Skip to main content

Modeling Neural Circuits in Parkinson’s Disease

  • Conference paper
  • First Online:
GeNeDis 2014

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 822))

Abstract

Parkinson’s disease (PD) is caused by abnormal neural activity of the basal ganglia which are connected to the cerebral cortex in the brain surface through complex neural circuits. For a better understanding of the pathophysiological mechanisms of PD, it is important to identify the underlying PD neural circuits, and to pinpoint the precise nature of the crucial aberrations in these circuits. In this paper, the general architecture of a hybrid Multilayer Perceptron (MLP) network for modeling the neural circuits in PD is presented. The main idea of the proposed approach is to divide the parkinsonian neural circuitry system into three discrete subsystems: the external stimuli subsystem, the life-threatening events subsystem, and the basal ganglia subsystem. The proposed model, which includes the key roles of brain neural circuit in PD, is based on both feed-back and feed-forward neural networks. Specifically, a three-layer MLP neural network with feedback in the second layer was designed. The feedback in the second layer of this model simulates the dopamine modulatory effect of compacta on striatum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jankovic J (2008) Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry 79:368–376

    Article  CAS  PubMed  Google Scholar 

  2. Raz A, Feingold A, Zelanskaya V, Vaadia E, Bergman H (1996) Neuronal synchronization of tonically active neurons in the striatum of normal and parkinsonian primates. J Neurophysiol 76:2083–2088

    CAS  PubMed  Google Scholar 

  3. Raz A, Vaadia E, Bergman H (2000) Firing patterns and correlations of spontaneous discharge of pallidal neurons in the normal and the tremulous 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine vervet model of parkinsonism. J Neurosci 20:8559–8571

    CAS  PubMed  Google Scholar 

  4. Ruskin DN, Bergstrom DA, Tierney PL, Walters JR (2003) Correlated multisecond oscillations in firing rate in the basal ganglia: modulation by dopamine and the subthalamic nucleus. Neuroscience 117:427–438

    Article  CAS  PubMed  Google Scholar 

  5. Goldberg JA, Rokni U, Boraud T, Vaadia E, Bergman H (2004) Spike synchronization in the cortex-basal ganglia networks of parkinsonian primate reflects global dynamics of the local field potentials. J Neurosci 24:6003–6010

    Article  CAS  PubMed  Google Scholar 

  6. Redgrave P, Rodriguez M, Smith Y, Rodriguez-Oroz M, Lehericy S, Bergman H, Agid Y, DeLong MR, Obeso JA (2010) Goal-directed and habitual control in the basalganglia: implications for Parkinson’s disease. Nat Rev Neurosci 11:760–772

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  7. Torres EB, Heilman KM, Poizner H (2011) Impaired endogenously evoked auto-mated reaching in Parkinson’s disease. J Neurosci 31:17848–17863

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  8. Albin R, Young A, Penney J (1989) The functional anatomy of basal ganglia disorders. Trends Neurosci 12:366–375

    Article  CAS  PubMed  Google Scholar 

  9. DeLong M (1990) Primate models of movement disorders of basal ganglia origin. Trends Neurosci 13:281–285

    Article  CAS  PubMed  Google Scholar 

  10. Kandel E, Schwartz J, Jessel T (2000) Principles of neural science. McGraw-Hill, New York, NY

    Google Scholar 

  11. Hikosaka O, Takikawa Y, Kawagoe R (2000) Role of the basal ganglia in the control of purposive saccadic eye movements. Physiol Rev 80:953–978

    CAS  PubMed  Google Scholar 

  12. Takakusaki K, Oohinata-Sugimoto J, Saitoh K, Habaguchi T (2004) Role of basal gangliabrainstem systems in the control of postural muscle tone and locomotion. Prog Brain Res 143:231–237

    Article  PubMed  Google Scholar 

  13. Marsden C (1990) Parkinson’s disease. Lancet 335:948–592

    Article  CAS  PubMed  Google Scholar 

  14. Guyton AC, Hall J (2001) Text book of medical physiology, 10th edn. Saunders, Philadelphia, PA

    Google Scholar 

  15. Glickstein M, Stein J (1991) Paradoxical movement in Parkinson’s disease. Trends Neurosci 14(11):480–482

    Article  CAS  PubMed  Google Scholar 

  16. Martin J (1967) Disorder of locomotion associated with disease of the basal ganglia. In: The Basal Ganglia and Posture. Philadelphia: Lippincott, 24–35

    Google Scholar 

  17. Snijders AH, Bloem BR (2010) Cycling for freezing of gait. N Engl J Med 362(13):e46

    Google Scholar 

  18. Rinehart N, McGinley J (2010) Is motor dysfunction core to autism spectrum disorder? Dev Med Child Neurol 52(8):697

    Article  PubMed  Google Scholar 

  19. Horstink M, De Swart B, Wolters E, Berger H (1993) Paradoxical behavior in Parkinson’sdisease. In: Wolters EC, Scheltens P (eds) Mental dysfunction in Parkinson’s disease. Proceedings of the European congress on mental dysfunction in Parkinson’s disease. Vrije Universiteit, Amsterdam

    Google Scholar 

  20. Salimpoor VN et al (2011) Anatomically distinct dopamine release during anticipation and experience of peak emotion to music. Nat Neurosci 14(2):257–262

    Article  CAS  PubMed  Google Scholar 

  21. Hausdorff JM, Lowenthal J, Herman T, Gruendlinger L, Peretz C, Giladi N (2007) Rhythmic auditory stimulation modulates gait variability in Parkinson’s disease. Eur J Neurosci 26(8):2369–2375

    Article  PubMed  Google Scholar 

  22. Wittwer JE, Webster KE, Hill K (2013) Music and metronome cues produce different effects on gait spatiotemporal measures but not gait variability in healthy older adults. Gait and Posture 37(2):219–222

    Google Scholar 

  23. Houston S, McGill A (2013) A mixed-methods study into ballet for people living with Parkinson’s. Arts Health 5(2):103–119

    Article  PubMed Central  PubMed  Google Scholar 

  24. Azulay J-P et al (1999) Visual control of locomotion in Parkinson’s disease. Brain 122(1):111–120

    Article  PubMed  Google Scholar 

  25. Ferrarin M, Brambilla M, Garavello L, Di Candia A, Pedotti A, Rabuffetti M (2004) Microprocessor-controlled optical stimulating device to improve the gait of patients with Parkinson’s disease. Med Biol Eng Comput 42(3):328–332

    Article  CAS  PubMed  Google Scholar 

  26. Daroff RB (2008) Paradoxical kinesia. Mov Disord 23(8):1193–1193

    Article  PubMed  Google Scholar 

  27. Hammond TC (2010) New developments: falls, drooling & exercise in Parkinson’s disease. The Parkinson’s source. Issue 40. APDA magazine

    Google Scholar 

  28. Bonanni L et al (2010) Protracted benefit from paradoxical kinesia in typical and atypical parkinsonisms. Neurol Sci 31(6):751–756

    Article  CAS  PubMed  Google Scholar 

  29. Schlesinger I, Erikh I, Yarnitsky D (2007) Paradoxical kinesia at war. Mov Disord 22(16):2394–2397

    Article  PubMed  Google Scholar 

  30. Sarbaz Y, Gharibzadeh S, Towhidkhah F, Banaie M, Jafari A (2011) A gray-box neural network model of Parkinson’s disease using gait signal. Basic Clin Neurosci 2(3)

    Google Scholar 

  31. Haykin S (2008) Neural networks and learning machines, 3rd edn. Pearson Education, Upper Saddle River, NJ

    Google Scholar 

  32. Seker S, Ayaz E, Turkcan E (2003) Elman’s recurrent neural network applications to condition monitoring in nuclear power plant and rotating machinery. Eng Appl Artif Intel 16:647–656

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Psiha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2015 Springer International Publishing Switzerland

About this paper

Cite this paper

Psiha, M., Vlamos, P. (2015). Modeling Neural Circuits in Parkinson’s Disease. In: Vlamos, P., Alexiou, A. (eds) GeNeDis 2014. Advances in Experimental Medicine and Biology, vol 822. Springer, Cham. https://doi.org/10.1007/978-3-319-08927-0_15

Download citation

Publish with us

Policies and ethics