Skip to main content

Contrast Agents in Vascular Interventional Radiology

  • Chapter
  • First Online:
Medical Imaging Contrast Agents: A Clinical Manual

Abstract

The development of contrast agents and advent of digital subtraction imaging enable vascular interventional radiology to be a part of many treatment options. Iodine-based agents shifted from high osmolar to low and iso-osmolar agents making procedures more tolerated with lesser adverse events. The search for an ideal contrast agent with lower dose requirement and decreased toxicity is still an ongoing challenge. Different than diagnostic imaging it should be kept in mind that other than positive contrast agents a negative contrast agent “CO2” with no nephrotoxicity and allergy risk is widely available and is shown to be effective alone or in combination in many interventional procedures.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aspelin P, Bellin MF, Jakobsen J, Webb JAW. Classification and terminology. In: Thomsen HS, Webb JAW, editors. Contrast media. Medical radiology (diagnostic imaging). Berlin, Heidelberg: Springer; 2009.

    Google Scholar 

  2. Karlsberg RP, Dohad SY, Sheng R, Iodixanol Peripheral Computed Tomographic Angiography Study Investigator Panel. Contrast medium-induced acute kidney injury: comparison of intravenous and intraarterial administration of iodinated contrast medium. J Vasc Interv Radiol. 2011;22(8):1159–65.

    Article  PubMed  Google Scholar 

  3. Nyman U, Almen T, Jacobsson B, Aspelin P. Are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections? Eur Radiol. 2012;22(6):1366–71.

    Article  PubMed  Google Scholar 

  4. ACR Committee on Drugs and Contrast Media. ACR manual on contrast media, v10.3. American College of Radiology; 2018. https://www.acr.org/-/media/ACR/Files/Clinical-Resources/Contrast_Media.pdf. Accessed May 2019.

  5. van der Molen AJ, Reimer P, Dekkers IA, Bongartz G, Bellin MF, Bertolotto M, et al. Post-contrast acute kidney injury—part 1: definition, clinical features, incidence, role of contrast medium and risk factors: recommendations for updated ESUR Contrast Medium Safety Committee guidelines. Eur Radiol. 2018;28(7):2845–55.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Christensen JD, Meyer LT, Hurwitz LM, Boll DT. Effects of iopamidol-370 versus iodixanol-320 on coronary contrast, branch depiction, and heart rate variability in dual-source coronary MDCT angiography. AJR Am J Roentgenol. 2011;197(3):W445–51.

    Article  PubMed  Google Scholar 

  7. Silvennoinen HM, Hamberg LM, Valanne L, Hunter GJ. Increasing contrast agent concentration improves enhancement in first-pass CT perfusion. AJNR Am J Neuroradiol. 2007;28(7):1299–303.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Pannu HK, Thompson RE, Phelps J, Magee CA, Fishman EK. Optimal contrast agents for vascular imaging on computed tomography: iodixanol versus iohexol. Acad Radiol. 2005;12(5):576–84.

    Article  PubMed  Google Scholar 

  9. Jens S, Schreuder SM, De Boo DW, van Dijk LC, van Overhagen H, Bipat S, et al. Lowering iodinated contrast concentration in infrainguinal endovascular interventions: a three-armed randomized controlled non-inferiority trial. Eur Radiol. 2016;26(8):2446–54.

    Article  PubMed  Google Scholar 

  10. Imai K, Ikeda M, Satoh Y, Fujii K, Kawaura C, Nishimoto T, et al. Contrast enhancement efficacy of iodinated contrast media: effect of molecular structure on contrast enhancement. Eur J Radiol Open. 2018;5:183–8.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Steiner RM, Grainger RG, Memon N, Weiss D, Kanofsky PB, Menduke H. The effect of contrast media of low osmolality on the peripheral arterial blood flow in the dog. Clin Radiol. 1980;31(6):621–7.

    Article  CAS  PubMed  Google Scholar 

  12. Gmeinwieser JK, Wenzel-Hora BI. Peripheral and penile angiography with iotrolan 280 versus non-ionic monomers: results of the European clinical phase II and III trials. Eur Radiol. 1995;5(2):S30–8.

    Article  Google Scholar 

  13. Darcy MD. Lower-extremity arteriography: current approach and techniques. Radiology. 1991;178(3):615–21.

    Article  CAS  PubMed  Google Scholar 

  14. Ohlsén H, Albrechtsson U, Billström Å, Calissendorff B, Gustavsson S, Jensen R, Johnsson K, Nyberg P, Strindberg L. Comparison of iopromide versus iohexol in aortobifemoral arteriography: a Swedish multi-center study of 446 patients. Acta Radiol. 1991;32(2):130–3.

    Article  PubMed  Google Scholar 

  15. Justesen P, Downes M, Grynne BH, Lang H, Rasch W, Seim E. Injection-associated pain in femoral arteriography: a European multicenter study comparing safety, tolerability, and efficacy of iodixanol and iopromide. Cardiovasc Intervent Radiol. 1997;20(4):251–6.

    Article  CAS  PubMed  Google Scholar 

  16. Poirier VC, Monsein LH, Newberry PD, Kreps BJ. Double-blind, randomized comparison of iodixanol 320 and iohexol 300 for cerebral angiography. Invest Radiol. 1994;29(Suppl 2):S43–4.

    Article  PubMed  Google Scholar 

  17. Singh K, Sundgren R, Bolstad B, Björk L, Lie M. Iodixanol in abdominal digital subtraction angiography. Acta Radiol. 1993;34(3):242–5.

    Article  CAS  PubMed  Google Scholar 

  18. McCullough PA, Capasso P. Patient discomfort associated with the use of intra-arterial iodinated contrast media: a meta-analysis of comparative randomized controlled trials. BMC Med Imaging. 2011;11:12.

    Article  PubMed  PubMed Central  Google Scholar 

  19. Palena LM, Sacco ZD, Brigato C, Sultato E, Barra D, Candeo A, et al. Discomfort assessment in peripheral angiography: randomized clinical trial of Iodixanol 270 versus Ioversol 320 in diabetics with critical limb ischemia. Catheter Cardiovasc Interv. 2014;84(6):1019–25.

    Article  PubMed  Google Scholar 

  20. Brunette J, Mongrain R, Rodes-Cabau J, Larose E, Leask R, Bertrand OF. Comparative rheology of low- and iso-osmolarity contrast agents at different temperatures. Catheter Cardiovasc Interv. 2008;71(1):78–83.

    Article  PubMed  Google Scholar 

  21. Mogabgab O, Patel VG, Michael TT, Kotsia A, Christopoulos G, Banerjee S, et al. Impact of contrast agent viscosity on coronary balloon deflation times: bench testing results. J Interv Cardiol. 2014;27(2):177–81.

    Article  PubMed  Google Scholar 

  22. Meurer K, Laniado M, Hosten N, Kelsch B, Hogstrom B. Intra-arterial and intravenous applications of Iosimenol 340 injection, a new non-ionic, dimeric, iso-osmolar radiographic contrast medium: phase 2 experience. Acta Radiol. 2015;56(6):702–8.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Kooiman J, Le Haen PA, Gezgin G, de Vries JP, Boersma D, Brulez HF, et al. Contrast-induced acute kidney injury and clinical outcomes after intra-arterial and intravenous contrast administration: risk comparison adjusted for patient characteristics by design. Am Heart J. 2013;165(5):793–99, 799.e1.

    Article  PubMed  Google Scholar 

  24. McDonald JS, Leake CB, McDonald RJ, Gulati R, Katzberg RW, Williamson EE, et al. Acute kidney injury after intravenous versus intra-arterial contrast material administration in a paired cohort. Invest Radiol. 2016;51(12):804–9.

    Article  CAS  PubMed  Google Scholar 

  25. Tong GE, Kumar S, Chong KC, Shah N, Wong MJ, Zimmet JM, et al. Risk of contrast-induced nephropathy for patients receiving intravenous vs. intra-arterial iodixanol administration. Abdom Radiol (NY). 2016;41(1):91–9.

    Article  Google Scholar 

  26. Stratta P, Izzo C, Canavese C, Quaglia M. Letter to the editor re: are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections? Eur Radiol. 2013;23(5):1260–3.

    Article  PubMed  Google Scholar 

  27. Nyman U, Almen T, Jacobsson B, Aspelin P. Reply to letter to the editor re: are intravenous injections of contrast media really less nephrotoxic than intra-arterial injections? Eur Radiol. 2013;23(5):1264–5.

    Article  PubMed  Google Scholar 

  28. Ghumman SS, Weinerman J, Khan A, Cheema MS, Garcia M, Levin D, et al. Contrast induced-acute kidney injury following peripheral angiography with carbon dioxide versus iodinated contrast media: a meta-analysis and systematic review of current literature. Catheter Cardiovasc Interv. 2017;90(3):437–48.

    Article  PubMed  Google Scholar 

  29. Aspelin P, Aubry P, Fransson SG, Strasser R, Willenbrock R, Berg KJ. Nephrotoxic effects in high-risk patients undergoing angiography. N Engl J Med. 2003;348(6):491–9.

    Article  CAS  PubMed  Google Scholar 

  30. McCullough PA, Brown JR. Effects of intra-arterial and intravenous iso-osmolar contrast medium (iodixanol) on the risk of contrast-induced acute kidney injury: a meta-analysis. Cardiorenal Med. 2011;1(4):220–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Solomon R. Contrast media: are there differences in nephrotoxicity among contrast media? Biomed Res Int. 2014;2014:934947.

    PubMed  PubMed Central  Google Scholar 

  32. Zhang J, Jiang Y, Rui Q, Chen M, Zhang N, Yang H, et al. Iodixanol versus iopromide in patients with renal insufficiency undergoing coronary angiography with or without PCI. Medicine (Baltimore). 2018;97(18):e0617.

    Article  CAS  Google Scholar 

  33. Azzalini L, Vilca LM, Lombardo F, Poletti E, Laricchia A, Beneduce A, et al. Incidence of contrast-induced acute kidney injury in a large cohort of all-comers undergoing percutaneous coronary intervention: comparison of five contrast media. Int J Cardiol. 2018;273:69–73.

    Article  PubMed  Google Scholar 

  34. Han XF, Zhang XX, Liu KM, Tan H, Zhang Q. Contrast-induced nephropathy in patients with diabetes mellitus between iso- and low-osmolar contrast media: a meta-analysis of full-text prospective, randomized controlled trials. PLoS One. 2018;13(3):e0194330.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  35. Cigarroa RG, Lange RA, Williams RH, Hillis LD. Dosing of contrast material to prevent contrast nephropathy in patients with renal disease. Am J Med. 1989;86(6 Pt 1):649–52.

    Article  CAS  PubMed  Google Scholar 

  36. Solomon R, Briguori C, Bettmann M. Selection of contrast media. Kidney Int Suppl. 2006;100:S39–45.

    Article  CAS  Google Scholar 

  37. Gurm HS, Dixon SR, Smith DE, Share D, Lalonde T, Greenbaum A, et al. Renal function-based contrast dosing to define safe limits of radiographic contrast media in patients undergoing percutaneous coronary interventions. J Am Coll Cardiol. 2011;58(9):907–14.

    Article  PubMed  Google Scholar 

  38. Nyman U, Bjork J, Aspelin P, Marenzi G. Contrast medium dose-to-GFR ratio: a measure of systemic exposure to predict contrast-induced nephropathy after percutaneous coronary intervention. Acta Radiol. 2008;49(6):658–67.

    Article  CAS  PubMed  Google Scholar 

  39. Nyman U. Contrast dose, estimated GFR, and techniques to reduce contrast dose in PCI—time to consider some basic principles! J Invasive Cardiol. 2016;28(10):E126–E7.

    PubMed  Google Scholar 

  40. Kooiman J, Seth M, Share D, Dixon S, Gurm HS. The association between contrast dose and renal complications post PCI across the continuum of procedural estimated risk. PLoS One. 2014;9(3):e90233.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  41. Feng YQ, He XY, Song FE, Chen JY. Association between contrast media volume and 1-year clinical outcomes in patients undergoing coronary angiography. Chin Med J (Engl). 2018;131(20):2424–32.

    Article  Google Scholar 

  42. Scatliff JH, Kummer AJ, Janzen AH. The diagnosis of pericardial effusion with intracardiac carbon dioxide. Radiology. 1959;73:871–83.

    Article  CAS  PubMed  Google Scholar 

  43. Hipona FA, Ferris EJ, Pick R. Capnocavography: a new technic for examination of the inferior vena cava. Radiology. 1969;92(3):606–9.

    Article  CAS  PubMed  Google Scholar 

  44. Hawkins IF. Carbon dioxide digital subtraction arteriography. AJR Am J Roentgenol. 1982;139(1):19–24.

    Article  CAS  PubMed  Google Scholar 

  45. Hawkins IF, Caridi JG. Carbon dioxide (CO2) digital subtraction angiography: 26-year experience at the University of Florida. Eur Radiol. 1998;8(3):391–402.

    Article  CAS  PubMed  Google Scholar 

  46. Back MR, Caridi JG, Hawkins IF Jr, Seeger JM. Angiography with carbon dioxide (CO2). Surg Clin North Am. 1998;78(4):575–91.

    Article  CAS  PubMed  Google Scholar 

  47. Caridi JG, Hawkins IF Jr, Cho K, Sohn SY, Langham MR Jr, Weichmann BN, et al. CO2 splenoportography: preliminary results. AJR Am J Roentgenol. 2003;180(5):1375–8.

    Article  PubMed  Google Scholar 

  48. Sharafuddin MJ, Marjan AE. Current status of carbon dioxide angiography. J Vasc Surg. 2017;66(2):618–37.

    Article  PubMed  Google Scholar 

  49. Song K, Cho D, Shinn K, Charlton E, Cho K. Gas dynamics in CO2 angiography: in vitro evaluation in a circulatory system model. Invest Radiol. 1999;34(2):151–5.

    Article  CAS  PubMed  Google Scholar 

  50. Corazza I, Rossi PL, Feliciani G, Pisani L, Zannoli S, Zannoli R. Mechanical aspects of CO(2) angiography. Phys Med. 2013;29(1):33–8.

    Article  PubMed  Google Scholar 

  51. Cho KJ. Carbon dioxide angiography: scientific principles and practice. Vasc Specialist Int. 2015;31(3):67–80.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Hawkins IF Jr, Caridi JG, Kerns SR. Plastic bag delivery system for hand injection of carbon dioxide. AJR Am J Roentgenol. 1995;165(6):1487–9.

    Article  PubMed  Google Scholar 

  53. Cronin P, Patel JV, Kessel DO, Robertson I, McPherson SJ. Carbon dioxide angiography: a simple and safe system of delivery. Clin Radiol. 2005;60(1):123–5.

    Article  CAS  PubMed  Google Scholar 

  54. de Almeida Mendes C, Wolosker N, Krutman M. A simple homemade carbon dioxide delivery system for endovascular procedures in the iliofemoral arteries. Circ J. 2013;77(3):831.

    Article  Google Scholar 

  55. Cho DR, Cho KJ, Hawkins IF Jr. Potential air contamination during CO2 angiography using a hand-held syringe: theoretical considerations and gas chromatography. Cardiovasc Intervent Radiol. 2006;29(4):637–41.

    Article  PubMed  Google Scholar 

  56. Cho KJ, Hawkins IF Jr. Discontinuation of the plastic bag delivery system for carbon dioxide angiography will increase radiocontrast nephropathy and life-threatening complications. AJR Am J Roentgenol. 2011;197(5):W940–1.

    Article  PubMed  Google Scholar 

  57. Caridi JG. Vascular imaging with carbon dioxide: confidence in a safe, efficacious, user-friendly system. Semin Intervent Radiol. 2015;32(4):339–42.

    Article  PubMed  PubMed Central  Google Scholar 

  58. Micari A, Sbarzaglia P, Meeks MDME, Liso A, Riina M, Lunetto ML, et al. New imaging modalities in peripheral interventions. Eur Heart J Suppl. 2015;17(Suppl A):A18–22.

    Article  Google Scholar 

  59. Scalise F, Novelli E, Auguadro C, Casali V, Manfredi M, Zannoli R. Automated carbon dioxide digital angiography for lower-limb arterial disease evaluation: safety assessment and comparison with standard iodinated contrast media angiography. J Invasive Cardiol. 2015;27(1):20–6.

    PubMed  Google Scholar 

  60. Palena LM, Diaz-Sandoval LJ, Candeo A, Brigato C, Sultato E, Manzi M. Automated carbon dioxide angiography for the evaluation and endovascular treatment of diabetic patients with critical limb ischemia. J Endovasc Ther. 2016;23(1):40–8.

    Article  PubMed  Google Scholar 

  61. Caridi JG, Stavropoulos SW, Hawkins IF Jr. Carbon dioxide digital subtraction angiography for renal artery stent placement. J Vasc Interv Radiol. 1999;10(5):635–40.

    Article  CAS  PubMed  Google Scholar 

  62. Mendes CA, Martins AA, Teivelis MP, Kuzniec S, Varella AY, Fioranelli A, et al. Carbon dioxide contrast medium for endovascular treatment of ilio-femoral occlusive disease. Clinics. 2015;70(10):675–9.

    Article  Google Scholar 

  63. Caridi JG, Cho KJ, Fauria C, Eghbalieh N. Carbon dioxide digital subtraction angiography (CO2 DSA): a comprehensive user guide for all operators. Vasc Dis Manag. 2014;11(10):E221–56.

    Google Scholar 

  64. Rees CR, Niblett RL, Lee SP, Diamond NG, Crippin JS. Use of carbon dioxide as a contrast medium for transjugular intrahepatic portosystemic shunt procedures. J Vasc Interv Radiol. 1994;5(2):383–6.

    Article  CAS  PubMed  Google Scholar 

  65. Lambert CR, de Marchena EJ, Bikkina M, Arcement BK. Effects of intracoronary carbon dioxide on left ventricular function in swine. Clin Cardiol. 1996;19(6):461–5.

    Article  CAS  PubMed  Google Scholar 

  66. Coffey R, Quisling RG, Mickle JP, Hawkins IF Jr, Ballinger WB. The cerebrovascular effects of intraarterial CO2 in quantities required for diagnostic imaging. Radiology. 1984;151(2):405–10.

    Article  CAS  PubMed  Google Scholar 

  67. Dimakakos PB, Stefanopoulos T, Doufas AG, Papasava M, Gouliamos A, Mourikis D, et al. The cerebral effects of carbon dioxide during digital subtraction angiography in the aortic arch and its branches in rabbits. AJNR Am J Neuroradiol. 1998;19(2):261–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  68. Kozlov DB, Lang EV, Barnhart W, Gossler A, De Girolami U. Adverse cerebrovascular effects of intraarterial CO2 injections: development of an in vitro/in vivo model for assessment of gas-based toxicity. J Vasc Interv Radiol. 2005;16(5):713–26.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Eldem, F.G., Peynircioğlu, B. (2021). Contrast Agents in Vascular Interventional Radiology. In: Erturk, S.M., Ros, P.R., Ichikawa, T., Saylisoy, S. (eds) Medical Imaging Contrast Agents: A Clinical Manual. Springer, Cham. https://doi.org/10.1007/978-3-030-79256-5_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79256-5_24

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79255-8

  • Online ISBN: 978-3-030-79256-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics