Skip to main content

Autism Spectrum Disorder

  • Chapter
  • First Online:
Medicinal Cannabis and CBD in Mental Healthcare
  • 1163 Accesses

Abstract

Autism spectrum disorder (ASD) is a complex behavioral condition that is characterized by deficits in communication and social interaction, stereotypic or repetitive behaviors, restricted patterns of interest, and sensory issues including extreme responses. It begins in early childhood and extends throughout life. It is associated with several comorbidities including anxiety, depression, seizures, sleep disorders, psychosis, metabolic disorders, and others, as well as premature mortality. The etiology and pathogenesis of ASD are complex and involve altered neurodevelopment during early pregnancy. Genetic and environmental factors are involved, as are altered development of neural connectivity, mutations in genes, inflammation, immune system dysregulation, and abnormal endocannabinoid tone and signaling. The endocannabinoid system is involved in the modulation of many cellular functions and molecular pathways altered in ASD. This chapter will present an overview of the etiology and pathogenesis of ASD with a focus on how the endocannabinoid system is involved. It will then discuss the scientific evidence for why cannabidiol (CBD) shows promise in the treatment of ASD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Chakrabarti B, Persico A, Battistia N, Maccarrone M. Endocannabinoid signaling in autism. Neurotherapeutics. 2015;12:837–47.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. American Psychiatric Association, editor. Diagnostic and statistical manual of mental disorders. 5th ed. Arlington: American Psychiatric Association; 2013.

    Google Scholar 

  3. D’Cruz AM, Mosconi MW, Ragozzino ME, et al. Alterations in the functional neural circuitry supporting flexible choice behavior in autism spectrum disorders. Transl Psychiatry. 2016;6(10):e916.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  4. Green JJ, Hollander E. Autism and oxytocin: new developments in translational approaches to therapeutics. Neurotherapeutics. 2010;7:250–7.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Lord C, Cook EH, Leventhal BL, et al. Autism spectrum disorders. Neuron. 2000;28:355–63.

    Article  CAS  PubMed  Google Scholar 

  6. Fletcher-Watson S, Leekam SR, Benson V, et al. Eye-movements reveal attention to social information in autism spectrum disorder. Neuropsychologia. 2009;47:248–57.

    Article  CAS  PubMed  Google Scholar 

  7. Klin A, Ones W, Schultz R, et al. Visual fixation patterns during viewing of naturalistic social situations as predictors of social competence in individuals with autism. Arch Gen Psychiatry. 2002;59:809–16.

    Article  PubMed  Google Scholar 

  8. Sasson NJ, Dichter GS, Bodfish JW. Affective responses by adults with autism are reduced to social images but elevated to images related to circumscribed interests. PLoS One. 2012;7:e42457.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Richey JA, Rittenberg A, Hughes L, et al. Common and distinct neural features of social and non-social reward processing in autism and social anxiety disorder. Soc Cogn Affect Neurosci. 2014;9:367–77.

    Article  PubMed  Google Scholar 

  10. Lai MC, Lombardo MV, Baron-Cohen S. Autism. Lancet. 2014;383:896–910.

    Article  PubMed  Google Scholar 

  11. Centers for Disease Control and Prevention (CDC). Developmental Disabilities Monitoring Network Surveillance Year 2010 Principal Investigators. Prevalence of autism spectrum disorder among children aged 8 years – autism and developmental disabilities monitoring network, 11 sites, United States, 2010. MMWR Surveill Summ. 2014;63:1–21.

    Google Scholar 

  12. Ozonoff S, Young GS, Carter A, et al. Recurrence risk for autism spectrum disorders: a Baby Siblings Research Consortium study. Pediatrics. 2011;128:e488–95.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Pretzche CM, Freyberg J, Voinescu B, et al. Effects of cannabidiol on brain excitation and inhibition systems; a randomised placebo-controlled single dose trial during magnetic resonance spectroscopy in adults with and without autism spectrum disorder. Neuropsychopharmacology. 2019;44:1398–405.

    Article  CAS  Google Scholar 

  14. Antshel KM, Zhang-James Y, Wagner K, et al. An update on the comorbidity of ASD and ADHD: a focus on clinical management. Expert Rev Neurother. 2016;16:1744–8360. https://doi.org/10.1586/14737175.2016.1146591.

    Article  CAS  Google Scholar 

  15. Chen YL, Chen SH, Gau SSF. ADHD and autistic traits, family function, parenting style, and social adjustment for internet addiction among children and adolescents in Taiwan: a longitudinal study. Res Dev Disabil. 2015;39:20–31.

    Article  PubMed  Google Scholar 

  16. Cohen S, Conduit R, Lockley SW, et al. The relationship between sleep and behavior in autism spectrum disorder (ASD): a review. J Neurodev Disord. 2014;6:44.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Coury DL, Ashwood P, Fasano A, et al. Gastrointestinal conditions in children with autism spectrum disorder: developing a research agenda. Pediatrics. 2012;130(Suppl 2):S160–8.

    Article  PubMed  Google Scholar 

  18. De Bruin EI, Ferdinand RF, Meester S, et al. High rates of psychiatric co-morbidity in PDD-NOS. J Autism Dev Disord. 2007;37:877–86.

    Article  PubMed  Google Scholar 

  19. Fombonne E. Epidemiology of autistic disorder and other pervasive developmental disorders. J Clin Psychiatry. 2005;66:3–8.

    PubMed  Google Scholar 

  20. Ghaziddin M, Zafar S. Psychiatric comorbidity of adults with ASD. Clin Neuropsychiatry. 2008;5:9–12.

    Google Scholar 

  21. Gillott A, Standen PJ. Levels of anxiety and sources of stress in adults with autism. J Intellect Disabil. 2007;11:359–70.

    Article  PubMed  Google Scholar 

  22. Lalanne L, Weiner L, Bertschy G. Treatment of addiction in adults with autism spectrum disorder. Cham: Springer; 2017. p. 377–95.

    Google Scholar 

  23. Lefter R, Ciobica A, Timofte D, et al. A descriptive review on the prevalence of gastrointestinal disturbances and their multiple associations in autism spectrum disorder. Medicina (Kaunas). 2019;56(1):11.

    Article  Google Scholar 

  24. Richards C, Moss J, Nelson L, et al. Persistence of self-injurious behaviour in autism spectrum disorder over 3 years: a prospective cohort study of risk markers. J Neurodev Disord. 2016;8:21. https://doi.org/10.1186/s11689-016-9153-x.

    Article  PubMed  PubMed Central  Google Scholar 

  25. Richdale AL, Schreck KA. Sleep problems in autism spectrum disorders: prevalence, nature, & possible biopsychosocial aetiologies. Sleep Med Rev. 2009;13(6):403–11.

    Article  PubMed  Google Scholar 

  26. Romano M, Truzoli R, Osborne LA, Reed P. The relationship between autism quotient, anxiety, and internet addiction. Res Autism Spectr Disord. 2014;8:1521–6.

    Article  Google Scholar 

  27. Simonoff E, Pickles A, Charman T, et al. Psychiatric disorders in children with autism spectrum disorders: prevalence, comorbidity, and associated factors in a population-derived sample. J Am Acad Child Adolesc Psychiatry. 2008;47:921–9.

    Article  PubMed  Google Scholar 

  28. Souders MC, Mason TB, Valladares O, et al. Sleep behaviors and sleep quality in children with autism spectrum disorders. Sleep. 2009;32:1566–78.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Tarazi F, Sahli Z, Pleskow J, Mousa S. Asperger’s syndrome: diagnosis, comorbidity and therapy. Expert Rev Neurother. 2015;15:281–93.

    Article  CAS  PubMed  Google Scholar 

  30. Tuchman R, Rapin I. Epilepsy in autism. Lancet Neurol. 2002;1:352–8.

    Article  PubMed  Google Scholar 

  31. Veatch OJ, Stucliffe JS, Warren ZE, et al. Shorter sleep duration is associated with social impairment and comorbidities in ASD. Autism Res. 2017;10(7):1221–38.

    Article  PubMed  PubMed Central  Google Scholar 

  32. Horvath K, Papadimitriou JC, Rabsztyn A, et al. Gastrointestinal abnormalities in children with autistic disorder. J Pediatr. 1999;135(5):559–63.

    Article  CAS  PubMed  Google Scholar 

  33. Cooper M, et al. Autistic traits in children with ADHD index clinical and cognitive problems. Eur Child Adolesc Psychiatry. 2014;23(1):23–34.

    Article  PubMed  Google Scholar 

  34. Kotte A, et al. Autistic traits in children with and without ADHD. Pediatrics. 2013;132(3):e612–22.

    Article  PubMed  PubMed Central  Google Scholar 

  35. Jensen CM, Steinhausen HC. Comorbid mental disorders in children and adolescents with attention-deficit/hyperactivity disorder in a large nationwide study. Atten Defic Hyperact Disord. 2015;7(1):27–38.

    Article  PubMed  Google Scholar 

  36. Hirvikovski T, Mittendorfer-Rutz E, Boman M, et al. Premature mortality in autism spectrum disorder. Br J Psychiatry. 2016;208:232–8.

    Article  Google Scholar 

  37. Gillberg C, Billstedt E, Sundh V, Gillberg IC. Mortality in autism: a prospective longitudinal community-based study. J Autism Dev Disord. 2010;40:352–7.

    Article  PubMed  Google Scholar 

  38. Isager T, Mouridsen SE, Rich B. Mortality and causes of death in pervasive developmental disorders. Autism. 1999;3:7–16.

    Article  Google Scholar 

  39. Won J, Jin Y, Choi J, et al. Melatonin as a novel interventional candidate for fragile x syndrome with autism spectrum disorder in humans. Int J Mol Sci. 2017;18:1314.

    Article  PubMed Central  CAS  Google Scholar 

  40. Romano T. Autism and cannabis: here’s what the science says. Leafly.com, 20 June 2018. Available at: https://www.leafly.com/news/health/autism-and-cannabis-heres-what-the-science-says. Accessed 1 Dec 2019.

  41. Amaral DG, Schumann CM, Nordahl CW. Neuroanatomy of autism. Trends Neurosci. 2008;31:137–45.

    Article  CAS  PubMed  Google Scholar 

  42. Di Cicco-Bloom E, Lord C, Zwaigenbaum L, et al. The developmental neurobiology of autism spectrum disorder. J Neurosci. 2006;26:6897–906.

    Article  CAS  Google Scholar 

  43. Dietert RR, Dietert JM, Dewitt JC. Environmental risk factors for autism. Emerg Health Threats J. 2011;4:7111.

    Article  PubMed  Google Scholar 

  44. Sevadio M, Melancia F, Manduca A, et al. Targeting anandamide metabolism rescues core and associated autistic-like symptoms in rats prenatally exposed to valproic acid. Transl Psychiatry. 2016;6:e902. https://doi.org/10.1038/tp.2016.182.

    Article  CAS  Google Scholar 

  45. Aran A, Eylon M, Harel M, et al. Lower circulating endocannabinoid levels in children with autism spectrum disorder. Mol Autism. 2019a;10:2.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Belmonte MK, Allen G, Beckel-Mitchener A, et al. Autism and abnormal development of brain connectivity. J Neurosci. 2004;24(42):9228–31.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Morgan JT, Chana G, Pardo CA, et al. Microglial activation and increased microglial density observed in the dorsolateral prefrontal cortex in autism. Biol Psychiatry. 2010;68:368–76.

    Article  PubMed  Google Scholar 

  48. Ohja K, Gozal E, Fahnestock M, et al. Neuroimmunologic and neurotrophic interactions in autism spectrum disorders: relationship to neuroinflammation. Neuromolecular Med. 2018;20(2):161–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Siniscalco D, Bradstreet JJ, Cirillo A, Antonucci N. The in vitro GcMAF effects on endocannabinoid system transcriptionomics, receptor formation, and cell activity of autism-derived macrophages. J Neuroinflammation. 2014;11:78.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Vargas DK, Nascimbene C, Krishnan C, et al. Neuroglial activation and neuroinflammation in the brain of patients with autism. Ann Neurol. 2005;7(1):67–81.

    Article  CAS  Google Scholar 

  51. Wei D, Dinh D, Lee DY, et al. Enhancement of anandamide-mediated endocannabinoid signaling corrects autism-related social impairment. Cannabis Cannabinoid Res. 2016;1:1. https://doi.org/10.1089/can.2015.0008.

    Article  CAS  Google Scholar 

  52. Young AM, Campbell E, Lynch S, et al. Aberrant NF-kappa B expression in autism spectrum condition: a mechanism for neuroinflammation. Front Psychiatry. 2011;2:27.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Bourgeron T. From the genetic architecture to synaptic plasticity in autism spectrum disorder. Nat Rev Neurosci. 2015;16(9):551–63.

    Article  CAS  PubMed  Google Scholar 

  54. Hazlett H, Gu H, Munsell B, et al. Early brain development in infants at high risk for autism spectrum disorder. Nature. 2017;542:348–51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Kucharsky Hiess R, Alter R, Sojoudi S et al. Corpus Callosum Area and Brain Volume in Autism Spectrum Disorder: Quantitative Analysis of Structural MRI from the ABIDE Database. Journal of Autism and Developmental Disorders. 2015;45(10):3107–14.

    Google Scholar 

  56. Stigler KA, McDougle CJ. Chapter 3.1 - Structural and functional MRI studies of autism spectrum disorders. In: Buxbaum JD, Hof PR, editors. The neuroscience of autism spectrum disorders. Academic Press; 2013. p. 251–66.

    Chapter  Google Scholar 

  57. Doherty CC, Evans DW, Myers SM, et al. A comparison of structural brain imaging findings in autism spectrum disorder and attention-deficit hyperactivity disorder. Neuropsychol Rev. 2015;26:25–43.

    Article  Google Scholar 

  58. Qiu T, Chang C, Li Y, et al. Two years changes in the development of caudate nucleus are involved in restricted repetitive behaviors in 2–5-year-old children with autism spectrum disorder. Dev Cogn Neurosci. 2016;19:137–43.

    Article  PubMed  PubMed Central  Google Scholar 

  59. Chakrabarti B, Haffey A, Canzano L et al. Individual differences in responsivity to social rewards: Insights from two eye-tracking tasks. PLoS ONE. 2017;12(10):e0185146.

    Google Scholar 

  60. Haznedar M, Buchsbaum MS, Hazlett EA, et al. Volumetric analysis and three-dimensional glucose metabolic mapping of the striatum and thalamus in patients with autism spectrum disorders. Am J Psychiatry. 2006;163:1252–63.

    Article  PubMed  Google Scholar 

  61. Hikosaka O. Basal ganglia mechanisms of reward-oriented eye movement. Ann N Y Acad Sci. 2007;1104:229–49.

    Article  CAS  PubMed  Google Scholar 

  62. Nakamura K, Hikosaka O. Role of dopamine in the primate caudate nucleus in reward modulation of saccades. J Neurosci. 2006;26(20):5360–69.

    Google Scholar 

  63. Piven J, Elison JT, Zylka MJ. Toward a conceptual framework for early brain and behavior development in autism. Mol Psychiatry. 2017 Oct;22(10):1385–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chapleau CA, Larimore JL, Theivert A, et al. Modulation of dendritic spine development and plasticity by BDNF and vesicular trafficking: fundamental roles in neurodevelopmental disorders associated with mental retardation and autism. J Neurodev Disord. 2009;1:185–96.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Phillips M, Pozzo-Miller L. Dendritic spine dysgenesis in autism related disorders. Neurosci Lett. 2015;601:30–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Tang G, Gudsnuk K, Kuo SH, et al. Loss of mTOR-dependent macroautophagy causes autistic-like synaptic pruning deficits. Neuron. 2014;83(5):1131–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Kasarpalkar NJ, Kothari ST, Dave UP. Brain-Derived Neurotrophic Factor in children with Autism Spectrum Disorder. Ann Neurosci. 2014;21(4):129–33.

    PubMed  PubMed Central  Google Scholar 

  68. Chen J, Alberts I, Li X. Dysregulation of the IGF-I/PI3K/AKT/mTOR signaling pathway in autism spectrum disorders. Int J Dev Neurosci. 2014;35(1):35–41.

    Article  PubMed  CAS  Google Scholar 

  69. Huber M, Klann E, Costa-Mattioli M, Zukin RS. Dysregulation of mammalian target of rapamycin signaling in mouse models of autism. J Neurosci. 2015;35:13836–42.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  70. Manning BD, Cantley LC. AKT/PKB Signaling: navigating downstream. Cell. 2007;129(7):1261–74.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Riikonen R, Makkonen I, et al. Cerebrospinal fluid insulin-like growth factors IGF-1 and IGF-2 in infantile autism. Dev Med Child Neurol. 2006;48(9):751–5.

    Article  PubMed  Google Scholar 

  72. Steinman G, Mankuta D. Insulin-like growth factor and the etiology of autism. Med Hypotheses. 2013;80(4):475–80.

    Article  CAS  PubMed  Google Scholar 

  73. Ehninger D, Li W, Fox K, Stryker MP, Silva AJ. Reversing neurodevelopmental disorders in adults. Neuron. 2008;60(6):950–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Tang G, Gutierrez Rios P, Kuo SH, et al. Mitochondrial abnormalities in temporal lobe of autistic brain. Neurobiol Dis. 2013;54:349–61.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  75. Schmeisser K, Parker JA. Pleiotropic effects of mTor and autophagy during development and aging. Front Cell Dev Biol. 2019;7:192. https://doi.org/10.3389/fcell.2019.00192.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Saha S, Panigrahi DP, Patil S, Bhutia SK. Autophagy in health and disease: a comprehensive review. Biomed Pharmacother. 2018;104:485–95.

    Article  CAS  PubMed  Google Scholar 

  77. Bryn V, Halvorsen B, Ueland T, et al. Brain derived neurotrophic factor (BDNF) and autism spectrum disorders (ASD) in childhood. Eur J Paediatr Neurol. 2015;19(4):411–4.

    Article  CAS  PubMed  Google Scholar 

  78. Qin X-Y, Feng J-C, Cao C, et al. Association of peripheral blood levels of brain-derived neurotrophic factor with autism spectrum disorder in children. A systematic review and meta-analysis. JAMA Pediatr. 2016;170(11):1079–86.

    Article  PubMed  Google Scholar 

  79. AL-Ayadhi L. Serum levels of brain-derived neurotrophic factor (BDNF) in autistic children in central Saudi Arabia. Open Conf Proc J. 2011;2(1):36–40.

    Article  CAS  Google Scholar 

  80. Hallmayer J, Cleveland S, Torres A, et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch Gen Psychiatry. 2011;68:1095–102.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Abrahams BS, Geschwind DH. Advances in autism genetics: on the threshold of a new neurobiology. Nat Rev Genet. 2008;9:341–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  82. Jung KW, Sepers M, Henstridge CM, et al. Uncoupling of the endocannabinoid signalling complex in a mouse model of fragile X syndrome. Nat Commun. 2012;3:1080.

    Article  PubMed  CAS  Google Scholar 

  83. Tartaglia N, Bonn-Miller M, Hagerman R. Treatment of Fragile X Syndrome with cannabidiol: a case series study and brief review of the literature. Cannabis Cannabinoid Res. 2019;4(1):3–9. https://doi.org/10.1089/can.2018.0053.

    Article  PubMed  PubMed Central  Google Scholar 

  84. Purcell AE, Jeon OH, Zimmerman AW, et al. Postmortem brain abnormalities of the glutamate neurotransmitter system in autism. Neurology. 2001;57:1618–28.

    Article  CAS  PubMed  Google Scholar 

  85. Santocchi E, Guiducci L, Fulceri F, et al. Gut to brain interaction in Autism Spectrum Disorders: a randomized controlled trial on the role of probiotics on clinical, biochemical and neurophysiological parameters. BMC Psychiatry. 2016;16:183.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Stein TP, Schluter MD, Steer RA, Ming X. Autism and phthalate metabolite glucuronidation. J Autism Dev Disord. 2013;43:2677–85.

    Article  PubMed  PubMed Central  Google Scholar 

  87. Sudhof TC. Neuroligins and neurexins link synaptic function to cognitive disease. Nature. 2008;455(7215):903–11.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Speed HE, Masiulis I, Gibson JR, Powell CM. Increased cortical inhibition in autism-linked neuroligin-3R451C mice is due in part to loss of endocannabinoid signaling. PLoS One. 2015;10:e0140638.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Corbett BA, Mendoza S, WEgelin JA, et al. Variable cortisol circadian rhythms in children with autism and anticipatory stress. J Psychiatry Neurosci. 2008;33(3):227–34.

    PubMed  PubMed Central  Google Scholar 

  90. Geoffray MM, Nicholas A, Speranza M, Georgieff N. Are circadian rhythms new pathways to understand Autism Spectrum Disorder? J Physiol Paris. 2016;110(4, Part B):434–8.

    Article  PubMed  Google Scholar 

  91. Wohr M, Srduz D, Gregory P, et al. Lack of parvalbumin in mice leads to behavioral deficits relevant to all human core symptoms and related neural morphofunctional abnormalities. Trans Psych. 2015;5:e525.

    Article  CAS  Google Scholar 

  92. Melke J, Goubran Botros H, Chaste P. Abnormal melatonin synthesis in autism spectrum disorders. Mol Psychiatry. 2008;13:90–8.

    Article  CAS  PubMed  Google Scholar 

  93. Depino AM. Peripheral and central inflammation in autism spectrum disorders. Mol Cell Neurosci. 2013;53:69–76.

    Article  CAS  PubMed  Google Scholar 

  94. Högestätt ED, Jönsson BA, Ermund A, et al. Conversion of acetaminophen to the bioactive N-acylphenolamine AM404 via fatty acid amide hydro- lase-dependent arachidonic acid conjugation in the nervous system. J Biol Chem. 2005;280:31405–12.

    Article  PubMed  CAS  Google Scholar 

  95. Schultz ST, Klonoff-Cohen HS, Wingard DL, et al. Acetaminophen (paracetamol) use, measles-mumps-rubella vaccination, and autistic disorder: the results of a parent survey. Autism. 2008;12(3):293–307.

    Article  PubMed  Google Scholar 

  96. Fleury-Teixeira P, Caixeta FV, Ramires da Silva LC, et al. Effects of CBD-enriched cannabis sativa extract on autism spectrum disorder symptoms: an observational study of 18 participants undergoing compassionate use. Front Neurol. 2019;10:1145.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Takarae Y, Sweeney J. Neural hyperexcitability in autism spectrum disorders. Brain Sci. 2017;7:129.

    Article  PubMed Central  CAS  Google Scholar 

  98. Zamberletti E, Gabaglio M, Parolaro D. The endocannabinoid system and autism spectrum disorders: insights from animal models. Int J Mol Sci. 2017;18:1916.

    Article  PubMed Central  CAS  Google Scholar 

  99. Ajram LA, Horder J, Mendez MA, et al. Shifting brain inhibitory balance and connectivity of the prefrontal cortex of adults with autism spectrum disorder. Transl Psychiatry. 2017;7(5):e1137.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  100. Horder J, Lavender T, Mendez MA, et al. Reduced subcortical glutamate/glutamine in adults with autism spectrum disorders: a [1H]MRS study. Transl Psychiatry. 2013;3:e279.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Bar-Lev Schleiber L, Mechoulam R, Saban N, et al. Real life experience of medical cannabis treatment in autism: analysis of safety and efficacy. Sci Rep. 2019;9(1):1–7.

    Google Scholar 

  102. Chez MG, Chang M, Krasne V, et al. Frequency of epileptiform EEG abnormalities in a sequential screening of autistic patients with no known clinical epilepsy from 1996-2005. Epilepsy Behav. 2006;8:267–71.

    Article  PubMed  Google Scholar 

  103. Markam K, Markam H. The intense world theory- a unifying theory of the neurobiology of autism. Front Hum Neurosci. 2010;4:224.

    Google Scholar 

  104. Meyer-Lindenberg A, Domes G, Kirsch P, Heinrichs M. Oxytocin and vasopressin in the human brain: social neuropeptides for translational medicine. Nat Rev Neurosci. 2011;12:524.

    Article  CAS  PubMed  Google Scholar 

  105. Goines PE, Ashwood P. Cytokine dysregulation in autism spectrum disorders (ASD): possible role of the environment. Neurotoxicol Teratol. 2013;36:67–81.

    Article  CAS  PubMed  Google Scholar 

  106. Schultz ST. Can autism be triggered by acetaminophen activation of the endocannabinoid system? Acta Neurobiol Exp. 2010;70:227–31.

    Google Scholar 

  107. Ashwood P, Krakowiak P, Hertz-Picciotto I, et al. Elevated plasma cytokines in autism spectrum disorders provide evidence of immune dysfunction and are associated with impaired behavioral outcome. Brain Behav Immun. 2011;25(1):40–5.

    Article  CAS  PubMed  Google Scholar 

  108. Emanuele E, Orsi P, Bosco M, et al. Low-grade endotoxemia in patients with severe autism. Neurosci Lett. 2010;471(3):162–5.

    Article  CAS  PubMed  Google Scholar 

  109. Krakowiak P, Goines PE, Tancredi DJ, et al. Neonatal cytokine profiles associated with Autism Spectrum Disorder. Biol Psychiatry. 2017;81(5):442–51.

    Article  CAS  PubMed  Google Scholar 

  110. Li X, Chauhn A, Shiekh AM, et al. Elevated immune response in the brain of autistic patients. J Neuroimmunol. 2009;207(1-2):111–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  111. Abdallah MW, Larsen N, Grove J. Amniotic fluid chemokines and autism spectrum disorders: an exploratory study utilizing a Danish Historic Birth Cohort. Brain Behav Immun. 2012;26(1):170–6.

    Article  CAS  PubMed  Google Scholar 

  112. Abdallah MW, Larsen N, Grove J, et al. Amniotic fluid inflammatory cytokines: potential markers of immunologic dysfunction in autism spectrum disorders. World J Biol Psychiatry. 2013;14(7):528–38.

    Article  PubMed  Google Scholar 

  113. Brown AS, Sourander A, Hinkka-Yli-Salomaki S, et al. Elevated maternal C-Reactive Protein and autism in a national birth cohort. Mol Psychiatry. 2014;19(2):259–64.

    Article  CAS  PubMed  Google Scholar 

  114. Goines PE, Croen LA, Braunschweig D, et al. Increased midgestational IFN-γ, IL-4 and IL-5 in women bearing a child with autism: a case-control study. Mol Autism. 2011;2:13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  115. Hornig M, Briese T, Buie T, et al. Lack of association between measles virus vaccine and autism with enteropathy: a case–control study. PLoS One. 2008;3:e3140.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Jyonouchi H, Sun S, Le H. Proinflammatory and regulatory cytokine production associated with innate and adaptive immune responses in children with autism spectrum disorders and developmental regression. J Neuroimmunol. 2001;120:170–9.

    Article  CAS  PubMed  Google Scholar 

  117. Malik M, Sheikh AM, Wen G, et al. Expression of inflammatory cytokines, Bcl2 and cathepsin D are altered in lymphoblasts of autistic subjects. Immunobiology. 2011;216:80–5.

    Article  CAS  PubMed  Google Scholar 

  118. Heiss CN, Olofsson LE. The role of the gut microbiota in development, function and disorders of the central nervous system and the enteric nervous system. J Neuroendocrinol. 2019;31(5):e12684.

    Article  PubMed  CAS  Google Scholar 

  119. Srikantha P, Mohajeri MH. The possible role of the microbiota-gut-brain-axis in autism spectrum disorder. Int J Mol Sci. 2019;20(9):2115.

    Article  CAS  PubMed Central  Google Scholar 

  120. Parracho HM, Bingham MO, Gibson GR, et al. Differences between the gut microflora of children with autistic spectrum disorders and that of healthy children. J Med Microbiol. 2005;54:987–91.

    Article  PubMed  Google Scholar 

  121. Carissimi C, Laudadio I, Palone F, et al. Functional analysis of gut microbiota and immunoinflammation in children with autism spectrum disorders. Dig Liver Dis. 2019;51(10):1366–74.

    Article  PubMed  Google Scholar 

  122. Martin CR, Osadchiy V, Kalani A, Mayer EA. The brain-gut-microbiome axis. Cell Mol Gastroenterol Hepatol. 2018;6(2):133–48.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Fiorentino M, Sapone A, Senger S, et al. Blood-brain barrier and intestinal epithelial barrier alterations in autism spectrum disorders. Mol Autism. 2016;7:49.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  124. Kang DW, Adams JB, Coleman DM, et al. Long-term benefit of microbiota transfer therapy on autism symptoms and gut microbiota. Sci Rep. 2019;9(1):5821.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  125. Aran A, Cassuto H, Lubotzky A, et al. Brief report: Cannabidiol-rich cannabis in children with autism spectrum disorder and severe behavioral problems-a retrospective feasibility study. J Autism Dev Disord. 2019b;49(3):1284–8.

    Article  PubMed  Google Scholar 

  126. Karhson DS, Krasinska KM, Ahloy Dallaire J, et al. Plasma anandamide concentrations are lower in children with autism spectrum disorder. Mol Autism. 2018;9:18.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  127. Mazahery H, Stonehouse W, Delshad M, et al. Relationship between Long Chain n-3 Polyunsaturated fatty acids and Autism Spectrum Disorder: systematic review and meta-analysis of case-control and randomised controlled trials. Nutrients. 2017;9:155.

    Article  PubMed Central  CAS  Google Scholar 

  128. Huang Y, Iosif A-M, Hansen RL, Schmidt RJ. Maternal polyunsaturated fatty acids and risk for autism spectrum disorder in the MARBLES high-risk study. Autism. 2020;24(5):1191–200.

    Article  PubMed  Google Scholar 

  129. Földy C, Malenka RC, Südhof TC. Autism-associated neuroligin-3 mutations commonly disrupt tonic endocannabinoid signaling. Neuron. 2013;78(3):498–509.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  130. Wei D, et al. Endocannabinoid signaling mediates oxytocin-driven social reward. Proc Natl Acad Sci. 2015;112:14084–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  131. Lin IF, et al. The effect of intranasal oxytocin versus placebo treatment on the autonomic responses to human sounds in autism: a single-blind, randomized, placebo-controlled, crossover design study. Mol Autism. 2014;5:20.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  132. Romano A, Micioni Di Bonaventura MV, Gallelli CA, et al. Oleoylethanolamide decreases frustration stress-induced binge-like eating in female rats. Neuropsychopharmacology. 2020;45:1931–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Salzman C, van der Kolk BA, Shader R. Marijuana and hostility in a small group setting. Am J Psychiatry. 1976;133(9):1029–33.

    Article  CAS  PubMed  Google Scholar 

  134. Tart CT. Marijuana intoxication common experiences. Nature 1970; 226(5247): 701–04.

    Google Scholar 

  135. Marco EM, Rapino C, Caprioli A, et al. Social encounter with a novel partner in adolescent rats: activation of the central endocannabinoid system. Behav Brain Res. 2011;220:4314–22.

    Article  CAS  Google Scholar 

  136. Marco EM, Scattoni ML, Rapino C, et al. Emotional, endocrine and brain anandamide response to social challenge in infant male rats. Psychoneuroimmunology. 2013;38:2152–62.

    CAS  Google Scholar 

  137. Sciolino NR, Bortolato M, Einstein SA, et al. Social isolation and chronic handling alter endocannabinoid signaling and behavioural reactivity to context in adult rats. Neuroscience. 2010;168:371–86.

    Article  CAS  PubMed  Google Scholar 

  138. Kerr DM, Gilmartin A, Roche M. Pharmacological inhibition of fatty acid amide hydrolase attenuates social behavioural deficits in male rats prenatally exposed to valproic acid. Pharm Res. 2016;113:228–35.

    Article  CAS  Google Scholar 

  139. Kerr DM, Downey L, Conboy M, et al. Alterations in the endocannabinoid system in the rat valproic acid model of autism. Behav Brain Res. 2013;249:124–32.

    Article  CAS  PubMed  Google Scholar 

  140. Moreira FA, Kaiser N, Monory K, Lutz B. Reduced anxiety-like behaviour induced by genetic and pharmacological inhibition of the endocannabinoid-degrading enzyme fatty acid amide hydrolase (FAAH) is mediated by CB1 receptors. Neuropharmacology. 2008;54(1):141–50.

    Article  CAS  PubMed  Google Scholar 

  141. Seillier A, Martinez AA, Giuffrida A. Phencyclidine-induced social withdrawal results from deficient stimulation of cannabinoid CB (1) receptors: implications for schizophrenia. Neuropsychopharmacology. 2013;38(9):1816–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  142. Trezza V, Damsteegt R, Manduca A, et al. Endocannabinoids in amygdala and nucleus accumbens mediate social play reward in adolescent rats. J Neurosci. 2012;32(43):14899–908.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Gunduz-Cinar O, MacPherson KP, Cinar R, et al. Convergent translational evidence of a role for anandamide in amygdala-mediated fear extinction, threat processing and stress-reactivity. Mol Psychiatry. 2013;18(7):813–23.

    Article  CAS  PubMed  Google Scholar 

  144. Phan KL, Angstadt M, Golden J, et al. Cannabinoid modulation of amygdala reactivity to social signals of threat in humans. J Neurosci. 2008;28(10):2313–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Hosie S, Malone DT, Liu S, et al. Altered amygdala excitation and CB1 receptor modulation of aggressive behavior in the neuroligin-3R451C mouse model of autism. Front Cell Neurosci. 2018;12:234.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Chakrabarti B, Baron-Cohen S. Variation in the human cannabinoid receptor CNR1 gene modulates gaze duration for happy faces. Mol Autism. 2011;2:10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  147. Chakrabarti B, Kent L, Suckling J, et al. Variations in the human cannabinoid receptor (CNR1) gene modulate striatal responses to happy faces. Eur J Neurosci. 2006;23:1944–8.

    Article  PubMed  Google Scholar 

  148. Domschke K, Dannlowski U, Ohrmann P, et al. Cannabinoid receptor 1 (CNR1) gene: Impact on antidepressant treatment response and emotion processing in major depression. Eur Neuropsychopharmacol. 2008;18:751–9.

    Article  CAS  PubMed  Google Scholar 

  149. Jaramillo TC, Liu S, Pettersen A, et al. Autism-related neuroligin-3 mutation alters social behavior and spatial learning. Autism Res. 2014;7(2):264–72.

    Article  PubMed  PubMed Central  Google Scholar 

  150. Schultz S, Siniscalco D. Endocannabinoid system involvement in autism spectrum disorder: an overview with potential therapeutic applications. AIMS Mol Sci. 2019;6:27–37.

    Article  CAS  Google Scholar 

  151. Siniscalco D, Sapone A, Giordano C, et al. Cannabinoid receptor type 2, but not type 1, is up-regulated in peripheral blood mononuclear cells of children affected by autistic disorders. J Autism Dev Disord. 2013;43:2686–95.

    Article  PubMed  Google Scholar 

  152. Brigida AL, Schultz S, Cascone M, et al. Endocannabinoid signal dysregulation in autism spectrum disorders: a correlation link between inflammatory state and neuro-immune alterations. Int J Mol Sci. 2017;18(7):1425.

    Article  PubMed Central  CAS  Google Scholar 

  153. Veilleux A, Di Marzo V, Silvestri C. The expanded endocannabinoid system/endocannabinoidome as a potential target for treating diabetes mellitus. Curr Diab Rep. 2019;19(11):117.

    Article  CAS  PubMed  Google Scholar 

  154. Cani PD, Plovier H, Van Hul M, et al. Endocannabinoids — at the crossroads between the gut microbiota and host metabolism. Nat Rev Endocrinol. 2016;12(3):133–43.

    Article  CAS  PubMed  Google Scholar 

  155. Vaughn LK, Denning G, Stuhr KL, et al. Endocannabinoid signalling: has it got rhythm? Br J Pharmacol. 2010;160(3):530–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  156. Glickman G. Circadian rhythms and sleep in children with autism. Neurosci Biobehav Rev. 2010;34:755–68.

    Article  PubMed  Google Scholar 

  157. Soltys J, Yushak M, Mao-Draayer Y. Regulation of neural progenitor cell fate by anandamide. Biochem Biophys Res Commun. 2010;400:21–6.

    Article  CAS  PubMed  Google Scholar 

  158. Campos AC, Ortega Z, Palazuelos J, et al. The anxiolytic effect of cannabidiol on chronically stressed mice depends on hippocampal neurogenesis: involvement of the endocannabinoid system. Int J Neuropsychopharmacol. 2013;16(6):1407–19.

    Article  CAS  PubMed  Google Scholar 

  159. Sales AJ, Fogaca MV, Sartim AG, et al. Cannabidiol induces rapid and sustained antidepressant-like effects through increased BDNF signaling and synaptogenesis in the prefrontal cortex. Mol Neurobiol. 2019;56(2):1070–81.

    Article  CAS  PubMed  Google Scholar 

  160. Mori MA, Meyer E, Soares LM, et al. Cannabidiol reduces neuroinflammation and promotes neuroplasticity and functional recovery after brain ischemia. Prog Neuro-Psychopharmacol Biol Psychiatry. 2017;75:94–105.

    Article  CAS  Google Scholar 

  161. Ruiz-Valdpenas L, Martinez-Orgado JA, Benito C, et al. Cannabidiol reduces lipopolysaccharide-induced vascular changes and inflammation in the mouse brain: an intravital microscopy study. J Neuroinflammation. 2011;8(1):5.

    Article  CAS  Google Scholar 

  162. Mecha M, Torrao AS, Mestre L, et al. Cannabidiol protects oligodendrocyte progenitor cells from inflammation-induced apoptosis by attenuating endoplasmic reticulum stress. Cell Death Dis. 2012;3:e331.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  163. Ryan D, Drysdale AJ, Lafourcade C, et al. Cannabidiol targets mitochondria to regulate intracellular Ca 2+ levels. J Neurosci. 2009;29(7):2053–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  164. Sun S, Hu F, Wu J, Zhang S. Cannabidiol attenuates OGD/R-induced damage by enhancing mitochondrial bioenergetics and modulating glucose metabolism via pentose-phosphate pathway in hippocampal neurons. Redox Biol. 2017;11:577–85.

    Article  CAS  PubMed  Google Scholar 

  165. Sato A. mTOR, a Potential Target to Treat Autism Spectrum Disorder. CNS Neurol Disord Drug Targets. 2016;15(5):533–43.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  166. Damstra-Oddy JL, et al. Phytocannabinoid-dependent mTORC1 regulation is dependent upon inositol polyphosphate multikinase activity. Br J Pharmacol. 2021;178(5):1149–63.

    Article  CAS  PubMed  Google Scholar 

  167. Sartim AG, Sales AJ, Guimarães FS, Joca SR. Hippocampal mammalian target of rapamycin is implicated in stress-coping behavior induced by cannabidiol in the forced swim test. J Psychopharmacol. 2018;32(8):922–31.

    Article  CAS  PubMed  Google Scholar 

  168. Hudson R, Rushlow W, Laviolette SR. Phytocannabinoids modulate emotional memory processing through interactions with the ventral hippocampus and mesolimbic dopamine system: implications for neuropsychiatric pathology. Psychopharmacology. 2018;235(2):447–58.

    Article  CAS  PubMed  Google Scholar 

  169. Vrechi T, et al. Cannabidiol induces autophagy via ERK1/2 activation in neural cells. Sci Rep. 2021;11(1):5434.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  170. Deutsch DG. A personal retrospective: elevating anandamide (AEA) by targeting fatty acid amide hydrolase (FAAH) and the fatty acid binding proteins (FABPs). Front Pharmacol. 2016;7:370.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  171. Kaplan JS, Stella N, Catterall WA, Westenbroek RE. Cannabidiol attenuates seizures and social deficits in a mouse model of Dravet Syndrome. Proc Natl Acad Sci. 2017;114:11229–34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  172. Hind WH, England TJ, O’Sullivan SE. Cannabidiol protects an in vitro model of the blood–brain barrier from oxygen-glucose deprivation via PPARγ and 5- HT1A receptors. Br J Pharmacol. 2016;173:815–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  173. Fogaca MV, Campos AC, Coelho LD, et al. The anxiolytic effects of cannabidiol in chronically stressed mice are mediated by the endocannabinoid system: Role of neurogenesis and dendritic remodeling. Neuropharmacology. 2018;135:22–33.

    Article  CAS  PubMed  Google Scholar 

  174. Michielan A, D’Inca R. Intestinal permeability in inflammatory bowel disease: pathogenesis, clinical evaluation, and therapy of leaky gut. Mediat Inflamm. 2015;2015:628157.

    Article  CAS  Google Scholar 

  175. Camilleri M, Lasch K, Zhou W. Irritable bowel syndrome: methods, mechanisms, and pathophysiology. The confluence of increased permeability, inflammation, and pain in irritable bowel syndrome. Am J Physiol Gastrointest Liver Physiol. 2012;303(7):G775–85.

    Article  CAS  PubMed  Google Scholar 

  176. Bertiaux-Vandaële N, Youmba SB, Belmonte L, et al. The expression and the cellular distribution of the tight junction proteins are altered in irritable bowel syndrome patients with differences according to the disease subtype. Am J Gastroenterol. 2011;106(12):2165–73.

    Article  PubMed  CAS  Google Scholar 

  177. Hasenoehrl C, Storr M, Schicho R. Cannabinoids for treating inflammatory bowel diseases: where are we and where do we go? Expert Rev Gastroenterol Hepatol. 2017;11(4):329–37.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Alhamoruni A, Lee AC, Wright KL, et al. Pharmacological effects of cannabinoids on the Caco-2 cell culture model of intestinal permeability. J Pharmacol Exp Ther. 2010;335(1):92–102.

    Article  CAS  PubMed  Google Scholar 

  179. Couch DG, Tasker C, Theophilidou E, et al. Cannabidiol and palmitoylethanolamide are anti-inflammatory in the acutely inflamed human colon. Clin Sci (Lond). 2017;131:2611–26.

    Article  CAS  Google Scholar 

  180. D’Argenio G, Valenti M, Scaglione G, et al. Up-regulation of anandamide levels as an endogenous mechanism and a pharmacological strategy to limit colon inflammation. FASEB J. 2006;20:568–70.

    Article  PubMed  CAS  Google Scholar 

  181. Hernández-Cervantes R, Méndez-Díaz M, Prospéro-García Ó, Morales-Montor J. Immunoregulatory role of cannabinoids during infectious disease. Neuroimmunomodulation. 2017;24:183–99.

    Article  PubMed  CAS  Google Scholar 

  182. Kosgodage US, Matewele P, Awamaria B, et al. Cannabidiol is a novel modulator of bacterial membrane vesicles. Front Cell Infect Microbiol. 2019;9:324.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  183. Bergamaschi MM, Queiroz RH, Chagas MH, et al. Cannabidiol reduces the anxiety induced by simulated public speaking in treatment-naïve social phobia patients. Neuropsychopharmacology. 2011;36(6):1219–26.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Shannon S, Lewis N, Lee H, Hughes S. Cannabidiol in anxiety and sleep: a large case series. Perm J. 2019;23:18–41.

    Article  PubMed  PubMed Central  Google Scholar 

  185. Devnisky O, Cilio MR, Fernandez-Ruiz J, et al. Cannabidiol: pharmacology and potential therapeutic role in epilepsy and other neuropsychiatric disorders. Epilepsia. 2014;55:791–802.

    Article  CAS  Google Scholar 

  186. Tzadok M, Uliel-Siboni S, Linder I, et al. CBD-enriched medical cannabis for intractable pediatric epilepsy – the current Israeli experience. Seizure. 2016;35:41–4.

    Article  PubMed  Google Scholar 

  187. Barchel D, Stolar O, De-Haan T, et al. Oral cannabidiol use in children with autism spectrum disorder to treat related symptoms and co-morbidities. Front Pharmacol. 2019;9:1521.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  188. Cooper RE, Williams E, Seegobin S, et al. Cannabinoids in attention-deficit/hyperactivity disorder: a randomised-controlled trial. Eur Neuropsychopharmacol. 2017;27:795–808.

    Article  CAS  PubMed  Google Scholar 

  189. Devinsky O, Cross JH, Laux L, Marsh E, Miller I, Nabbout R, et al.; Cannabidiol in Dravet Syndrome Study Group. Trial of cannabidiol for drug-resistant seizures in the Dravet syndrome. N Engl J Med. 2017;376:2011–20.

    Google Scholar 

  190. Devinsky O, Patel AD, Cross JH, Villanueva V, Wirrell EC, Privitera M, et al. GWPCARE3 Study Group. Efect of cannabidiol on drop seizures in the Lennox–Gastaut syndrome. N Engl J Med. 2018;378:1888–97.

    Article  CAS  PubMed  Google Scholar 

  191. FDA. FDA Briefing Document Peripheral and Central Nervous System Drugs Advisory Committee Meeting April 19, 2018. NDA 210365 Cannabidiol. Available at: https://www.fda.gov/media/112565/download. Accessed 2 Nov 2019.

  192. Lattanzi S, Brigo F, Trinka E, et al. Efficacy and safety of cannabidiol in epilepsy: a systematic review and meta-analysis. Drugs. 2018;78(17):1791–804.

    Article  CAS  PubMed  Google Scholar 

  193. Lattanzi S, Trinka E, Russo E, et al. Cannabidiol as adjunctive treatment of seizures associated with Lennox-Gastaut syndrome and Dravet syndrome. Drugs Today (Barc). 2019;55(3):177–96.

    Article  CAS  Google Scholar 

  194. Thiele EA, Marsh ED, French JA, et al. GWPCARE4 Study Group. Cannabidiol in patients with seizures associated with Lennox–Gastaut syndrome (GWPCARE4): a randomised, double-blind, placebo controlled phase 3 trial. Lancet. 2018;391:1085–96.

    Article  CAS  PubMed  Google Scholar 

  195. Caddeo A, Trampetti R, Messina G, Porta E, Di Fede E, Tartarelli R, et al. A neuroendocrine therapeutic approach with the Pineal Hormone Melatonin, Cannabidiol and Oxytocin (mco regimen) in the treatment of the autism spectrum disorders. J Immun Allergy. 2020;1(2):1–7.

    Google Scholar 

  196. Gururajan A, Taylor DA, Malone DT. Effect of cannabidiol in a MK-801-rodent model of aspects of schizophrenia. Behav Brain Res. 2011;222(2):299–308.

    Article  CAS  PubMed  Google Scholar 

  197. Osborne AL, Solowij N, Babic I, Weston-Green K. Improved social interaction recognition and working memory with cannabidiol treatment in a prenatal infection (poly I:C) rat model. Neuropsychopharmacology. 2017;42:1447–57.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  198. Almeida V, Levin R, Fiel F, et al. Cannabidiol exhibits anxiolytic but not antipsychotic property evaluated in the social interaction test. Prog Neuro-Psychopharmacol Biol Psychiatry. 2013;41:30–5.

    Article  CAS  Google Scholar 

  199. Rong C, Lee Y, Carmona DS, et al. Cannabidiol in medical marijuana: research vistas and potential opportunities. Pharmacol Res. 2017;121:213–8.

    Article  CAS  PubMed  Google Scholar 

  200. Pupin A, Mendes J, Milani H, et al. Influence of single and repeated cannabidiol administration on emotional behaviour and markers of cell proliferation and neurogenesis in non-stressed mice. Prog Neuro-Psychopharmacol Biol Psychiatry. 2016;64:27–34.

    Article  CAS  Google Scholar 

  201. Guimarães FS, Graeff FG, Chiaretti TM, Zuardi A. Antianxiety effect of cannabidiol in the elevated plus-maze. Psychopharmacology. 1990;100:558–9.

    Article  PubMed  Google Scholar 

  202. Lemos JI, Restell LB, Guimaraes FS. Involvement of the prelimbic prefrontal cortex on cannabidiol-induced attenuation of contextual conditioned fear in rats. Behav Brain Res. 2010;207(1):105–11.

    Article  CAS  PubMed  Google Scholar 

  203. Moreira FA, Aguiar DC, Guimaraes FS. Anxiolytic-like effect of cannabidiol in the rat Vogel conflict test. Prog Neuro-Psychopharmacol Biol Psychiatry. 2006;30(8):1466–71.

    Article  CAS  Google Scholar 

  204. Resstel LB, Joca SR, Moreira FA, et al. Effects of cannabidiol and diazepam on behavioural and cardiovascular responses induced by contextual conditioned fear in rats. Behav Brain Res. 2006;172:294–8.

    Article  PubMed  Google Scholar 

  205. Resstel LB, Tavares RF, Lisboa SF, et al. 5-HT1A receptors are involved in the cannabidiol-induced attenuation of behavioural and cardiovascular responses to acute restraint stress in rats. Br J Pharmacol. 2009;156(1):181–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  206. Maione S, Piscitelli F, Gatta L. Non-psychoactive cannabinoids modulate the descending pathway of antinociception in anaesthetized rats through several mechanisms of action. Br J Pharmacol. 2011 Feb;162(3):584–96.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  207. Huber KM, Gallagher SM, Warren ST, Bear MF. Altered synaptic plasticity in a mouse model of fragile X mental retardation. Proc Natl Acad Sci U S A. 2002;99(11):7746–50.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  208. Aran A, Harel M, Cassuto H, et al. Cannabinoid treatment for autism: a proof-of-concept randomized trial. Mol Autism. 2021;12:6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kuester G. XXIII world congress in neurology. 2017, Sept 16–21, Kyoto, Japan.

    Google Scholar 

  210. Fusar-Poli L, Cavone V, Tinacci S, et al. Cannabinoids for people with ASD: a systematic review of published and ongoing studies. Brain Sci. 2020;10(9):572.

    Article  CAS  PubMed Central  Google Scholar 

  211. Grabacka M, Pierzchalska M, Dean M, Reiss K. Regulation of ketone body metabolism and the role of PPARα. Int J Mol Sci. 2016;17:2093.

    Article  PubMed Central  CAS  Google Scholar 

  212. Liu H, Talalay P, Fahey JW. Biomarker-guided strategy for treatment of autism spectrum disorder. CNS Neurol Disord Drug Targets. 2016;15:602–13.

    Article  CAS  PubMed  Google Scholar 

  213. Casares L, García V, Garrido-Rodríguez M et al. Cannabidiol induces antioxidant pathways in keratinocytes by targeting BACH1. Redox Biol. 2020;28:101321.

    Google Scholar 

  214. Galán-Ganga M, Del Rio R, Jimenez-Moreno N, et al. Cannabinoid CB2 receptor modulation by the transcription factor NRF2 is specific in microglial cells. Cell Mol Neurobiol. 2020;40:167.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

O’Brien, K., Blair, P. (2021). Autism Spectrum Disorder. In: Medicinal Cannabis and CBD in Mental Healthcare. Springer, Cham. https://doi.org/10.1007/978-3-030-78559-8_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78559-8_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78558-1

  • Online ISBN: 978-3-030-78559-8

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics