Skip to main content

Controlling the Chimera Form in the Leaky Integrate-and-Fire Model

  • Conference paper
  • First Online:
GeNeDis 2020

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1338))

  • 703 Accesses

Abstract

We study the influence of broken connectivity and frequency disorder in systems of coupled neuronal oscillators. Under nonlocal coupling, systems of nonlinear oscillators, such as Kuramoto, FitzHugh-Nagumo, or integrate-and-fire oscillators, demonstrate nontrivial synchronization patterns. One of these patterns is the “chimera state,” which consists of coexisting coherent and incoherent domains. In networks of biological neurons, the connectivity is not always perfect, but might be locally broken or interrupted due to pathologies, neuron degenerative disorders, or accidents. Our simulations show that destructed connectivity drastically affects synchronization, driving the coherent parts of the chimera state to cover symmetrically the region where the anomaly is located. The network synchronization decreases with the size of the destructed region as evidenced by the Kuramoto synchronization index. To the contrary, when keeping the connectivity of all nodes intact, altering the frequency in a block of oscillators drives the incoherent part of the chimera state toward the anomaly. This work is in line with recent dynamical approaches aiming to locate anomalies in the structure of brain networks, in particular when the anomalies have small, difficult-to-detect sizes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Kuramoto Y, Battogtokh D (2002) Coexistence of coherence and incoherence in nonlocally coupled phase oscillators. Nonlinear Phenomena in Complex Systems 5:380

    Google Scholar 

  2. Omelchenko O, Omel’chenko E, Hovel P, Scholl E (2013) When nonlocal coupling between oscillators becomes stronger: patched synchrony or multichimera states. Phys Rev Lett 110:224101

    Article  Google Scholar 

  3. Omelchenko I, Provata A, Hizanidis J, Scholl E, Hovel P (2015) Robustness of chimera states for coupled FitzHugh-Nagumo oscillators. Phys Rev E 91:022917

    Article  Google Scholar 

  4. Wu Z-M, Cheng H-Y, Feng Y, Li H-H, Dai Q-L, Yang J-Z (2018) Chimera states in bipartite networks of FitzHugh-Nagumo oscillators. Front Phys 13(130503)

    Google Scholar 

  5. Hizanidis J, Kanas V, Bezerianos A, Bountis T (2014) Chimera states in networks of nonlocally coupled Hindmarsh-rose neuron models. International Journal of Bifurcation and Chaos 24:03

    Article  Google Scholar 

  6. Hizanidis J, Kouvaris NE, Zamora-Lopez G, Díaz-Guilera A, Antonopoulos CG (2016) Chimera-like states in modular neural networks. Sci Rep 6:19845

    Article  CAS  Google Scholar 

  7. Ulonska S, Omelchenko I, Zakharova A, Scholl E (2016) Chimera states in net-works of Van der pol oscillators with hierarchical connectivities. Chaos 26:094825

    Article  Google Scholar 

  8. Olmi S, Politi A, Torcini A (2010) Collective chaos in pulse-coupled neural networks. Europhys Lett 92:60007

    Article  Google Scholar 

  9. Lucioli S, Politi A (2010) Irregular collective behavior of heterogeneous neural networks. Phys Rev E 105:158104

    Google Scholar 

  10. Tsigkri-DeSmedt ND, Hizanidis J, Hovel P, Provata A (2015) Multi-chimera states in the leaky integrate-and-fire model. Procedia Computer Science 66:13

    Article  Google Scholar 

  11. Tsigkri-DeSmedt ND, Vlamos P, Provata A (2020) Finite size effects in networks of coupled neurons. Adv Exp Med Biol 1194:397–407

    Article  CAS  Google Scholar 

  12. Schmidt A, Kasimatis T, Hizanidis J, Provata A, Hovel P (2017) Chimera patterns in two-dimensional networks of coupled neurons. Phys Rev E 95:032224

    Article  Google Scholar 

  13. Kasimatis T, Hizanidis J, Provata A (2018) Three-dimensional chimera patterns in net-works of spiking neuron oscillators. Phys Rev E 97:052213

    Article  CAS  Google Scholar 

  14. Maistrenko Y, Sudakov O, Osiv O, Maistrenko V (2015) Chimera states in three dimensions. New J Phys 17:073037

    Article  Google Scholar 

  15. Maistrenko V, Sudakov O, Osiv O, Maistrenko Y (2017) Multiple scroll wave chimera states. European Physical Journal: Special Topics 226:1867–1881

    Google Scholar 

  16. Tsigkri-DeSmedt ND, Hizanidis J, Hovel P, Provata A (2016) Multi-chimera states and transitions in the leaky integrate-and-fire model with nonlocal coupling and hierarchical connectivity. European Physical Journal Special Topics 225:11491164

    Article  Google Scholar 

  17. Argyropoulos G, Provata A (2019) Chimera states with 2D deterministic and random fractal connectivity. Frontiers in Applied Mathematics and Statistics 5:35

    Article  Google Scholar 

  18. Andrzejak RG, Ruzzene G, Schoell E, Omelchenko I (2020) Two populations of coupled quadratic maps exhibit a plentitude of symmetric and symmetry broken dynamics. Chaos 30:033125

    Article  Google Scholar 

  19. Antonopoulos G, Srivastava S, Pinto SES, Baptista MS (2015) Do brain networks evolve by maximizing their information flow capacity? PLoS Comput Biol 11:e1004372

    Article  Google Scholar 

  20. Sigalas E, Li J, Bezerianos A, Antonopoulos CG (2018) Emergence of chimera-like states in prefrontal-cortex macaque intracranial recordings. In: Proceedings of the 2018 International Workshop on Pattern Recognition in Neuroimaging (PRNI), Singapore, pp. 1–4

    Google Scholar 

  21. Koulierakis I, Verganelakis DA, Omelchenko I, Zakharova A, Scholl E, Provata A (2020) Structural anomalies in brain networks induce dynamical pacemaker effects. Chaos, 30:113137

    Google Scholar 

  22. Panaggio J, Abrams D (2015) Chimera states: coexistence of coherence and incoherence in networks of coupled oscillators. Nonlinearity 28:R67

    Article  Google Scholar 

  23. Scholl E (2016) Synchronization patterns and chimera states in complex networks: interplay of topology and dynamics. European Physical Journal Special Topics 225:891–919

    Article  Google Scholar 

  24. Omel’Chenko OE (2018) The mathematics behind chimera states. Nonlinearity 31:R121

    Article  Google Scholar 

  25. Katsaloulis P, Verganelakis DA, Provata A (2009) Fractal dimension and lacunarity of tractography images of the human brain. Fractals 17:181–189

    Article  Google Scholar 

  26. Expert P, Lambiotte R, Chialvo D, Christensen K, Jensen HJ, Sharp DJ, Turkheimer F (2011) Self-similar correlation function in brain resting-state functional magnetic resonance imaging. Journal of the Royale Society Interface 8:472–479

    Article  Google Scholar 

  27. Katsaloulis P, Ghosh A, Philippe AC, Provata A, Deriche R (2012) Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI. Eur Phys J B 85:150

    Article  CAS  Google Scholar 

  28. Plerou AP, Vlamos P (2015) Evaluation of mathematical cognitive functions with the use of EEG brain imaging. In Experimental Multimedia Systems for Interactivity and Strategic Innovation. pp. 284–306

    Google Scholar 

  29. Psiha M, Vlamos P (2015) Modeling neural circuits in Parkinson’s disease. Adv Exp Med Biol 822:139–147

    Article  CAS  Google Scholar 

  30. Plerou A, Vlamos P, Margetaki A (2017) EEG analysis of the neurofeedback training effect in algorithmic thinking. Adv Exp Med Biol 988:313–324

    Article  Google Scholar 

  31. Mormann F, Lehnertz K, David P, Elger CE (2000) Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D 144:358

    Article  Google Scholar 

  32. Mormann F, Kreuz T, Andrzejak RG, David P, Lehnertz K, Elger CE (2003) Epileptic seizures are preceded by a decrease in synchronization. Epilepsy Res 53:173–185

    Article  Google Scholar 

  33. Andrzejak RG, Rummel C, Mormann F, Schindler K (2016) All together now: analogies between chimera state collapses and epileptic seizures. Sci Rep 6:23000

    Article  CAS  Google Scholar 

  34. Rattenborg C, Amlaner CJ, Lima SL (2000) Behavioral, neurophysiological and evolutionary perspectives on unihemispheric sleep. Neurosci Biobehav Rev 24:817

    Article  CAS  Google Scholar 

  35. Rattenborg C, Martinez-Gonzalez D, Lesku JA, Scriba M (2008) A bird’s eye view of sleep. Science 322:527

    Article  CAS  Google Scholar 

  36. Isele T, Hizanidis J, Provata A, Hovel P (2016) Controlling chimera states: the influence of excitable units. Phys Rev E 93:022217

    Article  Google Scholar 

  37. G Ruzzene, I. Omelchenko, E. Scholl, A. Zakharova and R. G. Andrzejak (2019) Controlling chimera states via minimal coupling modification, Chaos, 29: 0511031

    Google Scholar 

  38. Brunel N, van Rossum MCW (1999) Lapicque’s 1907 paper: from frogs to integrate-and-fire. Brain Res Bull 50:303304

    Google Scholar 

  39. Abott LF (2007) Lapicque’s introduction of the integrate-and-fire model neuron (1907). Biol Cybern 97:337

    Article  Google Scholar 

  40. Kemeth FP, Haugland SW, Schmidt L, Kevrekidis IG, Krischer K (2016) A classification scheme for chimera states. Chaos 26:094815

    Article  Google Scholar 

  41. Tsigkri-DeSmedt ND, Hizanidis J, Scholl E, Hovel P, Provata A (2017) Chimera states in the leaky integrate-and-fire model: effects of reflecting connectivity. Eur Phys J B 90:139

    Article  Google Scholar 

  42. Tsigkri-DeSmedt ND, Koulierakis I, Karakos G, Provata A (2018) Synchronization patterns in LIF neuron networks: merging nonlocal and diagonal connectivity. Eur Phys J B 91:305

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Dr. J. Hizanidis, Dr. N. D. Tsigkri-DeSmedt, and T. Kasimatis for fruitful discussions. A.P. and Ch.G.A. acknowledge the support provided by the London Mathematical Society (LMS) Research in Pairs Scheme 4, Grant No 41903. We acknowledge the partial support of this work by the project MIS 5002567, implemented under the “Action for the Strategic Development on the Research and Technological Sector,” funded by the “Operational Programme Competitiveness, Entrepreneurship and Innovation” (NSRF 2014–2020) and co-financed by Greece and the European Union (European Regional Development Fund). This work was supported by computational time granted by the Greek Research and Technology Network (GRNET) at the National HPC Facility – ARIS – under projects CoBrain4 (ID: PR007011) and CoBrain5 (ID: PR009012).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Provata .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Provata, A., Antonopoulos, C.G., Vlamos, P. (2021). Controlling the Chimera Form in the Leaky Integrate-and-Fire Model. In: Vlamos, P. (eds) GeNeDis 2020. Advances in Experimental Medicine and Biology, vol 1338. Springer, Cham. https://doi.org/10.1007/978-3-030-78775-2_30

Download citation

Publish with us

Policies and ethics