Skip to main content

Advertisement

Log in

Endoluminal contrast for abdomen and pelvis magnetic resonance imaging

  • Pictorial Essay
  • Published:
Abdominal Radiology Aims and scope Submit manuscript

Abstract

Magnetic resonance (MR) imaging of the abdomen and pelvis can be limited for assessment of different conditions when imaging inadequately distended hollow organs. Endoluminal contrast agents may provide improved anatomic definition and detection of subtle pathology in such scenarios. The available routes of administration for endoluminal contrast agents include oral, endorectal, endovaginal, intravesicular, and through non-physiologic accesses. Appropriate use of endoluminal contrast agents requires a thorough understanding of the clinical indications, available contrast agents, patient preparation, and interaction of the contrast agent with the desired MR imaging protocol. For example, biphasic oral enteric contrast agents are preferred in MR enterography as their signal properties on T1- and T2-weighted imaging allow for evaluation of both intraluminal and bowel wall pathology. In specific situations such as with MR enterography, MR defecography, and accurate local staging of certain pelvic tumors, the use of an endoluminal contrast agent is imperative in providing adequate diagnostic imaging. In other clinical scenarios, the use of an endoluminal contrast agent may serve as an indispensable problem-solving tool.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Brant WE, Lambert DL (2012) Gastrointestinal tract, peritoneal cavity, and spleen MR imaging. In: Brant WE, de Lange EE (eds) Essentials of body MRI. New York: Oxford University Press

    Chapter  Google Scholar 

  2. Merkle EM, Dale BM, Paulson EK (2006) Abdominal MR imaging at 3T. Magn Reson Imaging Clin N Am 14(1):17–26

    Article  PubMed  Google Scholar 

  3. Smith EA (2013) Advanced techniques in pediatric abdominopelvic oncologic magnetic resonance imaging. Magn Reson Imaging Clin N Am 21(4):829–841

    Article  PubMed  Google Scholar 

  4. Mitsumori LM, Bhargava P, Essig M, Maki JH (2014) Magnetic resonance imaging using gadolinium-based contrast agents. Top Magn Reson Imaging : TMRI. 23(1):51–69

    Article  PubMed  Google Scholar 

  5. Pannu HK, Scatarige JC, Eng J (2009) Comparison of supine magnetic resonance imaging with and without rectal contrast to fluoroscopic cystocolpoproctography for the diagnosis of pelvic organ prolapse. J Comput Assist Tomogr 33(1):125–130

    Article  PubMed  Google Scholar 

  6. Laghi A, Paolantonio P, Iafrate F, et al. (2002) Oral contrast agents for magnetic resonance imaging of the bowel. Top Magn Reson Imaging : TMRI 13(6):389–396

    Article  PubMed  Google Scholar 

  7. Kim SH, Lee JM, Lee MW, et al. (2008) Sonography transmission gel as endorectal contrast agent for tumor visualization in rectal cancer. AJR Am J Roentgenol 191(1):186–189

    Article  PubMed  Google Scholar 

  8. Kane NM, Francis IR, Ellis JH (1989) The value of CT in the detection of bladder and posterior urethral injuries. AJR Am J Roentgenol 153(6):1243–1246

    Article  CAS  PubMed  Google Scholar 

  9. Bodily KD, Fletcher JG, Solem CA, et al. (2006) Crohn disease: mural attenuation and thickness at contrast-enhanced CT enterography–correlation with endoscopic and histologic findings of inflammation. Radiology 238(2):505–516

    Article  PubMed  Google Scholar 

  10. Wold PB, Fletcher JG, Johnson CD, Sandborn WJ (2003) Assessment of small bowel Crohn disease: noninvasive peroral CT enterography compared with other imaging methods and endoscopy–feasibility study. Radiology 229(1):275–281

    Article  PubMed  Google Scholar 

  11. Media ACoDaC. ACR Manual on Contrast Media. Reston, VA: American College of Radiology; 2015 [cited 2015]; 10.1:[Available from: http://www.acr.org/~/media/ACR/Documents/PDF/QualitySafety/Resources/Contrast%20Manual/2015_Contrast_Media.pdf.

  12. Amzallag-Bellenger E, Oudjit A, Ruiz A, et al. (2012) Effectiveness of MR enterography for the assessment of small-bowel diseases beyond Crohn disease. Radiographics 32(5):1423–1444

    Article  PubMed  Google Scholar 

  13. Masselli G, Gualdi G (2012) MR imaging of the small bowel. Radiology 264(2):333–348

    Article  PubMed  Google Scholar 

  14. Furukawa A, Saotome T, Yamasaki M, et al. (2004) Cross-sectional imaging in Crohn disease. Radiographics 24(3):689–702

    Article  PubMed  Google Scholar 

  15. Fidler J (2007) MR imaging of the small bowel. Radiol Clin N Am 45(2):317–331

    Article  PubMed  Google Scholar 

  16. Maglinte DD, Siegelman ES, Kelvin FM (2000) MR enteroclysis: the future of small-bowel imaging? Radiology 215(3):639–641

    Article  CAS  PubMed  Google Scholar 

  17. Gourtsoyiannis NC, Papanikolaou N (2005) Magnetic resonance enteroclysis. Semin Ultrasound CT MR 26(4):237–246

    Article  PubMed  Google Scholar 

  18. Masselli G, Casciani E, Polettini E, Gualdi G (2008) Comparison of MR enteroclysis with MR enterography and conventional enteroclysis in patients with Crohn’s disease. Eur Radiol 18(3):438–447

    Article  PubMed  Google Scholar 

  19. Sinha R, Verma R, Verma S, Rajesh A (2011) MR enterography of Crohn disease: part 2, imaging and pathologic findings. AJR Am J Roentgenol 197(1):80–85

    Article  PubMed  Google Scholar 

  20. Sinha R, Verma R, Verma S, Rajesh A (2011) MR enterography of Crohn disease: part 1, rationale, technique, and pitfalls. AJR Am J Roentgenol 197(1):76–79

    Article  PubMed  Google Scholar 

  21. Rieber A, Aschoff A, Nussle K, et al. (2000) MRI in the diagnosis of small bowel disease: use of positive and negative oral contrast media in combination with enteroclysis. Eur Radiol 10(9):1377–1382

    Article  CAS  PubMed  Google Scholar 

  22. Romero M, Buxbaum JL, Palmer SL (2014) Magnetic resonance imaging of the gut: a primer for the luminal gastroenterologist. Am J Gastroenterol 109(4):497–509; quiz 10.

  23. Kivelitz D, Gehl HB, Heuck A, et al. Ferric ammonium citrate as a positive bowel contrast agent for MR imaging of the upper abdomen. Safety and diagnostic efficacy. Acta radiologica (Stockholm, Sweden: 1987). 1999;40(4):429–435.

  24. Small WC, DeSimone-Macchi D, Parker JR, et al. (1999) A multisite phase III study of the safety and efficacy of a new manganese chloride-based gastrointestinal contrast agent for MRI of the abdomen and pelvis. J Magn Reson Imaging: JMRI 10(1):15–24

    Article  CAS  PubMed  Google Scholar 

  25. Maccioni F, Bruni A, Viscido A, et al. (2006) MR imaging in patients with Crohn disease: value of T2- versus T1-weighted gadolinium-enhanced MR sequences with use of an oral superparamagnetic contrast agent. Radiology 238(2):517–530

    Article  PubMed  Google Scholar 

  26. Karantanas AH, Papanikolaou N, Kalef-Ezra J, Challa A, Gourtsoyiannis N (2000) Blueberry juice used per os in upper abdominal MR imaging: composition and initial clinical data. Eur Radiol 10(6):909–913

    Article  CAS  PubMed  Google Scholar 

  27. Arrive L, Coudray C, Azizi L, et al. (2007) Pineapple juice as a negative oral contrast agent in magnetic resonance cholangiopancreatography. Journal de radiologie 88(11 Pt 1):1689–1694

    Article  CAS  PubMed  Google Scholar 

  28. Schreyer AG, Golder S, Scheibl K, et al. (2005) Dark lumen magnetic resonance enteroclysis in combination with MRI colonography for whole bowel assessment in patients with Crohn’s disease: first clinical experience. Inflamm Bowel Dis 11(4):388–394

    Article  PubMed  Google Scholar 

  29. Bakir B, Acunas B, Bugra D, et al. (2009) MR colonography after oral administration of polyethylene glycol-electrolyte solution. Radiology 251(3):901–909

    Article  PubMed  Google Scholar 

  30. Lauenstein TC, Schneemann H, Vogt FM, et al. (2003) Optimization of oral contrast agents for MR imaging of the small bowel. Radiology 228(1):279–283

    Article  PubMed  Google Scholar 

  31. Sood RR, Joubert I, Franklin H, Doyle T, Lomas DJ (2002) Small bowel MRI: comparison of a polyethylene glycol preparation and water as oral contrast media. J Magn Reson Imaging 15(4):401–408

    Article  PubMed  Google Scholar 

  32. Young BM, Fletcher JG, Booya F, et al. (2008) Head-to-head comparison of oral contrast agents for cross-sectional enterography: small bowel distention, timing, and side effects. J Comput Assisted Tomogr 32(1):32–38

    Article  Google Scholar 

  33. Van Weyenberg SJ, Meijerink MR, Jacobs MA, et al. (2010) MR enteroclysis in the diagnosis of small-bowel neoplasms. Radiology 254(3):765–773

    Article  PubMed  Google Scholar 

  34. Masselli G, Polettini E, Casciani E, et al. (2009) Small-bowel neoplasms: prospective evaluation of MR enteroclysis. Radiology 251(3):743–750

    Article  PubMed  Google Scholar 

  35. Semelka RC, John G, Kelekis NL, Burdeny DA, Ascher SM (1996) Small bowel neoplastic disease: demonstration by MRI. J Magn Reson Imaging 6(6):855–860

    Article  CAS  PubMed  Google Scholar 

  36. Beggs AD, Latchford AR, Vasen HF, et al. (2010) Peutz-Jeghers syndrome: a systematic review and recommendations for management. Gut 59(7):975–986

    Article  CAS  PubMed  Google Scholar 

  37. Gupta A, Postgate AJ, Burling D, et al. (2010) A prospective study of MR enterography versus capsule endoscopy for the surveillance of adult patients with Peutz-Jeghers syndrome. AJR Am J Roentgenol 195(1):108–116

    Article  PubMed  Google Scholar 

  38. Masselli G, Polettini E, Laghi F, Monti R, Gualdi G (2014) Noninflammatory conditions of the small bowel. Magn Reson Imaging Clin N Am 22(1):51–65

    Article  PubMed  Google Scholar 

  39. Horton KM, Kamel I, Hofmann L, Fishman EK (2004) Carcinoid tumors of the small bowel: a multitechnique imaging approach. AJR Am J Roentgenol 182(3):559–567

    Article  PubMed  Google Scholar 

  40. Pantongrag-Brown L, Buetow PC, Carr NJ, Lichtenstein JE, Buck JL (1995) Calcification and fibrosis in mesenteric carcinoid tumor: CT findings and pathologic correlation. AJR Am J Roentgenol 164(2):387–391

    Article  CAS  PubMed  Google Scholar 

  41. Lohan DG, Alhajeri AN, Cronin CG, Roche CJ, Murphy JM (2008) MR enterography of small-bowel lymphoma: potential for suggestion of histologic subtype and the presence of underlying celiac disease. AJR Am J Roentgenol 190(2):287–293

    Article  PubMed  Google Scholar 

  42. Masselli G (2007) The gastrointestinal string sign. Radiology 242(2):632–633

    Article  PubMed  Google Scholar 

  43. Froehlich JM, Waldherr C, Stoupis C, Erturk SM, Patak MA (2010) MR motility imaging in Crohn’s disease improves lesion detection compared with standard MR imaging. Eur Radiol 20(8):1945–1951

    Article  PubMed  Google Scholar 

  44. Gujral N, Freeman HJ, Thomson AB (2012) Celiac disease: prevalence, diagnosis, pathogenesis and treatment. World J Gastroenterol 18(42):6036–6059

    Article  PubMed  PubMed Central  Google Scholar 

  45. Tomei E, Diacinti D, Stagnitti A, et al. (2012) MR enterography: relationship between intestinal fold pattern and the clinical presentation of adult celiac disease. J Magn Reson Imaging 36(1):183–187

    Article  PubMed  Google Scholar 

  46. Masselli G, Picarelli A, Di Tola M, et al. (2010) Celiac disease: evaluation with dynamic contrast-enhanced MR imaging. Radiology 256(3):783–790

    Article  PubMed  Google Scholar 

  47. Scholz FJ, Afnan J, Behr SC (2011) CT findings in adult celiac disease. Radiographics 31(4):977–992

    Article  PubMed  Google Scholar 

  48. Shanbhogue AK, Prasad SR, Jagirdar J, et al. (2010) Comprehensive update on select immune-mediated gastroenterocolitis syndromes: implications for diagnosis and management. Radiographics 30(6):1465–1487

    Article  PubMed  Google Scholar 

  49. Madani G, Katz RD, Haddock JA, Denton CP, Bell JR (2008) The role of radiology in the management of systemic sclerosis. Clin Radiol 63(9):959–967

    Article  CAS  PubMed  Google Scholar 

  50. Chou CK, Mak CW, Tzeng WS, Chang JM (2004) CT of small bowel ischemia. Abdom Imaging 29(1):18–22

    Article  CAS  PubMed  Google Scholar 

  51. Rha SE, Ha HK, Lee SH, et al. (2000) CT and MR imaging findings of bowel ischemia from various primary causes. Radiographics 20(1):29–42

    Article  CAS  PubMed  Google Scholar 

  52. Pedrosa I, Levine D, Eyvazzadeh AD, et al. (2006) MR imaging evaluation of acute appendicitis in pregnancy. Radiology 238(3):891–899

    Article  PubMed  Google Scholar 

  53. Leeuwenburgh MM, Wiarda BM, Wiezer MJ, et al. (2013) Comparison of imaging strategies with conditional contrast-enhanced CT and unenhanced MR imaging in patients suspected of having appendicitis: a multicenter diagnostic performance study. Radiology 268(1):135–143

    Article  PubMed  Google Scholar 

  54. Pedrosa I, Lafornara M, Pandharipande PV, Goldsmith JD, Rofsky NM (2009) Pregnant patients suspected of having acute appendicitis: effect of MR imaging on negative laparotomy rate and appendiceal perforation rate. Radiology 250(3):749–757

    Article  PubMed  Google Scholar 

  55. Dewhurst C, Beddy P, Pedrosa I (2013) MRI evaluation of acute appendicitis in pregnancy. J Magn Reson Imaging 37(3):566–575

    Article  PubMed  Google Scholar 

  56. Berman L, Israel GM, McCarthy SM, Weinreb JC, Longo WE (2007) Utility of magnetic resonance imaging in anorectal disease. World J Gastroenterol 13(23):3153–3158

    Article  PubMed  PubMed Central  Google Scholar 

  57. O’Malley RB, Al-Hawary MM, Kaza RK, et al. (2012) Rectal imaging: part 2, Perianal fistula evaluation on pelvic MRI–what the radiologist needs to know. AJR Am J Roentgenol 199(1):W43–W53

    Article  PubMed  Google Scholar 

  58. Heald RJ, Moran BJ, Ryall RD, Sexton R, MacFarlane JK. Rectal cancer: the Basingstoke experience of total mesorectal excision, 1978-1997. Archives of surgery (Chicago, Ill : 1960). 1998;133(8):894-9.

  59. Quirke P, Durdey P, Dixon MF, Williams NS (1986) Local recurrence of rectal adenocarcinoma due to inadequate surgical resection. Histopathological study of lateral tumour spread and surgical excision. Lancet 2(8514):996–999

    Article  CAS  PubMed  Google Scholar 

  60. Sauer R, Becker H, Hohenberger W, et al. (2004) Preoperative versus postoperative chemoradiotherapy for rectal cancer. New Engl J Med 351(17):1731–1740

    Article  CAS  PubMed  Google Scholar 

  61. Beets-Tan RG, Beets GL (2004) Rectal cancer: review with emphasis on MR imaging. Radiology 232(2):335–346

    Article  PubMed  Google Scholar 

  62. Beets-Tan RG, Beets GL, Vliegen RF, et al. (2001) Accuracy of magnetic resonance imaging in prediction of tumour-free resection margin in rectal cancer surgery. Lancet 357(9255):497–504

    Article  CAS  PubMed  Google Scholar 

  63. Kaur H, Choi H, You YN, et al. (2012) MR imaging for preoperative evaluation of primary rectal cancer: practical considerations. Radiographics 32(2):389–409

    Article  PubMed  Google Scholar 

  64. Extramural depth of tumor invasion at thin-section MR in patients with rectal cancer: results of the MERCURY study. Radiology 2007;243(1):132-9.

  65. Nygaard I, Barber MD, Burgio KL, et al. (2008) Prevalence of symptomatic pelvic floor disorders in US women. Jama 300(11):1311–1316

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Kelvin FM, Maglinte DD, Hale DS, Benson JT (2000) Female pelvic organ prolapse: a comparison of triphasic dynamic MR imaging and triphasic fluoroscopic cystocolpoproctography. AJR Am J Roentgenol 174(1):81–88

    Article  CAS  PubMed  Google Scholar 

  67. Vanbeckevoort D, Van Hoe L, Oyen R, et al. (1999) Pelvic floor descent in females: comparative study of colpocystodefecography and dynamic fast MR imaging. J Magn Reson Imaging 9(3):373–377

    Article  CAS  PubMed  Google Scholar 

  68. Healy JC, Halligan S, Reznek RH, et al. (1997) Patterns of prolapse in women with symptoms of pelvic floor weakness: assessment with MR imaging. Radiology 203(1):77–81

    Article  CAS  PubMed  Google Scholar 

  69. Hetzer FH, Andreisek G, Tsagari C, Sahrbacher U, Weishaupt D (2006) MR defecography in patients with fecal incontinence: imaging findings and their effect on surgical management. Radiology 240(2):449–457

    Article  PubMed  Google Scholar 

  70. Maglinte DD, Kelvin FM, Fitzgerald K, Hale DS, Benson JT (1999) Association of compartment defects in pelvic floor dysfunction. AJR Am J Roentgenol 172(2):439–444

    Article  CAS  PubMed  Google Scholar 

  71. Mortele KJ, Fairhurst J (2007) Dynamic MR defecography of the posterior compartment: indications, techniques and MRI features. Eur J Radiol 61(3):462–472

    Article  PubMed  Google Scholar 

  72. Solopova AE, Hetzer FH, Marincek B, Weishaupt D (2008) MR defecography: prospective comparison of two rectal enema compositions. AJR Am J Roentgenol 190(2):W118–W124

    Article  PubMed  Google Scholar 

  73. Schreyer AG, Paetzel C, Furst A, et al. (2012) Dynamic magnetic resonance defecography in 10 asymptomatic volunteers. World J Gastroenterol 18(46):6836–6842

    Article  PubMed  PubMed Central  Google Scholar 

  74. Khatri G, Bailey AA, Bacsu C, et al. (2015) Influence of rectal gel volume on defecation during dynamic pelvic floor magnetic resonance imaging. Clin Imaging 39(6):1027–1031

    Article  PubMed  Google Scholar 

  75. Khatri G (2014) Magnetic resonance imaging of pelvic floor disorders. Top Magn Reson Imaging 23(4):259–273

    Article  PubMed  Google Scholar 

  76. Maglinte DD, Hale DS, Sandrasegaran K (2013) Comparison between dynamic cystocolpoproctography and dynamic pelvic floor MRI: pros and cons: which is the “functional” examination for anorectal and pelvic floor dysfunction? Abdom Imaging 38(5):952–973

    Article  PubMed  Google Scholar 

  77. Kelvin FM, Maglinte DD, Hornback JA, Benson JT (1992) Pelvic prolapse: assessment with evacuation proctography (defecography). Radiology 184(2):547–551

    Article  CAS  PubMed  Google Scholar 

  78. Maglinte DD, Kelvin FM, Hale DS, Benson JT (1997) Dynamic cystoproctography: a unifying diagnostic approach to pelvic floor and anorectal dysfunction. AJR Am J Roentgenol 169(3):759–767

    Article  CAS  PubMed  Google Scholar 

  79. Keeling AN, Morrin MM, McKenzie C, et al. (2012) Intravenous, contrast-enhanced MR colonography using air as endoluminal contrast agent: impact on colorectal polyp detection. Eur J Radiol 81(1):31–38

    Article  PubMed  Google Scholar 

  80. Liebig T, Stoupis C, Ros PR, Ballinger JR, Briggs RW (1993) A potentially artifact-free oral contrast agent for gastrointestinal MRI. Magn Reson Med 30(5):646–649

    Article  CAS  PubMed  Google Scholar 

  81. Okamoto T, Utsunomiya T, Inutsuka S, et al. (1997) The appearance of a normal appendix on barium enema examination does not rule out a diagnosis of chronic appendicitis: report of a case and review of the literature. Surg Today 27(6):550–553

    Article  CAS  PubMed  Google Scholar 

  82. Hosseinzadeh K, Heller MT, Houshmand G (2012) Imaging of the female perineum in adults. Radiographics 32(4):E129–E168

    Article  PubMed  Google Scholar 

  83. Young P, Daniel B, Sommer G, Kim B, Herfkens R (2012) Intravaginal gel for staging of female pelvic cancers–preliminary report of safety, distention, and gel-mucosal contrast during magnetic resonance examination. J Comput Assist Tomogr 36(2):253–256

    Article  PubMed  Google Scholar 

  84. Brown MA, Mattrey RF, Stamato S, Sirlin CB (2005) MRI of the female pelvis using vaginal gel. AJR Am J Roentgenol 185(5):1221–1227

    Article  PubMed  Google Scholar 

  85. Motzer RJ, Mazumdar M, Bacik J, et al. (1999) Survival and prognostic stratification of 670 patients with advanced renal cell carcinoma. J Clin Oncol 17(8):2530–2540

    CAS  PubMed  Google Scholar 

  86. American Fertility Society. (1988) The American Fertility Society classifications of adnexal adhesions, distal tubal occlusion, tubal occlusion secondary to tubal ligation, tubal pregnancies, mullerian anomalies and intrauterine adhesions. Fertil Steril 49(6):944–955

    Article  Google Scholar 

  87. Buttram VC Jr, Gibbons WE (1979) Mullerian anomalies: a proposed classification. (An analysis of 144 cases). Fertil Steril 32(1):40–46

    Article  PubMed  Google Scholar 

  88. Narayanan P, Nobbenhuis M, Reynolds KM, et al. (2009) Fistulas in malignant gynecologic disease: etiology, imaging, and management. Radiographics 29(4):1073–1083

    Article  PubMed  Google Scholar 

  89. Rini BI, Campbell SC, Escudier B (2009) Renal cell carcinoma. Lancet 373(9669):1119–1132

    Article  CAS  PubMed  Google Scholar 

  90. Bazot M, Darai E, Hourani R, et al. (2004) Deep pelvic endometriosis: MR imaging for diagnosis and prediction of extension of disease. Radiology 232(2):379–389

    Article  PubMed  Google Scholar 

  91. Loubeyre P, Petignat P, Jacob S, et al. (2009) Anatomic distribution of posterior deeply infiltrating endometriosis on MRI after vaginal and rectal gel opacification. AJR Am J Roentgenol 192(6):1625–1631

    Article  PubMed  Google Scholar 

  92. Fiaschetti V, Crusco S, Meschini A, et al. (2012) Deeply infiltrating endometriosis: evaluation of retro-cervical space on MRI after vaginal opacification. Eur J Radiol 81(11):3638–3645

    Article  PubMed  Google Scholar 

  93. Blomlie V, Rofstad EK, Trope C, Lien HH (1997) Critical soft tissues of the female pelvis: serial MR imaging before, during, and after radiation therapy. Radiology 203(2):391–397

    Article  CAS  PubMed  Google Scholar 

  94. Leyendecker JR, Barnes CE, Zagoria RJ (2008) MR urography: techniques and clinical applications. Radiographics 28(1):23–46 ((discussion 46–47))

    Article  PubMed  Google Scholar 

  95. Verswijvel GA, Oyen RH, Van Poppel HP, et al. (2000) Magnetic resonance imaging in the assessment of urologic disease: an all-in-one approach. Eur Radiol 10(10):1614–1619

    Article  CAS  PubMed  Google Scholar 

  96. Zielonko J, Studniarek M, Markuszewski M (2003) MR urography of obstructive uropathy: diagnostic value of the method in selected clinical groups. Eur Radiol 13(4):802–809

    CAS  PubMed  Google Scholar 

  97. Mee SL, McAninch JW, Federle MP (1987) Computerized tomography in bladder rupture: diagnostic limitations. J Urol 137(2):207–209

    CAS  PubMed  Google Scholar 

  98. Cass AS (1989) Diagnostic studies in bladder rupture. Indications and techniques. Urol Clin N Am 16(2):267–273

    CAS  Google Scholar 

Download references

Funding

No funding was provided for this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ivan Pedrosa.

Ethics declarations

Conflict of Interest

Gupta, Khatri, Bailey, Pinho, Costa, and Pedrosa declare that they have no conflict of interest.

Ethical Approval

This article does not contain any studies with human participants or animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M.K., Khatri, G., Bailey, A. et al. Endoluminal contrast for abdomen and pelvis magnetic resonance imaging. Abdom Radiol 41, 1378–1398 (2016). https://doi.org/10.1007/s00261-016-0668-0

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00261-016-0668-0

Keywords

Navigation