Skip to main content

Distributed Remote EEG Data Collection for NeuroIS Research: A Methodological Framework

  • Conference paper
  • First Online:
Augmented Cognition (HCII 2021)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 12776))

Included in the following conference series:

Abstract

Remote electroencephalography (EEG) studies offers the exciting opportunity to gather data within a participants’ home environment. However, remote EEG data collection trades some internal validity for ecological validity. When interacting with interfaces or other artifacts in remote settings, neurophysiological responses and behaviour may display distinct differences compared to laboratory studies. We propose a methodological approach composed of several recommendations and an iterative process framework to support this new avenue of research. The framework was developed during workshops composed of a diverse panel and a literature review of relevant research to complement our discoveries. We highlight and discuss the significant challenges associated with remote EEG data collection, and propose recommendations. We introduce the concept of self-applicability and propose a set of measures to guarantee good signal quality. Additionally, we offer specific recommendations for research design, training, and data collection strategies. We offer the iterative process framework to provide support rigorous data collection, innovative research questions, and the construction of large-scale datasets from remote EEG studies.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://labstreaminglayer.readthedocs.io/info/intro.html.

References

  1. Riedl, R., Léger, P.-M.: Fundamentals of NeuroIS. SNPBE, Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-45091-8

    Book  Google Scholar 

  2. Krout, K., Carrascal, J.P., Lowdermilk, T.: Lean UX research at scale: a case study. In: Proceedings of the Conference on Mensch und Computer, pp. 53–59 (2020)

    Google Scholar 

  3. Nielsen, C.M., Overgaard, M., Pedersen, M.B., Stage, J., Stenild, S.: It’s worth the hassle! the added value of evaluating the usability of mobile systems in the field. In: Proceedings of the 4th Nordic Conference on Human-Computer Interaction: Changing Roles, pp. 272–280 (2006)

    Google Scholar 

  4. Voit, A., Mayer, S., Schwind, V., Henze, N.: Online, VR, AR, Lab, and In-Situ: comparison of research methods to evaluate smart artifacts. In: Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, pp. 1–12 (2019)

    Google Scholar 

  5. Rogers, Y., et al.: Why it’s worth the hassle: the value of in-situ studies when designing ubicomp. In: Krumm, J., Abowd, G.D., Seneviratne, A., Strang, T. (eds.) UbiComp 2007. LNCS, vol. 4717, pp. 336–353. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74853-3_20

    Chapter  Google Scholar 

  6. Kjeldskov, J., Skov, M.B.: Was it worth the hassle? Ten years of mobile HCI research discussions on lab and field evaluations. In: Proceedings of the 16th International Conference on Human-Computer Interaction with Mobile Devices & Services, pp. 43–52 (2014)

    Google Scholar 

  7. Brown, B., Reeves, S., Sherwood, S.: Into the wild: challenges and opportunities for field trial methods. In: Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 1657–1666 (2011)

    Google Scholar 

  8. Riedl, R., Davis, F.D., Hevner, A.R.: Towards a NeuroIS research methodology: intensifying the discussion on methods, tools, and measurement. J. Assoc. Inf. Syst. 15, 4 (2014)

    Google Scholar 

  9. Müller-Putz, G.R., Riedl, R., Wriessnegger, S.C.: Electroencephalography (EEG) as a research tool in the information systems discipline: foundations, measurement, and applications. CAIS 37, 46 (2015)

    Article  Google Scholar 

  10. Tezza, D., Caprio, D., Pinto, B., Mantilla, I., Andujar, M.: An analysis of engagement levels while playing brain-controlled games. In: Fang, X. (ed.) HCII 2020. LNCS, vol. 12211, pp. 361–372. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-50164-8_26

    Chapter  Google Scholar 

  11. Ewing, K.C., Fairclough, S.H., Gilleade, K.: Evaluation of an adaptive game that uses EEG measures validated during the design process as inputs to a biocybernetic loop. Front. Hum. Neurosci. 10, 223 (2016). https://doi.org/10.3389/fnhum.2016.00223

    Article  Google Scholar 

  12. Hassib, M., Schneegass, S., Eiglsperger, P., Henze, N., Schmidt, A., Alt, F.: EngageMeter: a system for implicit audience engagement sensing using electroencephalography. In: Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, pp. 5114–5119 (2017)

    Google Scholar 

  13. Smith, M.E., Gevins, A., Brown, H., Karnik, A., Du, R.: Monitoring task loading with multivariate EEG measures during complex forms of human-computer interaction. Hum. Factors 43, 366–380 (2001)

    Article  Google Scholar 

  14. Di Flumeri, G., et al.: EEG-based mental workload neurometric to evaluate the impact of different traffic and road conditions in real driving settings. Front. Hum. Neurosci. 12, 509 (2018). https://doi.org/10.3389/fnhum.2018.00509

    Article  Google Scholar 

  15. Van Benthem, K.D., Cebulski, S., Herdman, C.M., Keillor, J.: An EEG brain-computer interface approach for classifying vigilance states in humans: a gamma band focus supports low misclassification rates. Int. J. Hum.-Comput. Interact. 34, 226–237 (2018). https://doi.org/10.1080/10447318.2017.1342942

    Article  Google Scholar 

  16. Luck, S.J.: An introduction to the event-related potential technique (2014)

    Google Scholar 

  17. Vance, A., Anderson, B.B., Kirwan, C.B., Eargle, D.: Using measures of risk perception to predict information security behavior: Insights from electroencephalography (EEG). J. Assoc. Inf. Syst. 15, 2 (2014)

    Google Scholar 

  18. Putze, F., et al.: Hybrid fNIRS-EEG based classification of auditory and visual perception processes. Front. Neurosci. 8, 373 (2014)

    Article  Google Scholar 

  19. Karran, A.J., et al.: Towards a hybrid passive BCI for the modulation of sustained attention using EEG and fNIRS. Front. Hum. Neurosci. (2018). https://doi.org/10.3389/conf.fnhum.2018.227.00115

  20. Turabian, M., Van Benthem, K., Herdman, C.M.: Impairments in early auditory detection coincide with substandard visual-spatial task performance in older age: an ERP study. In: Stephanidis, C., Antona, M., Ntoa, S. (eds.) HCII 2020. CCIS, vol. 1294, pp. 110–118. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60703-6_14

    Chapter  Google Scholar 

  21. Mühl, C., Jeunet, C., Lotte, F.: EEG-based workload estimation across affective contexts. Front. Neurosci. 8, 114 (2014)

    Google Scholar 

  22. Ojeda, A., Bigdely-Shamlo, N., Makeig, S.: MoBILAB: an open source toolbox for analysis and visualization of mobile brain/body imaging data. Front. Hum. Neurosci. 8, 121 (2014). https://doi.org/10.3389/fnhum.2014.00121

    Article  Google Scholar 

  23. Gennaro, F., de Bruin, E.D.: Assessing brain-muscle connectivity in human locomotion through mobile brain/body imaging: opportunities, pitfalls, and future directions. Front. Public Health 6, 39 (2018). https://doi.org/10.3389/fpubh.2018.00039

    Article  Google Scholar 

  24. Gramann, K., Ferris, D.P., Gwin, J., Makeig, S.: Imaging natural cognition in action. Int. J. Psychophysiol. 91, 22–29 (2014). https://doi.org/10.1016/j.ijpsycho.2013.09.003

    Article  Google Scholar 

  25. Jungnickel, E., Gramann, K.: Mobile brain/body imaging (MoBI) of physical interaction with dynamically moving objects. Front. Hum. Neurosci. 10, 306 (2016). https://doi.org/10.3389/fnhum.2016.00306

    Article  Google Scholar 

  26. Gramann, K., et al.: Cognition in action: imaging brain/body dynamics in mobile humans. Rev. Neurosci. 22, 593–608 (2011). https://doi.org/10.1515/RNS.2011.047

    Article  Google Scholar 

  27. Ko, L.W., Komarov, O., Hairston, W.D., Jung, T.P., Lin, C.T.: Sustained attention in real classroom settings: an EEG study. Front. Hum. Neurosci. 11, 388 (2017). https://doi.org/10.3389/fnhum.2017.00388

    Article  Google Scholar 

  28. Dikker, S., et al.: Brain-to-brain synchrony tracks real-world dynamic group interactions in the classroom. Curr. Biol. 27, 1375–1380 (2017). https://doi.org/10.1016/j.cub.2017.04.002

    Article  Google Scholar 

  29. Bevilacqua, D., et al.: Brain-to-brain synchrony and learning outcomes vary by student-teacher dynamics: evidence from a real-world classroom electroencephalography study. J. Cogn. Neurosci. 31, 401–411 (2019). https://doi.org/10.1162/jocn_a_01274

    Article  Google Scholar 

  30. Pizzamiglio, S., Naeem, U., Abdalla, H., Turner, D.L.: Neural correlates of single- and dual-task walking in the real world. Front. Hum. Neurosci. 11, 460 (2017). https://doi.org/10.3389/fnhum.2017.00460

    Article  Google Scholar 

  31. Ladouce, S., Donaldson, D.I., Dudchenko, P.A., Ietswaart, M.: Mobile EEG identifies the re-allocation of attention during real-world activity. Sci. Rep. 9, 15851 (2019). https://doi.org/10.1038/s41598-019-51996-y

    Article  Google Scholar 

  32. Debener, S., Minow, F., Emkes, R., Gandras, K., De Vos, M.: How about taking a low-cost, small, and wireless EEG for a walk? Psychophysiology 49, 1617–1621 (2012)

    Article  Google Scholar 

  33. Zink, R., Hunyadi, B., Huffel, S.V., Vos, M.D.: Mobile EEG on the bike: disentangling attentional and physical contributions to auditory attention tasks. J. Neural Eng. 13, 046017 (2016). https://doi.org/10.1088/1741-2560/13/4/046017

    Article  Google Scholar 

  34. Wang, C.H., Moreau, D., Kao, S.C.: From the lab to the field: potential applications of dry EEG systems to understand the brain-behavior relationship in sports. Front. Neurosci. 13, 893 (2019). https://doi.org/10.3389/fnins.2019.00893

    Article  Google Scholar 

  35. Butkeviciute, E., et al.: Removal of movement artefact for mobile EEG analysis in sports exercises. IEEE Access 7, 7206–7217 (2019). https://doi.org/10.1109/access.2018.2890335

    Article  Google Scholar 

  36. Cruz-Garza, J.G., et al.: Deployment of mobile EEG technology in an art museum setting: evaluation of signal quality and usability. Front. Hum. Neurosci. 11, 527 (2017). https://doi.org/10.3389/fnhum.2017.00527

    Article  Google Scholar 

  37. Ladouce, S., Donaldson, D.I., Dudchenko, P.A., Ietswaart, M.: Understanding minds in real-world environments: toward a mobile cognition approach. Front. Hum. Neurosci. 10, 694 (2016). https://doi.org/10.3389/fnhum.2016.00694

    Article  Google Scholar 

  38. Hinrichs, H., Scholz, M., Baum, A.K., Kam, J.W., Knight, R.T., Heinze, H.-J.: Comparison between a wireless dry electrode EEG system with a conventional wired wet electrode EEG system for clinical applications. Sci. Rep. 10, 1–14 (2020)

    Article  Google Scholar 

  39. Kam, J.W., et al.: Systematic comparison between a wireless EEG system with dry electrodes and a wired EEG system with wet electrodes. Neuroimage 184, 119–129 (2019)

    Article  Google Scholar 

  40. Maskeliunas, R., Damasevicius, R., Martisius, I., Vasiljevas, M.: Consumer-grade EEG devices: are they usable for control tasks? PeerJ 4, e1746 (2016)

    Article  Google Scholar 

  41. Krigolson, O., Williams, C., Colino, F.: Using portable EEG to assess human visual attention. In: Schmorrow, D.D., Fidopiastis, C.M. (eds.) AC 2017. LNCS (LNAI), vol. 10284, pp. 56–65. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-58628-1_5

    Chapter  Google Scholar 

  42. Riedl, R., Minas, R.K., Dennis, A.R., Müller-Putz, G.R.: Consumer-grade EEG instruments: insights on the measurement quality based on a literature review and implications for NeuroIS research. In: Davis, F.D., Riedl, R., vom Brocke, J., Léger, P.-M., Randolph, A.B., Fischer, T. (eds.) NeuroIS 2020. LNISO, vol. 43, pp. 350–361. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-60073-0_41

    Chapter  Google Scholar 

  43. Peirce, J.W.: PsychoPy—psychophysics software in Python. J. Neurosci. Methods 162, 8–13 (2007)

    Article  Google Scholar 

  44. Tsiara, A., Mikropoulos, T.A., Chalki, P.: EEG systems for educational neuroscience. In: Antona, M., Stephanidis, C. (eds.) HCII 2019. LNCS, vol. 11573, pp. 575–586. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-23563-5_45

    Chapter  Google Scholar 

  45. Zander, T.O., et al.: Evaluation of a Dry EEG system for application of passive brain-computer interfaces in autonomous driving. Front. Hum. Neurosci. 11, 78 (2017). https://doi.org/10.3389/fnhum.2017.00078

    Article  Google Scholar 

  46. Aricò, P., Borghini, G., Di Flumeri, G., Sciaraffa, N., Babiloni, F.: Passive BCI beyond the lab: current trends and future directions. Physiol. Meas. 39(8), 08TR02 (2018). https://doi.org/10.1088/1361-6579/aad57e

    Article  Google Scholar 

  47. Puce, A., Hamalainen, M.S.: A review of issues related to data acquisition and analysis in EEG/MEG studies. Brain Sci. 7, 58 (2017). https://doi.org/10.3390/brainsci7060058

    Article  Google Scholar 

  48. Oliveira, A.S., Schlink, B.R., Hairston, W.D., Konig, P., Ferris, D.P.: Proposing metrics for benchmarking novel EEG technologies towards real-world measurements. Front. Hum. Neurosci. 10, 188 (2016). https://doi.org/10.3389/fnhum.2016.00188

    Article  Google Scholar 

  49. Hairston, W.D., et al.: Usability of four commercially-oriented EEG systems. J. Neural Eng. 11, 046018 (2014)

    Article  Google Scholar 

  50. Bandura, A.: Perceived self-efficacy in cognitive development and functioning. Educ. Psychol. 28, 117–148 (1993)

    Article  Google Scholar 

  51. Bandura, A.: Guide for constructing self-efficacy scales. Self-efficacy Beliefs Adolescents 5, 307–337 (2006)

    Google Scholar 

  52. Toppi, J., et al.: Investigating cooperative behavior in ecological settings: an EEG hyperscanning study. PLoS ONE 11, e0154236 (2016). https://doi.org/10.1371/journal.pone.0154236

    Article  Google Scholar 

  53. Miralles, F., et al.: Brain computer interface on track to home. Sci. World J. 2015, 623896 (2015). https://doi.org/10.1155/2015/623896

    Article  Google Scholar 

  54. Kappenman, E.S., Luck, S.J.: The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology 47, 888–904 (2010)

    Google Scholar 

  55. Mathewson, K.E., Harrison, T.J., Kizuk, S.A.: High and dry? Comparing active dry EEG electrodes to active and passive wet electrodes. Psychophysiology 54, 74–82 (2017). https://doi.org/10.1111/psyp.12536

    Article  Google Scholar 

  56. Halford, J.J., et al.: Comparison of a novel dry electrode headset to standard routine EEG in veterans. J. Clin. Neurophysiol. 33, 530–537 (2016)

    Article  Google Scholar 

  57. Popescu, F., Blankertz, B., Mueller, K.-R.: Computational challenges for noninvasive brain computer interfaces (2008)

    Google Scholar 

  58. Park, J.L., Dudchenko, P.A., Donaldson, D.I.: Navigation in real-world environments: new opportunities afforded by advances in mobile brain imaging. Front. Hum. Neurosci. 12, 361 (2018). https://doi.org/10.3389/fnhum.2018.00361

    Article  Google Scholar 

  59. Oliveira, A.S., Schlink, B.R., Hairston, W.D., Konig, P., Ferris, D.P.: A channel rejection method for attenuating motion-related artifacts in EEG recordings during walking. Front. Neurosci. 11, 225 (2017). https://doi.org/10.3389/fnins.2017.00225

    Article  Google Scholar 

  60. Soler, A., Muñoz-Gutiérrez, P.A., Bueno-López, M., Giraldo, E., Molinas, M.: Low-density EEG for neural activity reconstruction using multivariate empirical mode decomposition. Front. Neurosci. 14, 175 (2020)

    Article  Google Scholar 

  61. Banaei, M., Hatami, J., Yazdanfar, A., Gramann, K.: Walking through architectural spaces: the impact of interior forms on human brain dynamics. Front. Hum. Neurosci. 11, 477 (2017). https://doi.org/10.3389/fnhum.2017.00477

    Article  Google Scholar 

  62. Mullen, T.R., et al.: Real-time neuroimaging and cognitive monitoring using wearable dry EEG. IEEE Trans. Biomed. Eng. 62, 2553–2567 (2015)

    Article  Google Scholar 

  63. Chang, C.-Y., Hsu, S.-H., Pion-Tonachini, L., Jung, T.-P.: Evaluation of artifact subspace reconstruction for automatic EEG artifact removal. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 1242–1245. IEEE (2018)

    Google Scholar 

  64. Dehais, F., et al.: Monitoring pilot’s mental workload using ERPs and spectral power with a six-dry-electrode EEG system in real flight conditions. Sensors 19, 1324 (2019)

    Article  Google Scholar 

  65. Bulea, T.C., Prasad, S., Kilicarslan, A., Contreras-Vidal, J.L.: Sitting and standing intention can be decoded from scalp EEG recorded prior to movement execution. Front. Neurosci. 8, 376 (2014). https://doi.org/10.3389/fnins.2014.00376

    Article  Google Scholar 

  66. Mihajlović, V., Grundlehner, B., Vullers, R., Penders, J.: Wearable, wireless EEG solutions in daily life applications: what are we missing? IEEE J. Biomed. Health Inform. 19, 6–21 (2014)

    Article  Google Scholar 

  67. Bigdely-Shamlo, N., et al.: Hierarchical event descriptors (HED): semi-structured tagging for real-world events in large-scale EEG. Front. Neuroinform. 10, 42 (2016). https://doi.org/10.3389/fninf.2016.00042

    Article  Google Scholar 

  68. Su, K.M., Hairston, W.D., Robbins, K.: EEG-annotate: automated identification and labeling of events in continuous signals with applications to EEG. J. Neurosci. Methods 293, 359–374 (2018). https://doi.org/10.1016/j.jneumeth.2017.10.011

    Article  Google Scholar 

  69. Benedetto, A., Lozano-Soldevilla, D., VanRullen, R.: Different responses of spontaneous and stimulus-related alpha activity to ambient luminance changes. Eur. J. Neurosci. 48, 2599–2608 (2018). https://doi.org/10.1111/ejn.13791

    Article  Google Scholar 

  70. Sburlea, A.I., Müller-Putz, G.R.: Exploring representations of human grasping in neural, muscle and kinematic signals. Sci. Rep. 8, 1–14 (2018)

    Article  Google Scholar 

  71. Vasseur, A., et al.: Distributed remote psychophysiological data collection for UX evaluation: a pilot project. In: International Conference on Human-Computer Interaction. Springer, Heidelberg (2021)

    Google Scholar 

  72. Giroux, F., et al.: Guidelines for collecting automatic facial expression detection data synchronized with a dynamic stimulus in remote moderated user tests. In: International Conference on Human-Computer Interaction. Springer, Heidelberg (2021)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Théophile Demazure .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Demazure, T., Karran, A.J., Boasen, J., Léger, PM., Sénécal, S. (2021). Distributed Remote EEG Data Collection for NeuroIS Research: A Methodological Framework. In: Schmorrow, D.D., Fidopiastis, C.M. (eds) Augmented Cognition. HCII 2021. Lecture Notes in Computer Science(), vol 12776. Springer, Cham. https://doi.org/10.1007/978-3-030-78114-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-78114-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-78113-2

  • Online ISBN: 978-3-030-78114-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics