Skip to main content

Part of the book series: Stem Cell Biology and Regenerative Medicine ((STEMCELL,volume 69))

Abstract

Stem cells have been researched for over 100 years. It all started in 1908, when a histologist Alexander Maksimov coined the name stem cells. Many key scientists have noted the potential in researching stem cells in the following the years after. These cells have the ability to renew and differentiate themselves into a wide range of cell types. Stem cells have two classifications accordingly to their properties—pluripotent and multipotent. Pluripotent cells are able to differentiate into three germ layers while multipotent cells can differentiate into only a few limited types of cells. Hence, they are important to the repair, development, preservation and growth of many organs from the earliest stages of life. Stem cells are also obtained from many sources and found throughout the life cycle from embryos to adults. Research has also helped scientists understand stem cells in different species (animals and humans) for many years. Recognition of the value of the field has seen scientists awarded Nobel prizes on discoveries regarding stem cells. This chapter describes the basics of stem cells: their early discovery, structure, morphology, characteristics, differences, location, function, roles, sources and Nobel Prize research carried out.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

ASCs:

Adult Stem Cells

ESC:

Embryonic Stem Cell

hESC:

Human Embryonic Stem Cell

iPSC:

Induced Pluripotent Stem Cell

MSCs:

Mesenchymal Stem Cells.

References

  • Abdelmegeed, M., Ha, S., Choi, Y., Akbar, M., & Song, B. (2017). Role of CYP2E1 in mitochondrial dysfunction and hepatic injury by alcohol and non-alcoholic substances. Current Molecular Pharmacology, 10(3), 207–225.

    Article  CAS  Google Scholar 

  • Alberts, B. (2017). Molecular biology of the cell (6th ed).

    Google Scholar 

  • Alvarez, C., Garcia-Lavandeira, M., Garcia-Rendueles, M., Diaz-Rodriguez, E., Garcia-Rendueles, A., Perez-Romero, S., Vila, T., Rodrigues, J., Lear, P., & Bravo, S. (2012). Defining stem cell types: Understanding the therapeutic potential of ESCs, ASCs, and iPS cells. Journal of Molecular Endocrinology, 49(2), R89–R111.

    Article  CAS  Google Scholar 

  • Andraud, M., Lejeune, O., Musoro, J., Ogunjimi, B., Beutels, P., & Hens, N. (2012). Living on Three Time Scales: The Dynamics of Plasma Cell and Antibody Populations Illustrated for Hepatitis A Virus. PLoS Computational Biology, 8(3), e1002418. Available at: https://journals.plos.org/ploscompbiol/article?id=10.1371/journal.pcbi.1002418. Accessed on November 10, 2020.

  • Biehl, J., & Russell, B. (2009). Introduction to stem cell therapy. The Journal of Cardiovascular Nursing, 24(2), 98–103.

    Article  Google Scholar 

  • Cantz, T., & Martin, U. (2010). Induced pluripotent stem cells: Characteristics and perspectives. Bioreactor Systems for Tissue Engineering, II, 107–126.

    Article  Google Scholar 

  • Carpenedo, R., & McDevitt, T. (2013). Stem cells. Biomaterials Science, 487–495.

    Google Scholar 

  • Chagastelles, P., & Nardi, N. (2011). Biology of stem cells: An overview. Kidney International Supplements, 1(3), 63–67.

    Article  Google Scholar 

  • Chen, K., Huang, Y., & Chen, J. (2013). Understanding and targeting cancer stem cells: Therapeutic implications and challenges. Acta Pharmacologica Sinica, 34(6), 732–740.

    Article  CAS  Google Scholar 

  • Dalerba, P., Cho, R., & Clarke, M. (2007). Cancer Stem cells: Models and concepts. Annual Review of Medicine, 58(1), 267–284.

    Article  CAS  Google Scholar 

  • Drukker, M., Katz, G., Urbach, A., Schuldiner, M., Markel, G., Itskovitz-Eldor, J., Reubinoff, B., Mandelboim, O., & Benvenisty, N. (2002). Characterization of the expression of MHC proteins in human embryonic stem cells. Proceedings of the National Academy of Sciences, 99(15), 9864–9869.

    Article  CAS  Google Scholar 

  • Dutta, D. (2020). Differences between stem cells and somatic cells. [online] News-Medical.net. Available at: https://www.azolifesciences.com/article/Differences-Between-Stem-Cells-and-Somatic-Cells.aspx#:~:text=The%20major%20difference%20between%20embryonic,thus%2C%20into%20any%20cell%20type. Accessed on September 22, 2020.

  • Eckhart, L., Lippens, S., Tschachler, E., & Declercq, W. (2013). Cell death by cornification. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1833(12), 3471–3480.

    Google Scholar 

  • Eguizabal, C., Aran, B., Chuva de Sousa Lopes, S., Geens, M., Heindryckx, B., Panula, S., Popovic, M., Vassena, R., & Veiga, A. (2019). Two decades of embryonic stem cells: a historical overview. Human Reproduction Open, [online] 2019(1). Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6396646/. Accessed on September 29, 2020.

  • Evans, M., & Kaufman, M. (1981). Establishment in culture of pluripotential cells from mouse embryos. Nature, 292(5819), 154–156.

    Article  CAS  Google Scholar 

  • Franco, R. (2012). Measurement of red cell lifespan and aging. Transfusion Medicine and Hemotherapy, 39(5), 302–307.

    Article  Google Scholar 

  • García-Roger, E., Lubzens, E., Fontaneto, D., & Serra, M., (2019). Facing adversity: Dormant embryos in rotifers. The Biological Bulletin, 237(2), 119–144. [online]. Available at: https://www.journals.uchicago.edu/doi/full/10.1086/705701?mobileUi=0&

  • Gonzalez, M., & Bernad, A. (2012). Characteristics of adult stem cells. Advances in Experimental Medicine and Biology, 103–120.

    Google Scholar 

  • Goszczynski, D., Denicol, A., & Ross, P. (2019). Gametes from stem cells: Status and applications in animal reproduction. Reproduction in Domestic Animals.

    Google Scholar 

  • Gucciardo, L., Lories, R., Ochsenbein-Kölble, N., Done’, E., Zwijsen, A., & Deprest, J. (2008). Fetal mesenchymal stem cells: isolation, properties and potential use in perinatology and regenerative medicine. BJOG: An International Journal of Obstetrics & Gynaecology, 116(2), 166–172.

    Google Scholar 

  • Holmes, D. (2012). Stem cell scientists share 2012 Nobel Prize for medicine. The Lancet, 380(9850), 1295.

    Article  Google Scholar 

  • Houston, D. (2016). Vertebrate axial patterning: From egg to asymmetry. Advances in Experimental Medicine and Biology, 209–306.

    Google Scholar 

  • Hui, H., Tang, Y., Hu, M., & Zhao, X. (2011). Stem cells: General features and characteristics. Stem Cells in Clinic and Research.

    Google Scholar 

  • Ji, P., Manupipatpong, S., Xie, N., & Li, Y. (2016). Induced pluripotent stem cells: Generation strategy and epigenetic mystery behind reprogramming. Stem Cells International, 2016, 1–11.

    Article  Google Scholar 

  • Katoh, H., Yokota, K., & Fehlings, M. (2019). Regeneration of spinal cord connectivity through stem cell transplantation and biomaterial scaffolds. Frontiers in Cellular Neuroscience, 13.

    Google Scholar 

  • Khurana, V., Peng, J., Chung, C., Auluck, P., Fanning, S., Tardiff, D., Bartels, T., Koeva, M., Eichhorn, S., Benyamini, H., Lou, Y., Nutter-Upham, A., Baru, V., Freyzon, Y., Tuncbag, N., Costanzo, M., San Luis, B., Schöndorf, D., Barrasa, M., … Lindquist, S. (2017). Genome-scale networks link neurodegenerative disease genes to α-synuclein through specific molecular pathways. Cell Systems, 4(2), 157-170.e14.

    Article  CAS  Google Scholar 

  • Kim, M., & Costello, J. (2017). DNA methylation: An epigenetic mark of cellular memory. Experimental & Molecular Medicine, 49(4), e322–e322.

    Article  CAS  Google Scholar 

  • Kolios, G., & Moodley, Y. (2013). Introduction to stem cells and regenerative medicine. Respiration, 85(1), 3–10.

    Article  Google Scholar 

  • Kumar, R., Sharma, A., Pattnaik, A., & Varadwaj, P. (2010). Stem cells: An overview with respect to cardiovascular and renal disease. Journal of Natural Science, Biology and Medicine, 1(1), 43.

    Article  Google Scholar 

  • Łos, M., Skubis, A., & Ghavami, S. (2019). Stem cells. Stem Cells and Biomaterials for Regenerative Medicine, 5–16.

    Google Scholar 

  • Martin, G. (1981). Isolation of a pluripotent cell line from early mouse embryos cultured in medium conditioned by teratocarcinoma stem cells. Proceedings of the National Academy of Sciences, 78(12), 7634–7638.

    Article  CAS  Google Scholar 

  • Mayo Clinic. n.d. Stem Cells. [online] Available at: https://www.mayoclinic.org/tests-procedures/bone-marrow-transplant/in-depth/stem-cells/art-20048117#:~:text=These%20stem%20cells%20come%20from,of%20cell%20in%20the%20body. Accessed on November 12, 2020.

  • McGurk, L., Berson, A., & Bonini, N. (2015). Drosophilaas an in vivo model for human neurodegenerative disease. Genetics, 201(2), 377–402. [online]. Available at: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4596656/#bib230. Accessed on October 28, 2020.

  • Morrison, S., & Kimble, J. (2006). Asymmetric and symmetric stem-cell divisions in development and cancer. Nature, 441(7097), 1068–1074.

    Article  CAS  Google Scholar 

  • Mullen, A., & Wrana, J. (2017). TGF-β Family Signaling in Embryonic and Somatic Stem-Cell Renewal and Differentiation. Cold Spring Harbor Perspectives in Biology, 9(7), p.a022186.

    Google Scholar 

  • Neurohr, G., Terry, R., Lengefeld, J., Bonney, M., Brittingham, G., Moretto, F., Miettinen, T., Vaites, L., Soares, L., Paulo, J., Harper, J., Buratowski, S., Manalis, S., van Werven, F., Holt, L., & Amon, A. (2019). Excessive cell growth causes cytoplasm dilution and contributes to senescence. Cell, 176(5), 1083-1097.e18.

    Article  CAS  Google Scholar 

  • Pavlović, M. and Radotić, K. (2017). Essential characteristics of stem cells: Self-renewal, and plasticity. Animal and Plant Stem Cells, 17–21.

    Google Scholar 

  • Ramesh, T., Lee, S., Lee, C., Kwon, Y., & Cho, H. (2009). Somatic cell dedifferentiation/reprogramming for regenerative medicine. International Journal of Stem Cells, 2(1), 18–27.

    Article  CAS  Google Scholar 

  • Reibetanz, U., Hübner, D., Jung, M., Liebert, U., & Claus, C. (2016). Influence of growth characteristics of induced pluripotent stem cells on their uptake efficiency for layer-by-layer microcarriers. ACS Nano, 10(7), 6563–6573.

    Article  CAS  Google Scholar 

  • Richtsmeier, J. (2018). A century of development. American Journal of Physical Anthropology, 165(4), 726–740.

    Article  Google Scholar 

  • Sallon, S., Cherif, E., Chabrillange, N., Solowey, E., Gros-Balthazard, M., Ivorra, S., Terral, J., Egli, M., & Aberlenc, F. (2020). Origins and insights into the historic Judean date palm based on genetic analysis of germinated ancient seeds and morphometric studies. Science Advances, 6(6), eaax0384.

    Google Scholar 

  • Shihadeh, H. (2015). History and Recent Advances of Stem Cell Biology and the Implications for Human Health. [online]. Paper 421. Available at: https://digitalcommons.uri.edu/cgi/viewcontent.cgi?article=1432&context=srhonorsprog. Accessed on September 29, 2020.

  • Snoeckx, R., Bogaert, K., & Verfaillie, C. (2009). Stem cells. Genomic and Personalized Medicine, 599–609.

    Google Scholar 

  • Stadtfeld, M., & Hochedlinger, K. (2010). Induced pluripotency: History, mechanisms, and applications. Genes & Development, 24(20), 2239–2263.

    Article  CAS  Google Scholar 

  • Thomson, J., & Odorico, J. (2000). Human embryonic stem cell and embryonic germ cell lines. Trends in Biotechnology, 18(2), 53–57.

    Article  CAS  Google Scholar 

  • Till, J., McCulloch, E., & Siminovitch, L. (1964). A stochastic model of stem cell proliferation based on the growth of spleen colony-forming cells. Proceedings of the National Academy of Sciences, 51(1), 29–36.

    Article  CAS  Google Scholar 

  • Tuch, B. (2006). Stem cells--a clinical update. Australian family physician, [online] 35, pp.719–721. Available at: https://pubmed.ncbi.nlm.nih.gov/16969445/. Accessed on September 20, 2020.

  • Wakui, T. (2017). Method for evaluation of human induced pluripotent stem cell quality using image analysis based on the biological morphology of cells. Journal of Medical Imaging, 4(04), 1.

    Article  Google Scholar 

  • Wang, Y., & Zhao, S. (2010). Vascular biology of the placenta. Morgan & Claypool Life Sciences.

    Google Scholar 

  • Watt, F., & Driskell, R. (2010). The therapeutic potential of stem cells. Philosophical Transactions of the Royal Society B: Biological Sciences, 365(1537), 155–163.

    Article  Google Scholar 

  • Watts, G. (2007). Nobel prize is awarded for work leading to “knockout mouse”. BMJ, 335(7623), 740.1–740.

    Google Scholar 

  • Wuputra, K., Ku, C., Wu, D., Lin, Y., Saito, S., & Yokoyama, K. (2020). Prevention of tumor risk associated with the reprogramming of human pluripotent stem cells. Journal of Experimental & Clinical Cancer Research, 39(1) [online]. Available at: <https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7268627/. Accessed on October 28, 2020.

  • Ying, Q., Nichols, J., Chambers, I., & Smith, A. (2003). BMP induction of id proteins suppresses differentiation and sustains embryonic stem cell self-renewal in collaboration with STAT3. Cell, 115(3), 281–292.

    Article  CAS  Google Scholar 

  • Zakrzewski, W., Dobrzyński, M., Szymonowicz, M., & Rybak, Z. (2019). Stem cells: past, present, and future. Stem Cell Research & Therapy, 10(1).

    Google Scholar 

  • Zhou, J., Schor, I., Yao, V., Theesfeld, C., Marco-Ferreres, R., Tadych, A., Furlong, E., & Troyanskaya, O. (2019). Accurate genome-wide predictions of spatio-temporal gene expression during embryonic development. PLOS Genetics, 15(9), e1008382.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Glen J. P. McCann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kuntawala, D.H., McCann, G.J.P. (2021). Basics of Stem Cells. In: Khan, F.A. (eds) Advances in Application of Stem Cells: From Bench to Clinics. Stem Cell Biology and Regenerative Medicine, vol 69. Humana, Cham. https://doi.org/10.1007/978-3-030-78101-9_1

Download citation

Publish with us

Policies and ethics