Skip to main content

CT and MR Enterography and Enteroclysis

  • Chapter
  • First Online:
Medical Imaging Contrast Agents: A Clinical Manual

Abstract

Computed tomography (CT) and magnetic resonance (MR) enterography and enteroclysis techniques (CTE, CTEc, MRE, and MREc, respectively) have been fundamentally developed for small bowel imaging. Enterography examinations are based on cross-sectional imaging after ingestion of oral contrast agents, whereas oral contrast agents are administered via nasojejunal intubation in enteroclysis examinations. These methods exhibit the advantages of both small bowel follow-through imaging and cross-sectional imaging techniques. The most important factor for an optimal enterography or enteroclysis examination is to obtain adequate luminal distension. Many oral contrast agents have been developed for this purpose. Oral contrast agents are classified according to their attenuation on CT or signal intensities on MRI. Which oral contrast agent should be preferred is decided according to the prediagnosis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Markova I, Kluchova K, Zboril R, Mashlan M, Herman M. Small bowel imaging-still a radiologic approach. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2010;154(2):123–32.

    Article  PubMed  Google Scholar 

  2. Maglinte DD, Sandrasegaran K, Chiorean M, Dewitt J, McHenry L, Lappas JC. Radiologic investigations complement and add diagnostic information to capsule endoscopy of small-bowel diseases. Am J Roentgenol. 2007;189(2):306–12.

    Article  Google Scholar 

  3. Brenner DJ, Hall EJ. Computed tomography—an increasing source of radiation exposure. N Engl J Med. 2007;357(22):2277–84.

    Article  CAS  PubMed  Google Scholar 

  4. Kinner S, Kuehle CA, Herbig S, Haag S, Ladd SC, Barkhausen J, et al. MRI of the small bowel: can sufficient bowel distension be achieved with small volumes of oral contrast? Eur Radiol. 2008;18(11):2542–8.

    Article  PubMed  Google Scholar 

  5. Taylor S, Avni F, Cronin C, Hoeffel C, Kim S, Laghi A, et al. The first joint ESGAR/ESPR consensus statement on the technical performance of cross-sectional small bowel and colonic imaging. Eur Radiol. 2017;27(6):2570–82.

    Article  CAS  PubMed  Google Scholar 

  6. Yoon W, Jeong YY, Shin SS, Lim HS, Song SG, Jang NG, et al. Acute massive gastrointestinal bleeding: detection and localization with arterial phase multi–detector row helical CT. Radiology. 2006;239(1):160–7.

    Article  PubMed  Google Scholar 

  7. Horsthuis K, Bipat S, Bennink RJ, Stoker J. Inflammatory bowel disease diagnosed with US, MR, scintigraphy, and CT: meta-analysis of prospective studies. Radiology. 2008;247(1):64–79.

    Article  PubMed  Google Scholar 

  8. Siddiki HA, Fidler JL, Fletcher JG, Burton SS, Huprich JE, Hough DM, et al. Prospective comparison of state-of-the-art MR enterography and CT enterography in small-bowel Crohn’s disease. Am J Roentgenol. 2009;193(1):113–21.

    Article  Google Scholar 

  9. Ilangovan R, Burling D, George A, Gupta A, Marshall M, Taylor S. CT enterography: review of technique and practical tips. Br J Radiol. 2012;85(1015):876–86.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Paparo F, Garlaschi A, Biscaldi E, Bacigalupo L, Cevasco L, Rollandi GA. Computed tomography of the bowel: a prospective comparison study between four techniques. Eur J Radiol. 2013;82(1):e1–e10.

    Article  PubMed  Google Scholar 

  11. Paulsen SR, Huprich JE, Fletcher JG, Booya F, Young BM, Fidler JL, et al. CT enterography as a diagnostic tool in evaluating small bowel disorders: review of clinical experience with over 700 cases. Radiographics. 2006;26(3):641–57.

    Article  PubMed  Google Scholar 

  12. Kayhan A, Oommen J, Dahi F, Oto A. Magnetic resonance enterography in Crohn’s disease: standard and advanced techniques. World J Radiol. 2010;2(4):113.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Borthne AS, Abdelnoor M, Storaas T, Pierre-Jerome C, Kløw N-E. Osmolarity: a decisive parameter of bowel agents in intestinal magnetic resonance imaging. Eur Radiol. 2006;16(6):1331.

    Article  PubMed  Google Scholar 

  14. Kuehle CA, Ajaj W, Ladd SC, Massing S, Barkhausen J, Lauenstein TC. Hydro-MRI of the small bowel: effect of contrast volume, timing of contrast administration, and data acquisition on bowel distention. Am J Roentgenol. 2006;187(4):W375–W85.

    Article  Google Scholar 

  15. Ajaj W, Goehde SC, Schneemann H, Ruehm SG, Debatin JF, Lauenstein TC. Dose optimization of mannitol solution for small bowel distension in MRI. J Magn Reson Imaging. 2004;20(4):648–53.

    Article  PubMed  Google Scholar 

  16. Vogel J, da Luz Moreira A, Baker M, Hammel J, Einstein D, Stocchi L, et al. CT enterography for Crohn’s disease: accurate preoperative diagnostic imaging. Dis Colon Rectum. 2007;50(11):1761–9.

    Article  PubMed  Google Scholar 

  17. Raptopoulos V, Schwartz R, McNicholas M, Movson J, Pearlman J, Joffe N. Multiplanar helical CT enterography in patients with Crohn’s disease. AJR Am J Roentgenol. 1997;169(6):1545–50.

    Article  CAS  PubMed  Google Scholar 

  18. Fletcher JG. CT enterography technique: theme and variations. Abdom Imaging. 2009;34(3):283–8.

    Article  CAS  PubMed  Google Scholar 

  19. Huprich JE, Fletcher JG, Alexander JA, Fidler JL, Burton SS, McCullough CH. Obscure gastrointestinal bleeding: evaluation with 64-section multiphase CT enterography—initial experience. Radiology. 2008;246(2):562–71.

    Article  PubMed  Google Scholar 

  20. Scheffel H, Pfammatter T, Wildi S, Bauerfeind P, Marincek B, Alkadhi H. Acute gastrointestinal bleeding: detection of source and etiology with multi-detector-row CT. Eur Radiol. 2007;17(6):1555–65.

    Article  PubMed  Google Scholar 

  21. Siddiki H, Fletcher J, Bruining D. Performance of lower-dose CT enterography for detection of inflammatory Crohn’s disease. RSNA abstact, Chicago, IL. 2007. p. 254.

    Google Scholar 

  22. Sodickson A, Baeyens PF, Andriole KP, Prevedello LM, Nawfel RD, Hanson R, et al. Recurrent CT, cumulative radiation exposure, and associated radiation-induced cancer risks from CT of adults. Radiology. 2009;251(1):175–84.

    Article  PubMed  Google Scholar 

  23. Fulwadhva UP, Wortman JR, Sodickson AD. Use of dual-energy CT and iodine maps in evaluation of bowel disease. Radiographics. 2016;36(2):393–406.

    Article  PubMed  Google Scholar 

  24. Kim YS, Kim SH, Ryu HS, Han JK. Iodine quantification on spectral detector-based dual-energy CT enterography: correlation with Crohn’s disease activity index and external validation. Korean J Radiol. 2018;19(6):1077–88.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Marin D, Boll DT, Mileto A, Nelson RC. State of the art: dual-energy CT of the abdomen. Radiology. 2014;271(2):327–42.

    Article  Google Scholar 

  26. Boudiaf M, Jaff A, Soyer P, Bouhnik Y, Hamzi L, Rymer R. Small-bowel diseases: prospective evaluation of multi–detector row helical CT enteroclysis in 107 consecutive patients. Radiology. 2004;233(2):338–44.

    Article  PubMed  Google Scholar 

  27. Mazzeo S, Caramella D, Belcari A, Melai L, Cappelli C, Fontana F, et al. Multidetector CT of the small bowel: evaluation after oral hyperhydration with isotonic solution. Radiol Med. 2005;109(5–6):516–26.

    CAS  PubMed  Google Scholar 

  28. Minordi LM, Vecchioli A, Mirk P, Bonomo L. CT enterography with polyethylene glycol solution vs CT enteroclysis in small bowel disease. Br J Radiol. 2011;84(998):112–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Wold PB, Fletcher JG, Johnson CD, Sandborn WJ. Assessment of small bowel Crohn disease: noninvasive peroral CT enterography compared with other imaging methods and endoscopy—feasibility study. Radiology. 2003;229(1):275–81.

    Article  PubMed  Google Scholar 

  30. Hong SS, Kim AY, Kwon SB, Kim PN, Lee M-G, Ha HK. Three-dimensional CT enterography using oral gastrografin in patients with small bowel obstruction: comparison with axial CT images or fluoroscopic findings. Abdom Imaging. 2010;35(5):556–62.

    Article  PubMed  Google Scholar 

  31. Schindera ST, Nelson RC, DeLong DM, Jaffe TA, Merkle EM, Paulson EK, et al. Multi–detector row CT of the small bowel: peak enhancement temporal window—initial experience. Radiology. 2007;243(2):438–44.

    Article  PubMed  Google Scholar 

  32. Vandenbroucke F, Mortele K, Tatli S, Pelsser V, Erturk S, De Mey J, et al. Noninvasive multidetector computed tomography enterography in patients with small-bowel Crohn’s disease: is a 40-second delay better than 70 seconds? Acta Radiol. 2007;48(10):1052–60.

    Article  CAS  PubMed  Google Scholar 

  33. Ajaj W, Lauenstein TC, Langhorst J, Kuehle C, Goyen M, Zoepf T, et al. Small bowel hydro-MR imaging for optimized ileocecal distension in Crohn’s disease: should an additional rectal enema filling be performed? J Magn Reson Imaging. 2005;22(1):92–100.

    Article  PubMed  Google Scholar 

  34. Friedrich C, Fajfar A, Pawlik M, Hoffstetter P, Rennert J, Agha A, et al. Magnetic resonance enterography with and without biphasic contrast agent enema compared to conventional ileocolonoscopy in patients with Crohn’s disease. Inflamm Bowel Dis. 2012;18(10):1842–8.

    Article  PubMed  Google Scholar 

  35. Balthazar EJ, Megibow A, Hulnick D, Naidich D. Carcinoma of the colon: detection and preoperative staging by CT. Am J Roentgenol. 1988;150(2):301–6.

    Article  CAS  Google Scholar 

  36. Megibow A, Bosniak M, Ho A, Beller U, Hulnick D, Beckman E. Accuracy of CT in detection of persistent or recurrent ovarian carcinoma: correlation with second-look laparotomy. Radiology. 1988;166(2):341–5.

    Article  CAS  PubMed  Google Scholar 

  37. Megibow AJ, Zerhouni EA, Hulnick DH, Beranbaum ER, Balthazar EJ. Air insufflation of the colon as an adjunct to computed tomography of the pelvis. J Comput Assist Tomogr. 1984;8(4):797–800.

    Article  CAS  PubMed  Google Scholar 

  38. Thompson SE, Raptopoulos V, Sheiman RL, McNicholas MM, Prassopoulos P. Abdominal helical CT: milk as a low-attenuation oral contrast agent. Radiology. 1999;211(3):870–5.

    Article  CAS  PubMed  Google Scholar 

  39. D’Ippolito G, Braga FA, Resende MC, Bretas EAS, Nunes TF, de Queiroz Rosas G, et al. Computed tomography enterography: a comparison of different neutral oral contrast agents. Radiol Bras. 2012;45(3):139–43.

    Article  Google Scholar 

  40. Hebert J, Taylor A, Winter T, Reichelderfer M, Weichert J. Low-attenuation oral GI contrast agents in abdominal-pelvic computed tomography. Abdom Imaging. 2006;31(1):48–53.

    Article  CAS  PubMed  Google Scholar 

  41. Koo CW, Shah-Patel LR, Baer JW, Frager DH. Cost-effectiveness and patient tolerance of low-attenuation oral contrast material: milk versus VoLumen. Am J Roentgenol. 2008;190(5):1307–13.

    Article  Google Scholar 

  42. Megibow AJ, Babb JS, Hecht EM, Cho JJ, Houston C, Boruch MM, et al. Evaluation of bowel distention and bowel wall appearance by using neutral oral contrast agent for multi–detector row CT. Radiology. 2006;238(1):87–95.

    Article  PubMed  Google Scholar 

  43. Young BM, Fletcher JG, Booya F, Paulsen S, Fidler J, Johnson CD, et al. Head-to-head comparison of oral contrast agents for cross-sectional enterography: small bowel distention, timing, and side effects. J Comput Assist Tomogr. 2008;32(1):32–8.

    Article  PubMed  Google Scholar 

  44. Rieber A, Aschoff A, Nüssle K, Wruk D, Tomczak R, Reinshagen M, et al. MRI in the diagnosis of small bowel disease: use of positive and negative oral contrast media in combination with enteroclysis. Eur Radiol. 2000;10(9):1377–82.

    Article  CAS  PubMed  Google Scholar 

  45. Winter TC, Ager JD, Nghiem HV, Hill RS, Harrison SD, Freeny PC. Upper gastrointestinal tract and abdomen: water as an orally administered contrast agent for helical CT. Radiology. 1996;201(2):365–70.

    Article  CAS  PubMed  Google Scholar 

  46. Jacobs JE, Birnbaum BA, Macari M, Megibow AJ, Israel G, Maki DD, et al. Acute appendicitis: comparison of helical CT diagnosis—focused technique with oral contrast material versus nonfocused technique with oral and intravenous contrast material. Radiology. 2001;220(3):683–90.

    Article  CAS  PubMed  Google Scholar 

  47. Lim BK, Bux SI, Rahmat K, Lam SY, Liew YW. Evaluation of bowel distension and mural visualisation using neutral oral contrast agents for multidetector-row computed tomography. Singap Med J. 2012;53(11):732.

    Google Scholar 

  48. Leduc F, De A, Rebello R, Muhn N, Ioannidis G. A comparative study of four oral contrast agents for small bowel distension with computed tomography enterography. Can Assoc Radiol J. 2015;66(2):140–4.

    Article  PubMed  Google Scholar 

  49. Wong J, Roger M, Moore H. Performance of two neutral oral contrast agents in CT enterography. J Med Imaging Radiat Oncol. 2015;59(1):34–8.

    Article  PubMed  Google Scholar 

  50. Wong J, Moore H, Roger M, McKee C. CT enterography: mannitol versus VoLumen. J Med Imaging Radiat Oncol. 2016;60(5):593–8.

    Article  PubMed  Google Scholar 

  51. Lauenstein TC, Schneemann H, Vogt FM, Herborn CU, Ruhm SG, Debatin JF. Optimization of oral contrast agents for MR imaging of the small bowel. Radiology. 2003;228(1):279–83.

    Article  PubMed  Google Scholar 

  52. Maniatis V, Chryssikopoulos H, Roussakis A, Kalamara C, Kavadias S, Papadopoulos A, et al. Perforation of the alimentary tract: evaluation with computed tomography. Abdom Imaging. 2000;25(4):373–9.

    Article  CAS  PubMed  Google Scholar 

  53. Brochwicz-Lewinski M, Paterson-Brown S, Murchison J. Small bowel obstruction—the water-soluble follow-through revisited. Clin Radiol. 2003;58(5):393–7.

    Article  CAS  PubMed  Google Scholar 

  54. Borthne A, Dormagen J, Gjesdal K, Storaas T, Lygren I, Geitung J. Bowel MR imaging with oral Gastrografin: an experimental study with healthy volunteers. Eur Radiol. 2003;13(1):100–6.

    Article  CAS  PubMed  Google Scholar 

  55. Callahan MJ, Talmadge JM, MacDougall R, Buonomo C, Taylor GA. The use of enteric contrast media for diagnostic CT, MRI, and ultrasound in infants and children: a practical approach. Am J Roentgenol. 2016;206(5):973–9.

    Article  Google Scholar 

  56. Algin O, Evrimler S, Ozmen E, Metin MR, Ocakoglu G, Ersoy O, et al. A novel biphasic oral contrast solution for enterographic studies. J Comput Assist Tomogr. 2013;37(1):65–74.

    Article  PubMed  Google Scholar 

  57. Grand DJ, Guglielmo FF, Al-Hawary MM. MR enterography in Crohn’s disease: current consensus on optimal imaging technique and future advances from the SAR Crohn’s disease-focused panel. Abdom Imaging. 2015;40(5):953–64.

    Article  PubMed  Google Scholar 

  58. Cappabianca S, Granata V, Di Grezia G, Mandato Y, Reginelli A, Di Mizio V, et al. The role of nasoenteric intubation in the MR study of patients with Crohn’s disease: our experience and literature review. Radiol Med. 2011;116(3):389–406.

    Article  CAS  PubMed  Google Scholar 

  59. Masselli G, Casciani E, Polettini E, Gualdi G. Comparison of MR enteroclysis with MR enterography and conventional enteroclysis in patients with Crohn’s disease. Eur Radiol. 2008;18(3):438–47.

    Article  PubMed  Google Scholar 

  60. Dave-Verma H, Moore S, Singh A, Martins N, Zawacki J. Computed tomographic enterography and enteroclysis: pearls and pitfalls. Curr Probl Diagn Radiol. 2008;37(6):279–87.

    Article  PubMed  Google Scholar 

  61. Greer M-LC. How we do it: MR enterography. Pediatr Radiol. 2016;46(6):818–28.

    Article  PubMed  Google Scholar 

  62. Santillan CS. MR imaging techniques of the bowel. Magn Reson Imaging Clin. 2014;22(1):1–11.

    Article  Google Scholar 

  63. Gupta MK, Khatri G, Bailey A, Pinho DF, Costa D, Pedrosa I. Endoluminal contrast for abdomen and pelvis magnetic resonance imaging. Abdom Radiol. 2016;41(7):1378–98.

    Article  Google Scholar 

  64. Tolan DJ, Greenhalgh R, Zealley IA, Halligan S, Taylor SA. MR enterographic manifestations of small bowel Crohn disease. Radiographics. 2010;30(2):367–84.

    Article  PubMed  Google Scholar 

  65. Elsayed NM, Alsalem SA, Almugbel SAA, Alsuhaimi MM. Effectiveness of natural oral contrast agents in magnetic resonance imaging of the bowel. Egypt J Radiol Nucl Med. 2015;46(2):287–92.

    Article  Google Scholar 

  66. Fidler JL, Guimaraes L, Einstein DM. MR imaging of the small bowel. Radiographics. 2009;29(6):1811–25.

    Article  PubMed  Google Scholar 

  67. Leyendecker JR, Bloomfeld RS, DiSantis DJ, Waters GS, Mott R, Bechtold RE. MR enterography in the management of patients with Crohn disease. Radiographics. 2009;29(6):1827–46.

    Article  PubMed  Google Scholar 

  68. Saini S, Colak E, Anthwal S, Vlachou P, Raikhlin A, Kirpalani A. Comparison of 3% sorbitol vs psyllium fibre as oral contrast agents in MR enterography. Br J Radiol. 2014;87(1042):20140100.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Marlett JA, Fischer MH. The active fraction of psyllium seed husk. Proc Nutr Soc. 2003;62(1):207–9.

    Article  CAS  PubMed  Google Scholar 

  70. Wang Y-M, van Eys J. Nutritional significance of fructose and sugar alcohols. Annu Rev Nutr. 1981;1(1):437–75.

    Article  CAS  PubMed  Google Scholar 

  71. La Brooy S, Fendick C, Avgerinos A, Williams C, Misiewicz J. Potentially explosive colonic concentrations of hydrogen after bowel preparation with mannitol. Lancet. 1981;317(8221):634–6.

    Article  Google Scholar 

  72. Koplay M, Guneyli S, Cebeci H, Korkmaz H, Emiroglu H, Sekmenli T, et al. Magnetic resonance enterography with oral mannitol solution: diagnostic efficacy and image quality in Crohn disease. Diagn Interv Imaging. 2017;98(12):893–9.

    Article  CAS  PubMed  Google Scholar 

  73. Deeab DA, Dick E, Sergot AA, Sundblon L, Gedroyc W. Magnetic resonance imaging of the small bowel. Radiography. 2011;17(1):67–71.

    Article  Google Scholar 

  74. Gottumukkala RV, LaPointe A, Sargent D, Gee MS. Comparison of three oral contrast preparations for magnetic resonance enterography in pediatric patients with known or suspected Crohn disease: a prospective randomized trial. Pediatr Radiol. 2019;49(7):889–96.

    Article  PubMed  Google Scholar 

  75. Evrimler S, Algin O. MR enterography with oral contrast agent composed of methylcellulose, low-dose barium sulfate, sorbitol, and lactulose: assessment of diagnostic performance, reliability, image quality, and patient tolerance. Clin Imaging. 2016;40(3):523–30.

    Article  PubMed  Google Scholar 

  76. Bharucha AE, Fidler JL, Huprich JE, Ratuapli SK, Holmes DR, Riederer SJ, et al. A prospective randomized controlled study of erythromycin on gastric and small intestinal distention: implications for MR enterography. Eur J Radiol. 2014;83(11):2001–6.

    Article  PubMed  PubMed Central  Google Scholar 

  77. Bruining DH, Zimmermann EM, Loftus EV Jr, Sandborn WJ, Sauer CG, Strong SA, et al. Consensus recommendations for evaluation, interpretation, and utilization of computed tomography and magnetic resonance enterography in patients with small bowel Crohn’s disease. Gastroenterology. 2018;154(4):1172–94.

    Article  PubMed  Google Scholar 

  78. Maglinte DD, Gourtsoyiannis N, Rex D, Howard TJ, Kelvin FM. Classification of small bowel Crohn’s subtypes based on multimodality imaging. Radiol Clin. 2003;41(2):285–303.

    Article  Google Scholar 

  79. Koh D, Miao Y, Chinn R, Amin Z, Zeegen R, Westaby D, et al. MR imaging evaluation of the activity of Crohn’s disease. Am J Roentgenol. 2001;177(6):1325–32.

    Article  CAS  Google Scholar 

  80. Adler J, Swanson SD, Schmiedlin-Ren P, Higgins PD, Golembeski CP, Polydorides AD, et al. Magnetization transfer helps detect intestinal fibrosis in an animal model of Crohn disease. Radiology. 2011;259(1):127–35.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Algin O, Evrimler S, Arslan H. Advances in radiologic evaluation of small bowel diseases. J Comput Assist Tomogr. 2013;37(6):862–71.

    Article  PubMed  Google Scholar 

  82. Kapoor V. Abdominal tuberculosis. Postgrad Med J. 1998;74(874):459–67.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Algin O, Turkbey B, Ozmen E, Algin E. Magnetic resonance enterography findings of chronic radiation enteritis. Cancer Imaging. 2011;11(1):189.

    PubMed  PubMed Central  Google Scholar 

  84. Buckley JA, Fishman EK. CT evaluation of small bowel neoplasms: spectrum of disease. Radiographics. 1998;18(2):379–92.

    Article  CAS  PubMed  Google Scholar 

  85. Masselli G, Picarelli A, Di Tola M, Libanori V, Donato G, Polettini E, et al. Celiac disease: evaluation with dynamic contrast-enhanced MR imaging. Radiology. 2010;256(3):783–90.

    Article  PubMed  Google Scholar 

  86. Rubio-Tapia A, Kyle RA, Kaplan EL, Johnson DR, Page W, Erdtmann F, et al. Increased prevalence and mortality in undiagnosed celiac disease. Gastroenterology. 2009;137(1):88–93.

    Article  PubMed  Google Scholar 

  87. Scholz FJ, Afnan J, Behr SC. CT findings in adult celiac disease. Radiographics. 2011;31(4):977–92.

    Article  PubMed  Google Scholar 

  88. Tomei E, Diacinti D, Stagnitti A, Marini M, Laghi A, Passariello R, et al. MR enterography: relationship between intestinal fold pattern and the clinical presentation of adult celiac disease. J Magn Reson Imaging. 2012;36(1):183–7.

    Article  PubMed  Google Scholar 

  89. Amzallag-Bellenger E, Oudjit A, Ruiz A, Cadiot G, Soyer PA, Hoeffel CC. Effectiveness of MR enterography for the assessment of small-bowel diseases beyond Crohn disease. Radiographics. 2012;32(5):1423–44.

    Article  PubMed  Google Scholar 

  90. Levy AD, Hobbs CM. From the archives of the AFIP: Meckel diverticulum: radiologic features with pathologic correlation. Radiographics. 2004;24(2):565–87.

    Article  PubMed  Google Scholar 

  91. Schreyer A, Stroszczynski C. Radiological imaging of the small bowel. Dig Dis. 2011;29(Suppl 1):22–6.

    Article  PubMed  Google Scholar 

  92. Sozen S, Tuna Ö. A rare case of perforated Meckel’s diverticulum presenting as a gastrointestinal stromal tumor. Arch Iran Med. 2012;15(5):325.

    PubMed  Google Scholar 

  93. Furukawa A, Kanasaki S, Kono N, Wakamiya M, Tanaka T, Takahashi M, et al. CT diagnosis of acute mesenteric ischemia from various causes. Am J Roentgenol. 2009;192(2):408–16.

    Article  Google Scholar 

  94. Rha SE, Ha HK, Lee S-H, Kim J-H, Kim J-K, Kim JH, et al. CT and MR imaging findings of bowel ischemia from various primary causes. Radiographics. 2000;20(1):29–42.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sehnaz Evrimler .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Evrimler, S., Algin, O. (2021). CT and MR Enterography and Enteroclysis. In: Erturk, S.M., Ros, P.R., Ichikawa, T., Saylisoy, S. (eds) Medical Imaging Contrast Agents: A Clinical Manual. Springer, Cham. https://doi.org/10.1007/978-3-030-79256-5_14

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-79256-5_14

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-79255-8

  • Online ISBN: 978-3-030-79256-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics