Skip to main content

Secondary Osteoporosis

  • Chapter
  • First Online:
Osteoporosis Treatment

Abstract

Osteoporosis is described as secondary when low bone mineral density or an increased risk of fragility fracture is caused by factors other than aging or postmenopausal status. A large number of factors cause secondary osteoporosis, including adverse effects of drug therapy, endocrine disorders, immobilization, rheumatological conditions, disorders of the gastrointestinal or biliary tract, haematological conditions and renal disease. The prevalence of secondary causes of osteoporosis varies according to the population studied, as many as 50–55% of men and 40–50% of premenopausal women presenting with established osteoporosis have been found to have other conditions that may have contributed to their bone loss. This chapter emphasizes the importance of identification and treatment of secondary osteoporosis and discusses familiar and less well-known causes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Rubin MR, et al. Idiopathic osteoporosis in premenopausal women. Osteoporos Int. 2005;16:526–33.

    Article  PubMed  Google Scholar 

  2. Walker-Bone K. Recognizing and treating secondary osteoporosis. Nat Rev Rheumatol. 2012;8:480–92.

    Article  CAS  PubMed  Google Scholar 

  3. Harper KD, Weber TJ. Secondary osteoporosis: diagnostic considerations. Endocrinol Metab Clin N Am. 1998;27:325–48.

    Article  CAS  Google Scholar 

  4. Caplan A, Fett N, Rosenbach M, Werth VP, Micheletti RG. Prevention and management of glucocorticoid-induced side effects: a comprehensive review: a review of glucocorticoid pharmacology and bone health. J Am Acad Dermatol. 2017;76:1–9.

    Article  PubMed  Google Scholar 

  5. Kaltsas G, Makras P. Skeletal diseases in Cushing’s syndrome: osteoporosis versus arthropathy. Neuroendocrinology. 2010;92:60–4.

    Article  CAS  PubMed  Google Scholar 

  6. Van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C. Use of oral corticosteroids and risk of fractures. J Bone Miner Res. 2000;15:993–1000.

    Article  PubMed  Google Scholar 

  7. Hoes JN, Jacobs JWG, Verstappen SMM, Bijlsma JWJ, Van Der Heijden GJMG. Adverse events of low- to medium-dose oral glucocorticoids in inflammatory diseases: a meta-analysis. Ann Rheum Dis. 2009;68:1833–8.

    Article  CAS  PubMed  Google Scholar 

  8. Weinstein RS. Glucocorticoid-induced bone disease. N Engl J Med. 2011;365:62–70.

    Article  CAS  PubMed  Google Scholar 

  9. Overman RA, Yeh JY, Deal CL. Prevalence of oral glucocorticoid usage in the United States: a general population perspective. Arthritis Care Res. 2013;65:294–8.

    Article  Google Scholar 

  10. Walsh LJ, Wong CA, Pringle M, Tattersfield AE. Use of oral corticosteroids in the community and the prevention of secondary osteoporosis: a cross sectional study. Br Med J. 1996;313:344–6.

    Article  CAS  Google Scholar 

  11. Briot K, Roux C. Glucocorticoid-induced osteoporosis. RMD Open. 2015;1:e000014.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Compston J. Glucocorticoid-induced osteoporosis: an update. Endocrine. 2018;61:7–16.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. LoCascio V, et al. Bone loss in response to long-term glucocorticoid therapy. Bone Miner. 1990;8:39–51.

    Article  CAS  PubMed  Google Scholar 

  14. Van Staa TP, Leufkens HGM, Abenhaim L, Zhang B, Cooper C. Oral corticosteroids and fracture risk: relationship to daily and cumulative doses. Rheumatology. 2000;39:1383–9.

    Article  PubMed  Google Scholar 

  15. Oshagbemi OA, et al. Use of high-dose intermittent systemic glucocorticoids and the risk of fracture in patients with chronic obstructive pulmonary disease. Bone. 2018;110:238–43.

    Article  CAS  PubMed  Google Scholar 

  16. Weinstein RS. Glucocorticoid-induced osteoporosis and osteonecrosis. Endocrinol Metab Clin N Am. 2012;41:595–611.

    Article  Google Scholar 

  17. Robinson DE, Dennison EM, Cooper C, van Staa TP, Dixon WG. A review of the methods used to define glucocorticoid exposure and risk attribution when investigating the risk of fracture in a rheumatoid arthritis population. Bone. 2016;90:107–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Robinson DE, van Staa TP, Dennison EM, Cooper C, Dixon WG. The limitations of using simple definitions of glucocorticoid exposure to predict fracture risk: a cohort study. Bone. 2018;117:83–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. O’Brien CA, et al. Glucocorticoids act directly on osteoblasts and osteocytes to induce their apoptosis and reduce bone formation and strength. Endocrinology. 2004;145:1835–41.

    Article  PubMed  CAS  Google Scholar 

  20. Hofbauer LC, Hamann C, Ebeling PR. Approach to the patient with secondary osteoporosis. Eur J Endocrinol. 2010;162:1009–20.

    Article  CAS  PubMed  Google Scholar 

  21. Weinstein RS, Jilka RL, Michael Parfitt A, Manolagas SC. Inhibition of osteoblastogenesis and promotion of apoptosis of osteoblasts end osteocytes by glucocorticoids potential mechanisms of their deleterious effects on bone. J Clin Invest. 1998;102(2):274–82. https://doi.org/10.1172/JCI2799.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Weinstein RS. Glucocorticoids, osteocytes, and skeletal fragility: the role of bone vascularity. Bone. 2010;46:564–70.

    Article  CAS  PubMed  Google Scholar 

  23. Chotiyarnwong P, McCloskey EV. Pathogenesis of glucocorticoid-induced osteoporosis and options for treatment. Nat Rev Endocrinol. 2020;16:437–47.

    Article  PubMed  Google Scholar 

  24. Buckley L, Humphrey MB. Glucocorticoid-induced osteoporosis. N Engl J Med. 2018;379:2547–56.

    Article  PubMed  Google Scholar 

  25. Amiche MA, et al. Fracture risk in oral glucocorticoid users: a Bayesian meta-regression leveraging control arms of osteoporosis clinical trials. Osteoporos Int. 2016;27:1709–18.

    Article  CAS  PubMed  Google Scholar 

  26. Van Staa TP, Leufkens HGM, Cooper C. Use of inhaled corticosteroids and risk of fractures. J Bone Miner Res. 2001;16:581–8.

    Article  PubMed  Google Scholar 

  27. Bandeira F, et al. Doença óssea no hiperparatiroidismo primário. Arq Bras Endocrinol Metabol. 2014;58:553–61.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Bilezikian JP, et al. Guidelines for the management of asymptomatic primary hyperparathyroidism: summary statement from the fourth international workshop. J Clin Endocrinol Metab. 2014;99:3561–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Roschger P, et al. New observations on bone quality in mild primary hyperparathyroidism as determined by quantitative backscattered electron imaging. J Bone Miner Res. 2007;22:717–23.

    Article  PubMed  Google Scholar 

  30. Zoehrer R, et al. Bone quality determined by Fourier transform infrared imaging analysis in mild primary hyperparathyroidism. J Clin Endocrinol Metab. 2008;93:3484–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Szymczak J, Bohdanowicz-Pawlak A. Osteoprotegerin, RANKL, and bone turnover in primary hyperparathyroidism: the effect of parathyroidectomy and treatment with alendronate. Horm Metab Res. 2013;45:759–64.

    Article  CAS  PubMed  Google Scholar 

  32. Di Monaco M, Vallero F, Di Monaco R, Mautino F, Cavanna A. Primary hyperparathyroidism in elderly patients with hip fracture. J Bone Miner Metab. 2004;22:491–5.

    Article  PubMed  Google Scholar 

  33. Cipriani C, et al. Prevalence of kidney stones and vertebral fractures in primary hyperparathyroidism using imaging technology. J Clin Endocrinol Metab. 2015;100:1309–15.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Rubin MR, et al. The natural history of primary hyperparathyroidism with or without parathyroid surgery after 15 years. J Clin Endocrinol Metab. 2008;93:3462–70.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Vestergaard P, Mosekilde L. Cohort study on effects of parathyroid surgery on multiple outcomes in primary hyperparathyroidism. Br Med J. 2003;327:530–3.

    Article  Google Scholar 

  36. Bassett JHD, et al. Thyroid status during skeletal development determines adult bone structure and mineralization. Mol Endocrinol. 2007;21:1893–904.

    Article  CAS  PubMed  Google Scholar 

  37. Greenspan SL, Greenspan FS. The effect of thyroid hormone on skeletal integrity. Ann Intern Med. 1999;130:750–8.

    Article  CAS  PubMed  Google Scholar 

  38. Svare A, et al. Hyperthyroid levels of TSH correlate with low bone mineral density: the HUNT 2 study. Eur J Endocrinol. 2009;161:779–86.

    Article  CAS  PubMed  Google Scholar 

  39. Bauer DC, Ettinger B, Nevitt MC, Stone KL. Risk for fracture in women with low serum levels of thyroid-stimulating hormone. Ann Intern Med. 2001;134:561–8.

    Article  CAS  PubMed  Google Scholar 

  40. Vestergaard P, Mosekilde L. Hyperthyroidism, bone mineral, fracture risk—a meta-analysis. Thyroid. 2003;13:585–93.

    Article  PubMed  Google Scholar 

  41. Wejda B, Hintze G, Katschinski B, Olbricht T, Benker G. Hip fractures and the thyroid: a case-control study. J Intern Med. 1995;237:241–7.

    Article  CAS  PubMed  Google Scholar 

  42. Vestergaard P, Rejnmark L, Mosekilde L. Influence of hyper- and hypothyroidism, and the effects of treatment with antithyroid drugs and levothyroxine on fracture risk. Calcif Tissue Int. 2005;77:139–44.

    Article  CAS  PubMed  Google Scholar 

  43. Inzerillo AM, Epstein S. Osteoporosis and diabetes mellitus. Rev Endocr Metab Disord. 2004;5:261–8.

    Article  PubMed  Google Scholar 

  44. Epstein S, LeRoith D. Diabetes and fragility fractures—a burgeoning epidemic? Bone. 2008;43:3–6.

    Article  CAS  PubMed  Google Scholar 

  45. Nicodemus KK, Folsom AR. Type 1 and type 2 diabetes and incident hip fractures in postmenopausal women. Diabetes Care. 2001;24:1192–7.

    Article  CAS  PubMed  Google Scholar 

  46. Pan H, Wu N, Yang T, He W. Association between bone mineral density and type 1 diabetes mellitus: a meta-analysis of cross-sectional studies. Diabetes Metab Res Rev. 2014;30:531–42.

    Article  PubMed  Google Scholar 

  47. Ma L, et al. Association between bone mineral density and type 2 diabetes mellitus: a meta-analysis of observational studies. Eur J Epidemiol. 2012;27:319–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Burghardt AJ, et al. High-resolution peripheral quantitative computed tomographic imaging of cortical and trabecular bone microarchitecture in patients with type 2 diabetes mellitus. J Clin Endocrinol Metab. 2010;95:5045–55.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Farr JN, et al. In vivo assessment of bone quality in postmenopausal women with type 2 diabetes. J Bone Miner Res. 2014;29:787–95.

    Article  PubMed  Google Scholar 

  50. Hofbauer LC, Brueck CC, Singh SK, Dobnig H. Osteoporosis in patients with diabetes mellitus. J Bone Miner Res. 2007;22:1317–28.

    Article  CAS  PubMed  Google Scholar 

  51. Gennari L, et al. Circulating Sclerostin levels and bone turnover in type 1 and type 2 diabetes. J Clin Endocrinol Metab. 2012;97:1737–44.

    Article  CAS  PubMed  Google Scholar 

  52. Clarke BL, Khosla S. Androgens and bone. Steroids. 2009;74:296–305.

    Article  CAS  PubMed  Google Scholar 

  53. Snyder PJ, et al. Effect of testosterone treatment on volumetric bone density and strength in older men with low testosterone a controlled clinical trial. JAMA Intern Med. 2017;177:471–9.

    Article  PubMed  PubMed Central  Google Scholar 

  54. Emkey GR. Secondary osteoporosis. In: Encyclopedia of endocrine diseases. 2018. p 253–269. https://doi.org/10.1016/B978-0-12-801238-3.65820-8.

  55. Shahinian VB, Kuo YF, Freeman JL, Goodwin JS. Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med. 2005;352:154–64.

    Article  CAS  PubMed  Google Scholar 

  56. Ali T, Lam D, Bronze MS, Humphrey MB. Osteoporosis in inflammatory bowel disease. Am J Med. 2009;122:599–604.

    Article  PubMed  PubMed Central  Google Scholar 

  57. Szafors P, et al. Risk of fracture and low bone mineral density in adults with inflammatory bowel diseases. A systematic literature review with meta-analysis. Osteoporos Int. 2018;29:2389–97.

    Article  CAS  PubMed  Google Scholar 

  58. Stockbrügger RW, et al. Discordance between the degree of osteopenia and the prevalence of spontaneous vertebral fractures in Crohn’s disease. Aliment Pharmacol Ther. 2002;16:1519–27.

    Article  PubMed  Google Scholar 

  59. Ludvigsson JF, et al. Fracture risk in patients with inflammatory bowel disease: a nationwide population-based cohort study from 1964 to 2014. Am J Gastroenterol. 2019;114:291–304.

    Article  PubMed  Google Scholar 

  60. Van Staa TP, et al. Inflammatory bowel disease and the risk of fracture. Gastroenterology. 2003;125:1591–7.

    Article  PubMed  Google Scholar 

  61. Reinshagen M. Osteoporosis in inflammatory bowel disease. J Crohns Colitis. 2008;2:202–7.

    Article  PubMed  Google Scholar 

  62. Clowes JA, Riggs BL, Khosla S. The role of the immune system in the pathophysiology of osteoporosis. Immunol Rev. 2005;208:207–27.

    Article  CAS  PubMed  Google Scholar 

  63. Ulitsky A, et al. Vitamin D deficiency in patients with inflammatory bowel disease: association with disease activity and quality of life. J Parenter Enter Nutr. 2011;35:308–16.

    Article  CAS  Google Scholar 

  64. Lima CA. Risk factors for osteoporosis in inflammatory bowel disease patients. World J Gastrointest Pathophysiol. 2015;6:210.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Bianchi ML, Bardella MT. Bone in celiac disease. Osteoporos Int. 2008;19:1705–16.

    Article  PubMed  Google Scholar 

  66. Stenson WF, Newberry R, Lorenz R, Baldus C, Civitelli R. Increased prevalence of celiac disease and need for routine screening among patients with osteoporosis. Arch Intern Med. 2005;165:393–9.

    Article  PubMed  Google Scholar 

  67. Heikkilä K, Pearce J, Mäki M, Kaukinen K. Celiac disease and bone fractures: a systematic review and meta analysis. J Clin Endocrinol Metab. 2015;100:25–34.

    Article  PubMed  CAS  Google Scholar 

  68. Zanchi C, et al. Bone metabolism in celiac disease. J Pediatr. 2008;153:262–5.

    Article  CAS  PubMed  Google Scholar 

  69. Keaveny AP, Freaney R, McKenna MJ, Masterson J, O’Donoghue DP. Bone remodeling indices and secondary hyperparathyroidism in celiac disease. Am J Gastroenterol. 1996;91:1226–31.

    CAS  PubMed  Google Scholar 

  70. Valdimarsson T, Toss G, Löfman O, Ström M. Three years’ follow-up of bone density in adult coeliac disease: significance of secondary hyperparathyroidism. Scand J Gastroenterol. 2000;35:274–80.

    Article  CAS  PubMed  Google Scholar 

  71. Fiore CE, et al. Altered osteoprotegerin/RANKL ratio and low bone mineral density in celiac patients on long-term treatment with gluten-free diet. Horm Metab Res. 2006;38:417–22.

    Article  CAS  PubMed  Google Scholar 

  72. Kemppainen T, et al. Bone recovery after a gluten-free diet: a 5-year follow-up study. Bone. 1999;25:355–60.

    Article  CAS  PubMed  Google Scholar 

  73. Huusko TM, et al. Threefold increased risk of hip fractures with rheumatoid arthritis in Central Finland. Ann Rheum Dis. 2001;60:521–2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  74. Brennan SL, et al. Rheumatoid arthritis and incident fracture in women: a case-control study. BMC Musculoskelet Disord. 2014;15

    Google Scholar 

  75. Ferrari-Lacraz S, Ferrari S. Do RANKL inhibitors (denosumab) affect inflammation and immunity? Osteoporos Int. 2011;22:435–46.

    Article  CAS  PubMed  Google Scholar 

  76. Geusens PP, et al. The ratio of circulating osteoprotegerin to RANKL in early rheumatoid arthritis predicts later joint destruction. Arthritis Rheum. 2006;54:1772–7.

    Article  CAS  PubMed  Google Scholar 

  77. Terpos E, et al. Early effects of IL-6 receptor inhibition on bone homeostasis: a pilot study in women with rheumatoid arthritis. Clin Exp Rheumatol. 2011;29:921–5.

    PubMed  Google Scholar 

  78. Prieto-Alhambra D, et al. Ankylosing spondylitis confers substantially increased risk of clinical spine fractures: a nationwide case-control study. Osteoporos Int. 2014;26:85–91.

    Article  PubMed  Google Scholar 

  79. Nigil Haroon N, et al. Alterations of bone mineral density, bone microarchitecture and strength in patients with ankylosing spondylitis: a cross-sectional study using high-resolution peripheral quantitative computerized tomography and finite element analysis. Arthritis Res Ther. 2015;17:377.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  80. Nigil Haroon N, Sriganthan J, Al Ghanim N, Inman RD, Cheung AM. Effect of TNF-alpha inhibitor treatment on bone mineral density in patients with ankylosing spondylitis: a systematic review and meta-analysis. Semin Arthritis Rheum. 2014;44:155–61.

    Article  CAS  Google Scholar 

  81. Coimbra IB, Costallat LTL. Bone mineral density in systemic lupus erythematosus and its relation to age at disease onset, plasmatic estradiol and immunosuppressive therapy. Joint Bone Spine. 2003;70:40–5.

    Article  PubMed  Google Scholar 

  82. Yee CS, et al. Prevalence and predictors of fragility fractures in systemic lupus erythematosus. Ann Rheum Dis. 2005;64:111–3.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Zehnder Y, et al. Long-term changes in bone metabolism, bone mineral density, quantitative ultrasound parameters, and fracture incidence after spinal cord injury: a cross-sectional observational study in 100 paraplegic men. Osteoporos Int. 2004;15:180–9.

    Article  PubMed  Google Scholar 

  84. Frotzler A, et al. Osteoporosis in the lower extremities in chronic spinal cord injury. Spinal Cord. 2020;58:441–8.

    Article  PubMed  Google Scholar 

  85. Battaglino RA, Lazzari AA, Garshick E, Morse LR. Spinal cord injury-induced osteoporosis: pathogenesis and emerging therapies. Curr Osteoporos Rep. 2012;10:278–85.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Edwards WB, Schnitzer TJ, Troy KL. Bone mineral loss at the proximal femur in acute spinal cord injury. Osteoporos Int. 2013;24:2461–9.

    Article  CAS  PubMed  Google Scholar 

  87. Szollar M, Martin EME, Sartoris DJ, Parthemore JG, Deftos LJ. Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil. 1998;77:28–35.

    Article  CAS  PubMed  Google Scholar 

  88. Anderson D, Park AJ. Prophylactic treatment of osteoporosis after SCI: promising research, but not yet indicated. Spinal Cord Series Cases. 2019;5:25.

    Article  PubMed  PubMed Central  Google Scholar 

  89. Bryson JE, Gourlay ML. Bisphosphonate use in acute and chronic spinal cord injury: a systematic review. J Spinal Cord Med. 2009;32:215–25.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Bauman WA, et al. Zoledronic acid administration failed to prevent bone loss at the knee in persons with acute spinal cord injury: an observational cohort study. J Bone Miner Metab. 2015;33:410–21.

    Article  CAS  PubMed  Google Scholar 

  91. Gordon KE, Wald MJ, Schnitzer TJ. Effect of parathyroid hormone combined with gait training on bone density and bone architecture in people with chronic spinal cord injury. PM R. 2013;5:663–71.

    Article  PubMed  Google Scholar 

  92. Gifre L, et al. Denosumab increases sublesional bone mass in osteoporotic individuals with recent spinal cord injury. Osteoporos Int. 2016;27:405–10.

    Article  CAS  PubMed  Google Scholar 

  93. Gibson JC, Summers GD. Bone health in multiple sclerosis. Osteoporos Int. 2011;22:2935–49.

    Article  CAS  PubMed  Google Scholar 

  94. Bazelier MT, et al. Risk of fractures in patients with multiple sclerosis: a population-based cohort study. Neurology. 2012;78:1967–73.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. Bazelier MT, et al. The risk of fracture in patients with multiple sclerosis: the UK general practice research database. J Bone Miner Res. 2011;26:2271–9.

    Article  PubMed  Google Scholar 

  96. Dennison EM, et al. Effect of co-morbidities on fracture risk: findings from the Global Longitudinal Study of Osteoporosis in Women (GLOW). Bone. 2012;50:1288–93.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Gregson CL, et al. Disease-specific perception of fracture risk and incident fracture rates: GLOW cohort study. Osteoporos Int. 2014;25:85–95.

    Article  CAS  PubMed  Google Scholar 

  98. Kyle RA, et al. Review of 1027 patients with newly diagnosed multiple myeloma. Mayo Clin Proc. 2003;78:21–33.

    Article  PubMed  Google Scholar 

  99. Giuliani N, Bataille R, Mancini C, Lazzaretti M, Barillé S. Myeloma cells induce imbalance in the osteoprotegerin/osteoprotegerin ligand system in the human bone marrow environment. Blood. 2001;98:3527–33.

    Article  CAS  PubMed  Google Scholar 

  100. Tian E, et al. The role of the Wnt-signaling antagonist DKK1 in the development of osteolytic lesions in multiple myeloma. N Engl J Med. 2003;349:2483–94.

    Article  CAS  PubMed  Google Scholar 

  101. Mhaskar R, et al. Bisphosphonates in multiple myeloma: a network meta-analysis. Cochrane Database Syst Rev. 2012:CD003188. https://doi.org/10.1002/14651858.cd003188.pub3

  102. Morgan GJ, et al. First-line treatment with zoledronic acid as compared with clodronic acid in multiple myeloma (MRC myeloma IX): a randomised controlled trial. Lancet. 2010;376:1989–99.

    Article  CAS  PubMed  Google Scholar 

  103. Hageman K, Patel KC, Mace K, El Papel de Cooper MR. Denosumab para la Prevención de Complicaciones Músculo-Esqueletales Debido a Mieloma Múltiple. Ann Pharmacother. 2013;47:1069–74.

    Article  PubMed  CAS  Google Scholar 

  104. De Sanctis V, et al. Osteoporosis in thalassemia major: an update and the I-CET 2013 recommendations for surveillance and treatment. Pediatr Endocrinol Rev. 2013;11:167–80.

    PubMed  Google Scholar 

  105. Voskaridou E, Terpos E. New insights into the pathophysiology and management of osteoporosis in patients with beta thalassaemia. Br J Haematol. 2004;127:127–39.

    Article  CAS  PubMed  Google Scholar 

  106. Giusti A, Pinto V, Forni GL, Pilotto A. Management of beta-thalassemia-associated osteoporosis. Ann N Y Acad Sci. 2016;1368:73–81.

    Article  CAS  PubMed  Google Scholar 

  107. Alem AM, et al. Increased risk of hip fracture among patients with end-stage renal disease. Kidney Int. 2000;58:396–9.

    Article  CAS  PubMed  Google Scholar 

  108. Nickolas TL, McMahon DJ, Shane E. Relationship between moderate to severe kidney disease and hip fracture in the United States. J Am Soc Nephrol. 2006;17:3223–32.

    Article  PubMed  Google Scholar 

  109. Ketteler M, et al. Executive summary of the 2017 KDIGO chronic kidney disease–mineral and bone disorder (CKD-MBD) guideline update: what’s changed and why it matters. Kidney Int. 2017;92:26–36.

    Article  PubMed  Google Scholar 

  110. Yu TM, et al. Osteoporosis and fractures after solid organ transplantation: a nationwide population-based cohort study. Mayo Clin Proc. 2014;89:888–95.

    Article  PubMed  Google Scholar 

  111. Premaor MO, et al. Fracture incidence after liver transplantation: results of a 10-year audit. QJM. 2011;104:599–606.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Hariman A, Alex C, Heroux A, Camacho P. Incidence of fractures after cardiac and lung transplantation: a single center experience. J Osteoporos. 2014;2014:573041.

    Article  PubMed  PubMed Central  Google Scholar 

  113. Epstein S, Inzerillo AM, Caminis J, Zaidi M. Disorders associated with acute rapid and severe bone loss. J Bone Miner Res. 2003;18:2083–94.

    Article  PubMed  Google Scholar 

  114. Ebeling PR. Transplantation osteoporosis. Curr Osteoporos Rep. 2007;5:29–37.

    Article  PubMed  Google Scholar 

  115. Goodman GR, et al. Immunosuppressant use without bone loss—implications for bone loss after transplantation. J Bone Miner Res. 2001;16:72–8.

    Article  CAS  PubMed  Google Scholar 

  116. Cohen A, Sambrook P, Shane E. Management of bone loss after organ transplantation. J Bone Miner Res. 2004;19:1919–32.

    Article  PubMed  Google Scholar 

  117. Stein EM, Ortiz D, Jin Z, McMahon DJ, Shane E. Prevention of fractures after solid organ transplantation: a meta-analysis. J Clin Endocrinol Metab. 2011;96:3457–65.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  118. Bjarnason NH, Hitz M, Jorgensen NR, Vestergaard P. Adverse bone effects during pharmacological breast cancer therapy. Acta Oncol. 2008;47:747–54.

    Article  CAS  PubMed  Google Scholar 

  119. Vestergaard P, Rejnmark L, Mosekilde L. Effect of tamoxifen and aromatase inhibitors on the risk of fractures in women with breast cancer. Calcif Tissue Int. 2008;82:334–40.

    Article  CAS  PubMed  Google Scholar 

  120. Hadji P, et al. Management of aromatase inhibitor-associated bone loss (AIBL) in postmenopausal women with hormone sensitive breast cancer: joint position statement of the IOF, CABS, ECTS, IEG, ESCEO IMS, and SIOG. J Bone Oncol. 2017;7:1–12.

    Article  PubMed  PubMed Central  Google Scholar 

  121. Colzani E, et al. Risk of hospitalisation and death due to bone fractures after breast cancer: a registry-based cohort study. Br J Cancer. 2016;115:1400–7.

    Article  PubMed  PubMed Central  Google Scholar 

  122. Grisso JA, et al. Risk factors for hip fracture in men. Am J Epidemiol. 1997;145:786–93.

    Article  CAS  PubMed  Google Scholar 

  123. Vestergaard P, Rejnmark L, Mosekilde L. Proton pump inhibitors, histamine H2 receptor antagonists, and other antacid medications and the risk of fracture. Calcif Tissue Int. 2006;79:76–83.

    Article  CAS  PubMed  Google Scholar 

  124. Yang YX, Lewis JD, Epstein S, Metz DC. Long-term proton pump inhibitor therapy and risk of hip fracture. J Am Med Assoc. 2006;296:2947–53.

    Article  CAS  Google Scholar 

  125. Zhou B, Huang Y, Li H, Sun W, Liu J. Proton-pump inhibitors and risk of fractures: an update meta-analysis. Osteoporos Int. 2016;27:339–47.

    Article  CAS  PubMed  Google Scholar 

  126. O’Connell MB, Madden DM, Murray AM, Heaney RP, Kerzner LJ. Effects of proton pump inhibitors on calcium carbonate absorption in women: a randomized crossover trial. Am J Med. 2005;118:778–81.

    Article  PubMed  CAS  Google Scholar 

  127. Targownik LE, Lix LM, Leung S, Leslie WD. Proton-pump inhibitor use is not associated with osteoporosis or accelerated Bone mineral density loss. Gastroenterology. 2010;138:896–904.

    Article  CAS  PubMed  Google Scholar 

  128. De Vries F, Cooper AL, Cockle SM, Van Staa TP, Cooper C. Fracture risk in patients receiving acid-suppressant medication alone and in combination with bisphosphonates. Osteoporos Int. 2009;20:1989–98.

    Article  CAS  PubMed  Google Scholar 

  129. Lee J, et al. A population-based case-control study: proton pump inhibition and risk of hip fracture by use of bisphosphonate. J Gastroenterol. 2013;48:1016–22.

    Article  CAS  PubMed  Google Scholar 

  130. Prieto-Alhambra D, et al. Predictors of fracture while on treatment with oral bisphosphonates: a population-based cohort study. J Bone Miner Res. 2014;29:268–74.

    Article  CAS  PubMed  Google Scholar 

  131. Loke YK, Singh S, Furberg CD. Long-term use of thiazolidinediones and fractures in type 2 diabetes: a meta-analysis. Can Med Assoc J. 2009;180:32–9.

    Article  Google Scholar 

  132. Solomon DH, et al. A cohort study of thiazolidinediones and fractures in older adults with diabetes. J Clin Endocrinol Metab. 2009;94:2792–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Billington EO, Grey A, Bolland MJ. The effect of thiazolidinediones on bone mineral density and bone turnover: systematic review and meta-analysis. Diabetologia. 2015;58:2238–46.

    Article  CAS  PubMed  Google Scholar 

  134. Bliziotes MM, Eshleman AJ, Zhang XW, Wiren KM. Neurotransmitter action in osteoblasts: expression of a functional system for serotonin receptor activation and reuptake. Bone. 2001;29:477–86.

    Article  CAS  PubMed  Google Scholar 

  135. Warden SJ, Robling AG, Haney EM, Turner CH, Bliziotes MM. The emerging role of serotonin (5-hydroxytryptamine) in the skeleton and its mediation of the skeletal effects of low-density lipoprotein receptor-related protein 5 (LRP5). Bone. 2010;46:4–12.

    Article  CAS  PubMed  Google Scholar 

  136. Eom CS, Lee HK, Ye S, Park SM, Cho KH. Use of selective serotonin reuptake inhibitors and risk of fracture: a systematic review and meta-analysis. J Bone Miner Res. 2012;27:1186–95.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Litwic, A.E., Dębska-Ślizień, A., Dennison, E. (2021). Secondary Osteoporosis. In: Dennison, E. (eds) Osteoporosis Treatment. Springer, Cham. https://doi.org/10.1007/978-3-030-78128-6_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78128-6_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78127-9

  • Online ISBN: 978-3-030-78128-6

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics