

    ChapterĀ  Google ScholarĀ 

  • Rasool A, Farooqi A, Xiao T, Ali W, Noor S, Abiola O, Ali S, Nasim W (2018) A review of global outlook on fluoride contamination in groundwater with prominence on the Pakistan current situation. Environmental Geochemistry and Health 40 (4):1265-1281. doi:https://doi.org/10.1007/s10653-017-0054-z

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

  • Ratasuk R, Vejlgaard B, Mangalvedhe N, Ghosh A NB-IoT system for M2M communication. In: Wireless Communications and Networking Conference (WCNC), 2016 IEEE, 2016. IEEE, pp 1-5

    Google ScholarĀ 

  • Reis MJ, Morais R, Peres E, Pereira C, Contente O, Soares S, Valente A, Baptista J, Ferreira PJS, Cruz JB (2012) Automatic detection of bunches of grapes in natural environment from color images. Journal of Applied Logic 10 (4):285-290

    ArticleĀ  Google ScholarĀ 

  • Research J (2015) Internet of Things Connected Devices to Almost Triple to Over 38 Billion Units by 2020ā€, Juniper Research.

    Google ScholarĀ 

  • Sarode K, Chaudhari P (2018) Zigbee based Agricultural Monitoring and Controlling System. International Journal of Engineering Science 15907

    Google ScholarĀ 

  • Shafi U, Mumtaz R, Hassan SA, Zaidi SAR, Akhtar A, Malik MM (2020) Crop Health Monitoring Using IoT-Enabled Precision Agriculture. In: IoT Architectures, Models, and Platforms for Smart City Applications. IGI Global, pp 134-154

    Google ScholarĀ 

  • Silleos NG, Alexandridis TK, Gitas IZ, Perakis K (2006) Vegetation indices: advances made in biomass estimation and vegetation monitoring in the last 30 years. Geocarto International 21 (4):21-28

    ArticleĀ  Google ScholarĀ 

  • Sivarajan S, Maharlooei M, Kandel H, Buetow RR, Nowatzki J, Bajwa SG (2020) Evaluation of OptRxā„¢ active optical sensor to monitor soybean response to nitrogen inputs. J Sci Food Agric 100 (1):154-160

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Stratigea A (2011) ICTs for rural development: potential applications and barriers involved. Netcom RĆ©seaux, communication et territoires (25-3/4):179-204

    Google ScholarĀ 

  • Sun S, Li C, Paterson AH, Jiang Y, Xu R, Robertson JS, Snider JL, Chee PW (2018) In-field high throughput phenotyping and cotton plant growth analysis using LiDAR. Frontiers in Plant Science 9:16

    ArticleĀ  Google ScholarĀ 

  • Umeda H, Mochizuki Y, Saito T, Higashide T, Iwasaki Y Diagnosing method for plant growth using a 3D depth sensor. In: International Symposium on New Technologies for Environment Control, Energy-Saving and Crop Production in Greenhouse and Plant 1227, 2017. pp 631-636

    Google ScholarĀ 

  • van Ogtrop F, Ahmad M, Moeller C (2014) Principal components of sea surface temperatures as predictors of seasonal rainfall in rainfed wheat growing areas of Pakistan. Meteorological Applications 21 (2):431-443. doi:https://doi.org/10.1002/met.1429

    ArticleĀ  ADSĀ  Google ScholarĀ 

  • Vellidis G, Liakos V, Andreis J, Perry C, Porter W, Barnes E, Morgan K, Fraisse C, Migliaccio K (2016) Development and assessment of a smartphone application for irrigation scheduling in cotton. Comput Electron Agric 127:249-259

    ArticleĀ  Google ScholarĀ 

  • Wallach D, Martre P, Liu B, Asseng S, Ewert F, Thorburn PJ, van Ittersum M, Aggarwal PK, Ahmed M, Basso B, Biernath C, Cammarano D, Challinor AJ, De Sanctis G, Dumont B, Eyshi Rezaei E, Fereres E, Fitzgerald GJ, Gao Y, Garcia-Vila M, Gayler S, Girousse C, Hoogenboom G, Horan H, Izaurralde RC, Jones CD, Kassie BT, Kersebaum KC, Klein C, Koehler A-K, Maiorano A, Minoli S, MĆ¼ller C, Naresh Kumar S, Nendel C, O'Leary GJ, Palosuo T, Priesack E, Ripoche D, Rƶtter RP, Semenov MA, Stƶckle C, Stratonovitch P, Streck T, Supit I, Tao F, Wolf J, Zhang Z (2018) Multimodel ensembles improve predictions of cropā€“environmentā€“management interactions. Global Change Biology 24 (11):5072-5083. doi:https://doi.org/10.1111/gcb.14411

    ArticleĀ  PubMedĀ  ADSĀ  Google ScholarĀ 

  • Weber R, Weber R (2010) Internet of Things: Legal Perspectives, vol. 49. Xia, F, Yang, LT, Wang, L, &Vinel, A (2012) Internet of things International Journal of Communication Systems 25 (9):1101

    Google ScholarĀ 

  • Wu Y, Li D, Li Z, Yang W (2014) Fast processing of foreign fiber images by image blocking. Information Processing in Agriculture 1 (1):2-13

    ArticleĀ  CASĀ  Google ScholarĀ 

  • Zhang J, Chen Y, Zhang Z (2020) A remote sensing-based scheme to improve regional crop model calibration at sub-model component level. Agricultural Systems 181:102814

    ArticleĀ  Google ScholarĀ 

  • Zia Z, Bakhat HF, Saqib ZA, Shah GM, Fahad S, Ashraf MR, Hammad HM, Naseem W, Shahid M (2017) Effect of water management and silicon on germination, growth, phosphorus and arsenic uptake in rice. Ecotoxicology and Environmental Safety 144:11-18. doi: https://doi.org/10.1016/j.ecoenv.2017.06.004

    ArticleĀ  CASĀ  PubMedĀ  Google ScholarĀ 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mukhtar Ahmed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

Ā© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehmood, M.Z. et al. (2022). Internet of Things (IoT) and Sensors Technologies in Smart Agriculture: Applications, Opportunities, and Current Trends. In: Jatoi, W.N., Mubeen, M., Ahmad, A., Cheema, M.A., Lin, Z., Hashmi, M.Z. (eds) Building Climate Resilience in Agriculture. Springer, Cham. https://doi.org/10.1007/978-3-030-79408-8_21

Download citation

Publish with us

Policies and ethics