Skip to main content

CT and MR Angiography in the Chest and Abdomen

  • Chapter
  • First Online:
Medical Imaging Contrast Agents: A Clinical Manual
  • 1004 Accesses

Abstract

Computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are the main imaging methods for vasculature of the chest and abdomen. CTA has advantages such as demonstration of the vessel wall, perivascular tissue, and end-organ parenchyma in addition to luminal assessment with short scan times. The main advantage of MRA is not exposing the patient to ionizing radiation that enables repeated acquisitions, especially in children. Despite a preferred contrast-enhanced MRA, non-contrast MRA options are also available for patients with renal failure. In this chapter, imaging of pulmonary arteries, thoracic veins, aorta, abdominopelvic veins, mesenteric vessels, and renal vessels with CTA and MRA were summarized.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kalender WA, Seissler W, Klotz E, Vock P. Spiral volumetric CT with single-breathhold technique, continuous transport, and continuous scanner rotation. Radiology. 1990;176:181–3.

    Article  CAS  PubMed  Google Scholar 

  2. Rubin GD, Leipsic J, Joseph Schoepf U, Fleischmann D, Napel S. CT angiography after 20 years: a transformation in cardiovascular disease characterization continues to advance. Radiology. 2014;271(3):633–52.

    Article  PubMed  Google Scholar 

  3. Fleischmann D. CT angiography: injection and acquisition technique. Radiol Clin North Am. 2010;48:237–47.

    Article  PubMed  Google Scholar 

  4. Lusic H, Grinstaff MW. X-ray-computed tomography contrast agents. Chem Rev. 2013;113(3):1641–66.

    Article  CAS  PubMed  Google Scholar 

  5. Bae KT. Intravenous contrast medium administration and scan timing at CT: considerations and approaches. Radiology. 2010;256:32–61.

    Article  PubMed  Google Scholar 

  6. Murphy DJ, Aghayev A, Steigner ML. Vascular CT and MRI: a practical guide to imaging protocols. Insights Imaging. 2018;9(2):215–36.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Paparo F, Garello I, Bacigalupo L, Marziano A, Galletto Pregliasco A, Rollandi L, Puppo C, Mattioli F, Puntoni M, Rollandi GA. CT of the abdomen: degree and quality of enhancement obtained with two concentrations of the same iodinated contrast medium with fixed iodine delivery rate and total iodine load. Eur J Radiol. 2014;83:1995–2000.

    Article  PubMed  Google Scholar 

  8. Lell MM, Fleischmann U, Pietsch H, et al. Relationship between low tube voltage (70 kV) and the iodine delivery rate (IDR) in CT angiography: an experimental in-vivo study. PLoS One. 2017;12:e0173592–12.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  9. Mihl C, Kok M, Wildberger JE, et al. Coronary CT angiography using low concentrated contrast media injected with high flow rates: feasible in clinical practice. Eur J Radiol. 2015;84:2155–60.

    Article  PubMed  Google Scholar 

  10. Claussen CD, Banzer D, Pfretzschner C, Kalender WA, Schörner W. Bolus geometry and dynamics after intravenous contrast medium injection. Radiology. 1984;153:365–8.

    Article  CAS  PubMed  Google Scholar 

  11. Oh LCW, Lau KK, Devapalaundaram A, et al. Efficacy of “fine” focal spot imaging in CT abdominal angiography. Eur Radiol. 2014;24:3010–6.

    Article  PubMed  Google Scholar 

  12. Fleischmann D, Chin AS, Molvin L, Wang J, Hallett R. Computed tomography angiography: a review and technical update. Radiol Clin North Am. 2016;54:1–12.

    Article  PubMed  Google Scholar 

  13. De Santis D, Eid M, De Cecco CN, Jacobs BE, Albrecht MH, Varga-Szemes A, Tesche C, Caruso D, Laghi A, Schoepf UJ. Dual-energy computed tomography in cardiothoracic vascular imaging. Radiol Clin North Am. 2018;56(4):521–34.

    Article  PubMed  Google Scholar 

  14. Morita S, Ueno E, Masukawa A, Suzuki K, Machida H, Fujimura M. Hyperattenuating signs at unenhanced CT indicating acute vascular disease. Radiographics. 2010;30(1):111–25.

    Article  PubMed  Google Scholar 

  15. Zhang H, Maki JH, Prince MR. 3D contrast-enhanced MR angiography. J Magn Reson Imaging. 2007;25:13–25.

    Article  CAS  PubMed  Google Scholar 

  16. Prince MR, Yucel EK, Kaufman JA, Harrison DC, Geller SC. Dynamic gadolinium-enhanced three-dimensional abdominal MR arteriography. J Magn Reson Imaging. 1993;3:877–81.

    Article  CAS  PubMed  Google Scholar 

  17. Biglands JD, Radjenovic A, Ridgway JP. Cardiovascular magnetic resonance physics for clinicians: part II. J Cardiovasc Magn Reson. 2012;14:66.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Frayne R, Omary RA, Unal O, Strother CM. Determination of optimal injection parameters for intraarterial gadolinium-enhanced MR angiography. J Vasc Interv Radiol. 2000;11:1277–84.

    Article  CAS  PubMed  Google Scholar 

  19. Frayne R, Grist TM, Swan JS, Peters DC, Korosec FR, Mistretta CA. 3D MR DSA: effects of injection protocol and image masking. J Magn Reson Imaging. 2000;12:476–87.

    Article  CAS  PubMed  Google Scholar 

  20. Thakor AS, Chung J, Patel P, Chan A, Ahmed A, McNeil G, Liu DM, Forster B, Klass D. Use of blood pool agents with steady-state MRI to assess the vascular system. J Magn Reson Imaging. 2017;45:1559–72.

    Article  PubMed  Google Scholar 

  21. Ruangwattanapaisarn N, Hsiao A, Vasanawala SS. Ferumoxytol as an off-label contrast agent in body 3T MR angiography: a pilot study in children. Pediatr Radiol. 2015;45:831–9.

    Article  PubMed  Google Scholar 

  22. Hope MD, Hope TA, Zhu C, et al. Vascular imaging with ferumoxytol as a contrast agent. AJR Am J Roentgenol. 2015;205:W366–73.

    Article  PubMed  PubMed Central  Google Scholar 

  23. Edelman RR, Koktzoglou I. Noncontrast MR angiography: an update. J Magn Reson Imaging. 2019;49(2):355–73.

    Article  PubMed  Google Scholar 

  24. Dalrymple NC, Prasad SR, Freckleton MW, Chintapalli KN. Informatics in radiology (infoRAD): introduction to the language of three-dimensional imaging with multidetector CT. Radiographics. 2005;25(5):1409–28.

    Article  PubMed  Google Scholar 

  25. Fishman EK, Ney DR, Heath DG, Corl FM, Horton KM, Johnson PT. Volume rendering versus maximum intensity projection in CT angiography: what works best, when, and why. Radiographics. 2006;26(3):905–22.

    Article  PubMed  Google Scholar 

  26. Albrecht MH, Bickford MW, Nance JW Jr, Zhang L, De Cecco CN, Wichmann JL, Vogl TJ, Schoepf UJ. State-of-the-art pulmonary CT angiography for acute pulmonary embolism. AJR Am J Roentgenol. 2017;208:495–504.

    Article  PubMed  Google Scholar 

  27. Saade C, Bourne R, El-Merhi F, Somanathan A, Chakraborty D, Brennan P. An optimised patient specific approach to administration of contrast agent for CT pulmonary angiography. Eur Radiol. 2013;23:3205–12.

    Article  PubMed  Google Scholar 

  28. Hartmann IJ, Wittenberg R, Schaefer-Prokop C. Imaging of acute pulmonary embolism using multi-detector CT angiography: an update on imaging technique and interpretation. Eur J Radiol. 2010;74(1):40–9.

    Article  PubMed  Google Scholar 

  29. Schoellnast H, Deutschmann HA, Fritz GA, Stessel U, Schaffler GJ, Tillich M. MDCT angiography of the pulmonary arteries: influence of iodine flow concentration on vessel attenuation and visualization. AJR Am J Roentgenol. 2005;184(6):1935–9.

    Article  PubMed  Google Scholar 

  30. Schueller-Weidekamm C, Schaefer-Prokop CM, Weber M, Herold CJ, Prokop M. CT angiography of pulmonary arteries to detect pulmonary embolism: improvement of vascular enhancement with low kilovoltage settings. Radiology. 2006;241:899–907.

    Article  PubMed  Google Scholar 

  31. Cummings KW, Bhalla S. Multidetector computed tomographic pulmonary angiography: beyond acute pulmonary embolism. Radiol Clin North Am. 2010;48(1):51–65.

    Article  PubMed  Google Scholar 

  32. Yıldız AE, Arıyürek OM, Akpınar E, Peynircioğlu B, Çil BE. Multidetector CT of bronchial and non-bronchial systemic arteries. Diagn Interv Radiol. 2011;17(1):10–7.

    PubMed  Google Scholar 

  33. Johns CS, Swift AJ, Hughes PJC, Ohno Y, Schiebler M, Wild JM. Pulmonary MR angiography and perfusion imaging-a review of methods and applications. Eur J Radiol. 2017;86:361–70.

    Article  PubMed  Google Scholar 

  34. Aziz M, Krishnam M, Madhuranthakam AJ, Rajiah P. Update on MR imaging of the pulmonary vasculature. Int J Cardiovasc Imaging. 2019;35(8):1483–97. https://doi.org/10.1007/s10554-019-01603-y.

    Article  PubMed  Google Scholar 

  35. Wild JM, Marshall H, Bock M, Schad LR, Jakob PM, Puderbach M, et al. MRI of the lung (1/3): methods. Insights Imaging. 2012;3:345–53.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Hopkins SR, Wielpütz MO, Kauczor HU. Imaging lung perfusion. J Appl Physiol (1985). 2012;113:328–39.

    Article  Google Scholar 

  37. Miyazaki M, Lee VS. Nonenhanced MR angiography. Radiology. 2008;248:20–43.

    Article  PubMed  Google Scholar 

  38. Abdel Razek AAK, Al-Marsafawy H, Elmansy M, El-Latif MA, Sobh D. Computed tomography angiography and magnetic resonance angiography of congenital anomalies of pulmonary veins. J Comput Assist Tomogr. 2019;43(3):399–405. https://doi.org/10.1097/RCT.0000000000000857.

    Article  PubMed  Google Scholar 

  39. Mueller GC, Lu JC, Mahani MG, Dorfman AL, Agarwal PP. MR imaging of thoracic veins. Magn Reson Imaging Clin N Am. 2015;23:293–307.

    Article  PubMed  Google Scholar 

  40. Chin AS, Fleischmann D. State-of-the-art computed tomography angiography of acute aortic syndrome. Semin Ultrasound CT MR. 2012;33(3):222–34.

    Article  PubMed  Google Scholar 

  41. Morgan TA, Steenburg SD, Siegel EL, Mirvis SE. Acute traumatic aortic injuries: posttherapy multidetector CT findings. Radiographics. 2010;30(4):851–67.

    Article  PubMed  Google Scholar 

  42. Prescott-Focht JA, Martinez-Jimenez S, Hurwitz LM, et al. Ascending thoracic aorta: postoperative imaging evaluation. Radiographics. 2013;33:73–85.

    Article  PubMed  Google Scholar 

  43. Chu LC, Cameron DE, Johnson PT, Fishman EK. MDCT evaluation of postoperative aortic root pseudoaneurysms: imaging pearls and pitfalls. AJR Am J Roentgenol. 2012;199:W84–90.

    Article  PubMed  Google Scholar 

  44. McCollough CH, Primak AN, Braun N, et al. Strategies for reducing radiation dose in CT. Radiol Clin North Am. 2009;47:27–40.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Bischoff B, Hein F, Meyer T, et al. Comparison of sequential and helical scanning for radiation dose and image quality: results of the prospective multicenter study on radiation dose estimates of cardiac CT angiography (PROTECTION) I study. Am J Roentgenol. 2010;194:1495–9.

    Article  Google Scholar 

  46. Görich J, Rilinger N, Sokiranski R, et al. Leakages after endovascular repair of aortic aneurysms: classification based on findings at CT, angiography, and radiography. Radiology. 1999;213:767–72.

    Article  PubMed  Google Scholar 

  47. Golzarian J, Dussaussois L, Abada HT, et al. Helical CT of aorta after endoluminal stent-graft therapy: value of biphasic acquisition. AJR Am J Roentgenol. 1998;171:329–31.

    Article  CAS  PubMed  Google Scholar 

  48. Javor D, Wressnegger A, Unterhumer S, et al. Endoleak detection using single-acquisition split-bolus dual-energy computer tomography (DECT). Eur Radiol. 2017;4:1622–30.

    Article  Google Scholar 

  49. Kramer CM, Budoff MJ, Fayad ZA, Ferrari VA, Goldman C, Lesser JR, Martin ET, Rajagopalan S, Reilly JP, Rodgers GP, Wechsler L, American College of Cardiology Foundation; American Heart Association; American College of Physicians-Task Force on Clinical Competence and Training. ACCF/AHA 2007 Clinical Competence Statement on vascular imaging with computed tomography and magnetic resonance. Vasc Med. 2007;12:359–78.

    Article  PubMed  PubMed Central  Google Scholar 

  50. Macura KJ, Szarf G, Fishman EK, Bluemke DA. Role of computed tomography and magnetic resonance imaging in assessment of acute aortic syndromes. Semin Ultrasound CT MR. 2003;24:232–54.

    Article  PubMed  Google Scholar 

  51. Murphy DJ, Keraliya AR, Agrawal MD, Aghayev A, Steigner ML. Cross-sectional imaging of aortic infections. Insights Imaging. 2016;7(6):801–18.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Gutberlet M, Hosten N, Vogel M, et al. Quantification of morphologic and hemodynamic severity of coarctation of the aorta by magnetic resonance imaging. Cardiol Young. 2001;11:512–20.

    Article  CAS  PubMed  Google Scholar 

  53. Lichtenberger JP 3rd, Franco DF, Kim JS, Carter BW. MR imaging of thoracic aortic disease. Top Magn Reson Imaging. 2018;27(2):95–102.

    Article  PubMed  Google Scholar 

  54. Lee JC, Branch KR, Hamilton-Craig C, et al. Evaluation of aortic regurgitation with cardiac magnetic resonance imaging: a systematic review. Heart. 2018;104(2):103–10.

    Article  PubMed  Google Scholar 

  55. Ishimura RA, Otto CM, Bonow RO, et al. 2014 AHA/ACC guideline for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines. J Thorac Cardiovasc Surg. 2014;148:e1–e132.

    Article  Google Scholar 

  56. Groves EM, Bireley W, Dill K, et al. Quantitative analysis of ECG-gated high-resolution contrast-enhanced MR angiography of the thoracic aorta. AJR Am J Roentgenol. 2007;188:522–8.

    Article  PubMed  Google Scholar 

  57. Hartlage GR, Palios J, Barron BJ, et al. Multimodality imaging of aortitis. JACC Cardiovasc Imaging. 2014;7:605–19.

    Article  PubMed  Google Scholar 

  58. Wehrum T, Dragonu I, Strecker C, et al. Multi-contrast and three-dimensional assessment of the aortic wall using 3T MRI. Eur J Radiol. 2017;91:148–54.

    Article  PubMed  Google Scholar 

  59. Baliga RR, Nienaber CA, Bossone E, et al. The role of imaging in aortic dissection and related syndromes. JACC Cardiovasc Imaging. 2014;7:406–24.

    Article  PubMed  Google Scholar 

  60. Nikolaou K, Kramer H, Grosse C, et al. High-spatial-resolution multistation MR angiography with parallel imaging and blood pool contrast agent: initial experience. Radiology. 2006;241:861–72.

    Article  PubMed  Google Scholar 

  61. Rao B, Duran C, Steigner ML, Rybicki FJ. Inferior vena cava filter-associated abnormalities: MDCT findings. AJR Am J Roentgenol. 2012;198:W605–10.

    Article  PubMed  Google Scholar 

  62. Pandey T, Shaikh R, Viswamitra S, Jambhekar K. Use of time resolved magnetic resonance imaging in the diagnosis of pelvic congestion syndrome. J Magn Reson Imaging. 2010;32:700–4.

    Article  PubMed  Google Scholar 

  63. Chennur VS, Nzekwu EV, Bhayana D, Raber EL, Wong JK. MR venography using time-resolved imaging in interventional management of pelvic venous insufficiency. Abdom Radiol (NY). 2019;44:2301–7.

    Article  Google Scholar 

  64. Price M, Patino M, Sahani D. Computed tomography angiography of the hepatic, pancreatic, and splenic circulation. Radiol Clin North Am. 2016;54(1):55–70.

    Article  PubMed  Google Scholar 

  65. Kanasaki S, Furukawa A, Fumoto K, Hamanaka Y, Ota S, Hirose T, Inoue A, Shirakawa T, Hung Nguyen LD, Tulyeubai S. Acute mesenteric ischemia: multidetector CT findings and endovascular management. Radiographics. 2018;38(3):945–61.

    Article  PubMed  Google Scholar 

  66. Horton KM, Fishman EK. Multidetector CT angiography in the diagnosis of mesenteric ischemia. Radiol Clin North Am. 2007;45(2):275–88.

    Article  PubMed  Google Scholar 

  67. Raman SP, Fishman EK. Computed tomography angiography of the small bowel and mesentery. Radiol Clin North Am. 2016;54(1):87–100.

    Article  PubMed  Google Scholar 

  68. Wells ML, Hansel SL, Bruining DH, Fletcher JG, Froemming AT, Barlow JM, Fidler JL. CT for evaluation of acute gastrointestinal bleeding. Radiographics. 2018;38(4):1089–107.

    Article  PubMed  Google Scholar 

  69. Lum DP, Busse RF, Francois CJ, et al. Increased volume of coverage for abdominal contrast-enhanced MR angiography with two-dimensional autocalibrating parallel imaging: initial experience at 3.0 Tesla. J Magn Reson Imaging. 2009;30:1093–100.

    Article  PubMed  Google Scholar 

  70. Hagspiel KD, Flors L, Hanley M, Norton PT. Computed tomography angiography and magnetic resonance angiography imaging of the mesenteric vasculature. Tech Vasc Interv Radiol. 2015;18(1):2–13.

    Article  PubMed  Google Scholar 

  71. Heverhagen JT, Reitz I, Pavlicova M, et al. The impact of the dosage of intravenous gadolinium-chelates on the vascular signal intensity in MR angiography. Eur Radiol. 2007;17:626–37.

    Article  PubMed  Google Scholar 

  72. Kramer U, Fenchel M, Laub G, et al. Low-dose, time-resolved, contrast-enhanced 3D MR angiography in the assessment of the abdominal aorta and its major branches at 3 Tesla. Acad Radiol. 2010;17:564–76.

    Article  PubMed  Google Scholar 

  73. Edelman RR, Sheehan JJ, Dunkle E, et al. Quiescent interval single shot unenhanced magnetic resonance angiography of peripheral vascular disease: technical considerations and clinical feasibility. Magn Reson Med. 2010;63(4):951–8.

    Article  PubMed  PubMed Central  Google Scholar 

  74. Ayache JB, Collins JD. MR angiography of the abdomen and pelvis. Radiol Clin North Am. 2014;52:839–59.

    Article  PubMed  Google Scholar 

  75. Kurosaka K, Kawai T, Shimohira M, et al. Time resolved magnetic resonance angiography for assessment of recanalization after coil embolization of visceral artery aneurysms. Pol J Radiol. 2013;78:64–8.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Falesch LA, Foley WD. Computed tomography angiography of the renal circulation. Radiol Clin North Am. 2016;54(1):71–86.

    Article  PubMed  Google Scholar 

  77. Foley WD. Renal MDCT. Eur J Radiol. 2003;45(Suppl1):S73–8.

    Article  PubMed  Google Scholar 

  78. Kahraman D, Goretzki PE, Szangolies M, et al. Extraadrenal pheochromocytoma in the organ of Zuckerkandl: diagnosis and treatment strategies. Exp Clin Endocrinol Diabetes. 2011;119:436–9.

    Article  CAS  PubMed  Google Scholar 

  79. Engelken F, Friedersdorff F, Fuller TF, et al. Pre-operative assessment of living renal transplant donors with state-of-the-art imaging modalities: computed tomography angiography versus magnetic resonance angiography in 118 patients. World J Urol. 2013;31:983–90.

    Article  CAS  PubMed  Google Scholar 

  80. Sebastia C, Peri L, Salvador R. Multidetector CT of living renal donors: lessons learned from surgeons. Radiographics. 2010;30:1875–90.

    Article  PubMed  Google Scholar 

  81. Rountas C, Vlychou M, Vassiou K, Liakopoulos V, Kapsalaki E, Koukoulis G, Fezoulidis IV, Stefanidis I. Imaging modalities for renal artery stenosis in suspected renovascular hypertension: prospective intraindividual comparison of color Doppler US, CT angiography, GD-enhanced MR angiography, and digital subtraction angiography. Ren Fail. 2007;29:295–302.

    Article  CAS  PubMed  Google Scholar 

  82. Glockner JF, Takahashi N, Kawashima A, Woodrum DA, Stanley DW, Takei N, Miyoshi M, Sun W. Non-contrast renal artery MRA using an inflow inversion recovery steady state free precession technique (Inhance): comparison with 3D contrast-enhanced MRA. J Magn Reson Imaging. 2010;31(6):1411–8.

    Article  PubMed  Google Scholar 

  83. Albert TS, Akahane M, Parienty I, Yellin N, Catalá V, Alomar X, Prot A, Tomizawa N, Xue H, Katabathina VS, Lopera JE, Jin Z. An international multicenter comparison of time-SLIP unenhanced MR angiography and contrast-enhanced CT angiography for assessing renal artery stenosis: the renal artery contrast-free trial. AJR Am J Roentgenol. 2015;204(1):182–8.

    Article  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Idilman, I.S. (2021). CT and MR Angiography in the Chest and Abdomen. In: Erturk, S.M., Ros, P.R., Ichikawa, T., Saylisoy, S. (eds) Medical Imaging Contrast Agents: A Clinical Manual. Springer, Cham. https://doi.org/10.1007/978-3-030-79256-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79256-5_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79255-8

  • Online ISBN: 978-3-030-79256-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics