Skip to main content

Renal Toxicity

  • Chapter
  • First Online:
Immunotherapy

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1342))

Abstract

With the increasing use of immunotherapy, there has been an associated increased survival in many cancers but has also resulted in unregulated organ-specific toxicities. In this review, we will discuss the renal toxicities associated with a checkpoint inhibitor (CPI) from the typical acute tubulointerstitial nephritis to glomerulonephritis and their proposed mechanisms and treatments. We also discuss the use of CPI and reactivation of preexisting autoimmune disease with a focus on renal cell cancer in setting of chronic kidney disease (CKD). Transplant rejection in setting of CPI use has been further evaluated with single-center and multicenter retrospective studies, and available data will be presented in this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Abdel-Wahab, N., Shah, M., & Suarez-Almazor, M. E. (2016). Adverse events associated with immune checkpoint blockade in patients with Cancer: A systematic review of case reports. PLoS One, 11(7), e0160221.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Attia, P., Phan, G. Q., Maker, A. V., et al. (2005). Autoimmunity correlates with tumor regression in patients with metastatic melanoma treated with anti-cytotoxic T-lymphocyte antigen-4. Journal of Clinical Oncology, 23(25), 6043–6053.

    Article  CAS  PubMed  Google Scholar 

  3. Downey, S. G., Klapper, J. A., Smith, F. O., et al. (2007). Prognostic factors related to clinical response in patients with metastatic melanoma treated by CTL-associated antigen-4 blockade. Clinical Cancer Research, 13(22 Pt 1), 6681–6688.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Petrelli, F., Grizzi, G., Ghidini, M., et al. (2020). Immune-related adverse events and survival in solid tumors treated with immune checkpoint inhibitors: A systematic review and meta-analysis. Journal of Immunotherapy, 43(1), 1–7.

    Article  CAS  PubMed  Google Scholar 

  5. Cortazar, F. B., Kibbelaar, Z. A., Glezerman, I. G., et al. (2020). Clinical features and outcomes of immune checkpoint inhibitor-associated AKI: A multicenter study. Journal of the American Society of Nephrology.

    Google Scholar 

  6. Seethapathy, H., Zhao, S., Chute, D. F., et al. (2019). The incidence, causes, and risk factors of acute kidney injury in patients receiving immune checkpoint inhibitors. Clinical Journal of the American Society of Nephrology, 14(12), 1692–1700.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Meraz-Munoz, A., Amir, E., Ng, P., et al. (2020). Acute kidney injury associated with immune checkpoint inhibitor therapy: Incidence, risk factors and outcomes. Journal for Immunotherapy of Cancer, 8(1).

    Google Scholar 

  8. Cortazar, F. B., Marrone, K. A., Troxell, M. L., et al. (2016). Clinicopathological features of acute kidney injury associated with immune checkpoint inhibitors. Kidney International, 90(3), 638–647.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Maher, V. E., Fernandes, L. L., Weinstock, C., et al. (2019). Analysis of the association between adverse events and outcome in patients receiving a programmed death protein 1 or programmed death ligand 1 antibody. Journal of Clinical Oncology, 37(30), 2730–2737.

    Article  CAS  PubMed  Google Scholar 

  10. Haslam, A., & Prasad, V. (2019). Estimation of the percentage of US patients with Cancer who are eligible for and respond to checkpoint inhibitor immunotherapy drugs. JAMA Network Open, 2(5), e192535.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Shirali, A. C., Perazella, M. A., & Gettinger, S. (2016). Association of Acute Interstitial Nephritis with Programmed Cell Death 1 inhibitor therapy in lung Cancer patients. American Journal of Kidney Diseases, 68(2), 287–291.

    Article  CAS  PubMed  Google Scholar 

  12. Thajudeen, B., Madhrira, M., Bracamonte, E., & Cranmer, L. D. (2015). Ipilimumab granulomatous interstitial nephritis. American Journal of Therapeutics, 22(3), e84–e87.

    Article  PubMed  Google Scholar 

  13. Izzedine, H., Gueutin, V., Gharbi, C., et al. (2014). Kidney injuries related to ipilimumab. Investigational New Drugs, 32(4), 769–773.

    Article  CAS  PubMed  Google Scholar 

  14. Mamlouk, O., Selamet, U., Machado, S., et al. (2019). Nephrotoxicity of immune checkpoint inhibitors beyond tubulointerstitial nephritis: Single-center experience. Journal for Immunotherapy of Cancer, 7(1), 2.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Clarkson, M. R., Giblin, L., O'Connell, F. P., et al. (2004). Acute interstitial nephritis: Clinical features and response to corticosteroid therapy. Nephrology, Dialysis, Transplantation, 19(11), 2778–2783.

    Article  CAS  PubMed  Google Scholar 

  16. Tivol, E. A., Borriello, F., Schweitzer, A. N., Lynch, W. P., Bluestone, J. A., & Sharpe, A. H. (1995). Loss of CTLA-4 leads to massive lymphoproliferation and fatal multiorgan tissue destruction, revealing a critical negative regulatory role of CTLA-4. Immunity, 3(5), 541–547.

    Article  CAS  PubMed  Google Scholar 

  17. Kuehn, H. S., Ouyang, W., Lo, B., et al. (2014). Immune dysregulation in human subjects with heterozygous germline mutations in CTLA4. Science, 345(6204), 1623–1627.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Zheng, G., Wang, Y., Mahajan, D., et al. (2005). The role of tubulointerstitial inflammation. Kidney International. Supplement, 94, 96–100.

    Article  Google Scholar 

  19. Jaworska, K., Ratajczak, J., Huang, L., et al. (2015). Both PD-1 ligands protect the kidney from ischemia reperfusion injury. Journal of Immunology, 194(1), 325–333.

    Article  CAS  Google Scholar 

  20. Waeckerle-Men, Y., Starke, A., & Wuthrich, R. P. (2007). PD-L1 partially protects renal tubular epithelial cells from the attack of CD8+ cytotoxic T cells. Nephrology, Dialysis, Transplantation, 22(6), 1527–1536.

    Article  CAS  PubMed  Google Scholar 

  21. Spanou, Z., Keller, M., Britschgi, M., et al. (2006). Involvement of drug-specific T cells in acute drug-induced interstitial nephritis. Journal of the American Society of Nephrology, 17(10), 2919–2927.

    Article  CAS  PubMed  Google Scholar 

  22. Kuchroo, V. K., Ohashi, P. S., Sartor, R. B., & Vinuesa, C. G. (2012). Dysregulation of immune homeostasis in autoimmune diseases. Nature Medicine, 18(1), 42–47.

    Article  CAS  PubMed  Google Scholar 

  23. Murakami, N., Borges, T. J., Yamashita, M., & Riella, L. V. (2016). Severe acute interstitial nephritis after combination immune-checkpoint inhibitor therapy for metastatic melanoma. Clinical Kidney Journal, 9(3), 411–417.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Klareskog, L., Malmstrom, V., Lundberg, K., Padyukov, L., & Alfredsson, L. (2011). Smoking, citrullination and genetic variability in the immunopathogenesis of rheumatoid arthritis. Seminars in Immunology, 23(2), 92–98.

    Article  CAS  PubMed  Google Scholar 

  25. Todd, J. A. (2010). D’oh! Genes and environment cause Crohn’s disease. Cell, 141(7), 1114–1116.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Cappelli, L. C., Gutierrez, A. K., Bingham, C. O., 3rd, & Shah, A. A. (2017). Rheumatic and musculoskeletal immune-related adverse events due to immune checkpoint inhibitors: A systematic review of the literature. Arthritis Care Research (Hoboken), 69(11), 1751–1763.

    Article  Google Scholar 

  27. Lidar, M., Giat, E., Garelick, D., et al. (2018). Rheumatic manifestations among cancer patients treated with immune checkpoint inhibitors. Autoimmunity Reviews.

    Google Scholar 

  28. Fadel, F., El Karoui, K., & Knebelmann, B. (2009). Anti-CTLA4 antibody-induced lupus nephritis. The New England Journal of Medicine, 361(2), 211–212.

    Article  CAS  PubMed  Google Scholar 

  29. Kidd, J. M., & Gizaw, A. B. (2016). Ipilimumab-associated minimal-change disease. Kidney International, 89(3), 720.

    Article  PubMed  Google Scholar 

  30. Nishimura, H., Nose, M., Hiai, H., Minato, N., & Honjo, T. (1999). Development of lupus-like autoimmune diseases by disruption of the PD-1 gene encoding an ITIM motif-carrying immunoreceptor. Immunity, 11(2), 141–151.

    Article  CAS  PubMed  Google Scholar 

  31. Umut Selamet AZ, Laila S. Lakhani, Biruh Workeneh, Amit Lahoti, Amanda Tchakarov, William F. Glass, Ala Abudayyeh (2017). biopsy proven nephrotoxicity of immune checkpoint inhibitors: MD Anderson cancer center experience. Paper presented at: American Society of Nephrology Kidney Week; November 3 2017.

    Google Scholar 

  32. Mamlouk, O., Lin, J. S., Abdelrahim, M., et al. (2020). Checkpoint inhibitor-related renal vasculitis and use of rituximab. Journal for Immunotherapy of Cancer, 8(2).

    Google Scholar 

  33. Abdel-Wahab, N., Shah, M., Lopez-Olivo, M. A., & Suarez-Almazor, M. E. (2018). Use of immune checkpoint inhibitors in the treatment of patients with Cancer and preexisting autoimmune disease: A systematic review. Annals of Internal Medicine, 168(2), 121–130.

    Article  PubMed  Google Scholar 

  34. Danlos, F. X., Voisin, A. L., Dyevre, V., et al. (2018). Safety and efficacy of anti-programmed death 1 antibodies in patients with cancer and pre-existing autoimmune or inflammatory disease. European Journal of Cancer, 91, 21–29.

    Article  CAS  PubMed  Google Scholar 

  35. Lin, J. S., Wang, D. Y., Mamlouk, O., et al. (2020). Immune checkpoint inhibitor associated reactivation of primary membranous nephropathy responsive to rituximab. Journal for Immunotherapy of Cancer, 8(2).

    Google Scholar 

  36. Dahlke, E., Murray, C. A., Kitchen, J., & Chan, A. W. (2014). Systematic review of melanoma incidence and prognosis in solid organ transplant recipients. Transplant Research, 3, 10.

    Article  Google Scholar 

  37. Lipson, E. J., Bodell, M. A., Kraus, E. S., & Sharfman, W. H. (2014). Successful administration of ipilimumab to two kidney transplantation patients with metastatic melanoma. Journal of Clinical Oncology, 32(19), e69–e71.

    Article  PubMed  PubMed Central  Google Scholar 

  38. Lipson, E. J., Bagnasco, S. M., Moore, J., Jr., et al. (2016). Tumor regression and allograft rejection after Administration of Anti-PD-1. The New England Journal of Medicine, 374(9), 896–898.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Boils, C. L., Aljadir, D. N., & Cantafio, A. W. (2016). Use of the PD-1 pathway inhibitor Nivolumab in a renal transplant patient with malignancy. American Journal of Transplantation, 16(8), 2496–2497.

    Article  CAS  PubMed  Google Scholar 

  40. Spain, L., Higgins, R., Gopalakrishnan, K., Turajlic, S., Gore, M., & Larkin, J. (2016). Acute renal allograft rejection after immune checkpoint inhibitor therapy for metastatic melanoma. Annals of Oncology, 27(6), 1135–1137.

    Article  CAS  PubMed  Google Scholar 

  41. Alhamad, T., Venkatachalam, K., Linette, G. P., & Brennan, D. C. (2016). Checkpoint inhibitors in kidney transplant recipients and the potential risk of rejection. American Journal of Transplantation, 16(4), 1332–1333.

    Article  CAS  PubMed  Google Scholar 

  42. Starke, A., Lindenmeyer, M. T., Segerer, S., et al. (2010). Renal tubular PD-L1 (CD274) suppresses alloreactive human T-cell responses. Kidney International, 78(1), 38–47.

    Article  CAS  PubMed  Google Scholar 

  43. Riella, L. V., Watanabe, T., Sage, P. T., et al. (2011). Essential role of PDL1 expression on nonhematopoietic donor cells in acquired tolerance to vascularized cardiac allografts. American Journal of Transplantation, 11(4), 832–840.

    Article  CAS  PubMed  Google Scholar 

  44. Dudler, J., Li, J., Pagnotta, M., Pascual, M., von Segesser, L. K., & Vassalli, G. (2006). Gene transfer of programmed death ligand-1.Ig prolongs cardiac allograft survival. Transplantation, 82(12), 1733–1737.

    Article  PubMed  Google Scholar 

  45. Noha Abdel-Wahab AA, Mohsin Shah, Daniel H Johnson, Maria E. Suarez-Almazor, and Adi Diab. The Outcome of Checkpoint Inhibitor Therapy in Patients with Cancer and Solid Organ Transplant: A Systematic Review of the Literature. Paper presented at: SITC2018.

    Google Scholar 

  46. Abdel-Wahab, N., Safa, H., Abudayyeh, A., et al. (2019). Checkpoint inhibitor therapy for cancer in solid organ transplantation recipients: An institutional experience and a systematic review of the literature. Journal for Immunotherapy of Cancer, 7(1), 106.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Murakami, N., Mulvaney, P., Danesh, M., et al. (2020). A multi-center study on safety and efficacy of immune checkpoint inhibitors in cancer patients with kidney transplant. Kidney International.

    Google Scholar 

  48. Naing, A., Hajjar, J., Gulley, J. L., et al. (2020). Strategies for improving the management of immune-related adverse events. Journal for Immunotherapy of Cancer, 8(2).

    Google Scholar 

  49. Launay-Vacher, V., Oudard, S., Janus, N., et al. (2007). Prevalence of renal insufficiency in cancer patients and implications for anticancer drug management: The renal insufficiency and anticancer medications (IRMA) study. Cancer, 110(6), 1376–1384.

    Article  CAS  PubMed  Google Scholar 

  50. Janus, N., Oudard, S., Beuzeboc, P., et al. (2009). Prevalence of renal insufficiency in cancer patients: Data from the IRMA-2 study. Journal of Clinical Oncology, 27(15_suppl), 9559.

    Article  Google Scholar 

  51. Janus, N., Launay-Vacher, V., Byloos, E., et al. (2010). Cancer and renal insufficiency results of the BIRMA study. British Journal of Cancer, 103(12), 1815–1821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Dogan, E., Izmirli, M., Ceylan, K., et al. (2005). Incidence of renal insufficiency in cancer patients. Advances in Therapy, 22(4), 357–362.

    Article  CAS  PubMed  Google Scholar 

  53. Mazza, C., Escudier, B., & Albiges, L. (2017). Nivolumab in renal cell carcinoma: latest evidence and clinical potential. Therapeutic Advances in Medical Oncology, 9(3), 171–181.

    Article  CAS  PubMed  Google Scholar 

  54. Canter, D., Kutikov, A., Sirohi, M., et al. (2011). Prevalence of baseline chronic kidney disease in patients presenting with solid renal tumors. Urology, 77(4), 781–785.

    Article  PubMed  Google Scholar 

  55. Coppin, C., Kollmannsberger, C., Le, L., Porzsolt, F., & Wilt, T. J. (2011). Targeted therapy for advanced renal cell cancer (RCC): A Cochrane systematic review of published randomised trials. BJU International, 108(10), 1556–1563.

    Article  CAS  PubMed  Google Scholar 

  56. Thompson, R. H., Kuntz, S. M., Leibovich, B. C., et al. (2006). Tumor B7-H1 is associated with poor prognosis in renal cell carcinoma patients with long-term follow-up. Cancer Research, 66(7), 3381–3385.

    Article  CAS  PubMed  Google Scholar 

  57. Motzer, R. J., Escudier, B., McDermott, D. F., et al. (2015). Nivolumab versus Everolimus in advanced renal-cell carcinoma. The New England Journal of Medicine, 373(19), 1803–1813.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  58. Murakami, N., Motwani, S., & Riella, L. V. (2017). Renal complications of immune checkpoint blockade. Current Problems in Cancer, 41(2), 100–110.

    Article  PubMed  Google Scholar 

  59. Motzer, R. J., Tannir, N. M., McDermott, D. F., et al. (2018). Nivolumab plus Ipilimumab versus Sunitinib in advanced renal-cell carcinoma. The New England Journal of Medicine, 378(14), 1277–1290.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Atkins, M. B., Plimack, E. R., Puzanov, I., et al. (2018). Axitinib in combination with pembrolizumab in patients with advanced renal cell cancer: A non-randomised, open-label, dose-finding, and dose-expansion phase 1b trial. The Lancet Oncology, 19(3), 405–415.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Choueiri, T. K., Larkin, J., Oya, M., et al. (2018). Preliminary results for avelumab plus axitinib as first-line therapy in patients with advanced clear-cell renal-cell carcinoma (JAVELIN Renal 100): An open-label, dose-finding and dose-expansion, phase 1b trial. The Lancet Oncology, 19(4), 451–460.

    Article  CAS  PubMed  Google Scholar 

  62. Rini, B. I., Powles, T., Atkins, M. B., et al. (2019). Atezolizumab plus bevacizumab versus sunitinib in patients with previously untreated metastatic renal cell carcinoma (IMmotion151): A multicentre, open-label, phase 3, randomised controlled trial. Lancet, 393(10189), 2404–2415.

    Article  PubMed  Google Scholar 

  63. Postow, M. A. (2015). Managing immune checkpoint-blocking antibody side effects. American Society of Clinical Oncology Educational Book, 76–83.

    Google Scholar 

  64. Manson, G., Norwood, J., Marabelle, A., Kohrt, H., & Houot, R. (2016). Biomarkers associated with checkpoint inhibitors. Annals of Oncology, 27(7), 1199–1206.

    Article  CAS  PubMed  Google Scholar 

  65. Callahan, M. K., Yang, A., Tandon, S., et al. (2011). Evaluation of serum IL-17 levels during ipilimumab therapy: Correlation with colitis. Journal of Clinical Oncology, 29(15).

    Google Scholar 

  66. Pages, C., Gornet, J. M., Monsel, G., et al. (2013). Ipilimumab-induced acute severe colitis treated by infliximab. Melanoma Research, 23(3), 227–230.

    Article  CAS  PubMed  Google Scholar 

  67. Brahmer, J. R., Lacchetti, C., & Thompson, J. A. (2018). Management of Immune-Related Adverse Events in patients treated with immune checkpoint inhibitor therapy: American Society of Clinical Oncology clinical practice guideline summary. Journal of Oncology Practice/ American Society of Clinical Oncology, 14(4), 247–249.

    Article  Google Scholar 

  68. Thompson, J. A., Schneider, B. J., Brahmer, J., et al. (2020). NCCN guidelines insights: Management of Immunotherapy-Related Toxicities, version 1.2020. Journal of the National Comprehensive Cancer Network, 18(3), 230–241.

    Article  CAS  PubMed  Google Scholar 

  69. Haanen, J., Carbonnel, F., Robert, C., et al. (2018). Management of toxicities from immunotherapy: ESMO clinical practice guidelines for diagnosis, treatment and follow-up. Annals of Oncology, 29(Suppl 4), iv264–iv266.

    Article  CAS  PubMed  Google Scholar 

  70. Suarez-Almazor, M. E., Pundole, X., Abdel-Wahab, N., et al. (2020). Multinational Association of Supportive Care in Cancer (MASCC) 2020 clinical practice recommendations for the management of immune-mediated cardiovascular, rheumatic, and renal toxicities from checkpoint inhibitors. Supportive Care in Cancer, 28(12), 6159–6173.

    Article  PubMed  Google Scholar 

  71. Abudayyeh A AM, Albiges L Renal Toxicity Associated with Immune Checkpoint Inhibitors.

    Google Scholar 

  72. Badran, Y. R., Cohen, J. V., Brastianos, P. K., Parikh, A. R., Hong, T. S., & Dougan, M. (2019). Concurrent therapy with immune checkpoint inhibitors and TNFalpha blockade in patients with gastrointestinal immune-related adverse events. Journal for Immunotherapy of Cancer, 7(1), 226.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Tian, Y., Abu-Sbeih, H., & Wang, Y. (2018). Immune checkpoint inhibitors-induced colitis. Advances in Experimental Medicine and Biology, 995, 151–157.

    Article  PubMed  Google Scholar 

  74. Martins, F., Sykiotis, G. P., Maillard, M., et al. (2019). New therapeutic perspectives to manage refractory immune checkpoint-related toxicities. The Lancet Oncology, 20(1), e54–e64.

    Article  CAS  PubMed  Google Scholar 

  75. Lin, J. S., Mamlouk, O., Selamet, U., et al. (2021). Infliximab for the treatment of patients with checkpoint inhibitor-associated acute tubular interstitial nephritis. Oncoimmunology, 10(1), 1877415.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Barnett, R., Barta, V. S., & Jhaveri, K. D. (2017). Preserved renal-allograft function and the PD-1 pathway inhibitor Nivolumab. The New England Journal of Medicine, 376(2), 191–192.

    Article  PubMed  Google Scholar 

  77. Horvat, T. Z., Adel, N. G., Dang, T. O., et al. (2015). Immune-related adverse events, need for systemic immunosuppression, and effects on survival and time to treatment failure in patients with melanoma treated with Ipilimumab at memorial Sloan Kettering Cancer center. Journal of Clinical Oncology, 33(28), 3193–3198.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ala Abudayyeh .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Abdelrahim, M., Abudayyeh, A. (2021). Renal Toxicity. In: Naing, A., Hajjar, J. (eds) Immunotherapy. Advances in Experimental Medicine and Biology, vol 1342. Springer, Cham. https://doi.org/10.1007/978-3-030-79308-1_16

Download citation

Publish with us

Policies and ethics