Skip to main content

Induced Pluripotent Stem Cells: Characteristics and Perspectives

  • Chapter
  • First Online:
Bioreactor Systems for Tissue Engineering II

Part of the book series: Advances in Biochemical Engineering / Biotechnology ((ABE,volume 123))

Abstract

The induction of pluripotency in somatic cells is widely considered as a major breakthrough in regenerative medicine, because this approach provides the basis for individualized stem cell-based therapies. Moreover, with respect to cell transplantation and tissue engineering, expertise from bioengineering to transplantation medicine is now meeting basic research of stem cell biology.

In this chapter, we discuss techniques, potential and possible risks of induced pluripotent stem (iPS) cells in the light of needs for patient-derived pluripotent stem cells. To this end, we compare these cells with other sources of pluripotent cells and discuss the first encouraging results of iPS cells in pharmacological research, disease modeling and cell transplantation, providing fascinating perspectives for future developments in biotechnology and regenerative medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Evans MJ, Kaufman MH (1981) Establishment in culture of pluripotential cells from mouse embryos. Nature 292:154–156

    Article  CAS  Google Scholar 

  2. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Becker RA, Hearn JP (1995) Isolation of a primate embryonic stem cell line. Proc Natl Acad Sci USA 92:7844–7848

    Article  CAS  Google Scholar 

  3. Thomson JA, Kalishman J, Golos TG, Durning M, Harris CP, Hearn JP (1996) Pluripotent cell lines derived from common marmoset (Callithrix jacchus) blastocysts. Biol Reprod 55:254–259

    Article  CAS  Google Scholar 

  4. Thomson JA, Itskovitz-Eldor J, Shapiro SS, Waknitz MA, Swiergiel JJ, Marshall VS, Jones JM (1998) Embryonic stem cell lines derived from human blastocysts. Science 282:1145–1147

    Article  CAS  Google Scholar 

  5. Xu RH, Chen X, Li DS, Li R, Addicks GC, Glennon C, Zwaka TP, Thomson JA (2002) BMP4 initiates human embryonic stem cell differentiation to trophoblast. Nat Biotechnol 20:1261–1264

    Article  CAS  Google Scholar 

  6. Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T, Tomoda K, Yamanaka S (2007) Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–872

    Article  CAS  Google Scholar 

  7. Takahashi K, Yamanaka S (2006) Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell 126:663–676

    Article  CAS  Google Scholar 

  8. Yu J, Vodyanik MA, Smuga-Otto K, Antosiewicz-Bourget J, Frane JL, Tian S, Nie J, Jonsdottir GA, Ruotti V, Stewart R, Slukvin II, Thomson JA (2007) Induced pluripotent stem cell lines derived from human somatic cells. Science 318:1917–1920

    Article  CAS  Google Scholar 

  9. Fisher RA, Strom SC (2006) Human hepatocyte transplantation: worldwide results. Transplantation 82:441–449

    Article  Google Scholar 

  10. Fox IJ, Chowdhury JR, Kaufman SS, Goertzen TC, Chowdhury NR, Warkentin PI, Dorko K, Sauter BV, Strom SC (1998) Treatment of the Crigler-Najjar syndrome type I with hepatocyte transplantation. N Engl J Med 338:1422–1426

    Article  CAS  Google Scholar 

  11. Meyburg J, Das AM, Hoerster F, Lindner M, Kriegbaum H, Engelmann G, Schmidt J, Ott M, Pettenazzo A, Luecke T et al (2009) One liver for four children: first clinical series of liver cell transplantation for severe neonatal urea cycle defects. Transplantation 87:636–641

    Article  Google Scholar 

  12. Muraca M, Gerunda G, Neri D, Vilei MT, Granato A, Feltracco P, Meroni M, Giron G, Burlina AB (2002) Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359:317–318

    Article  Google Scholar 

  13. Schneider A, Attaran M, Meier PN, Strassburg C, Manns MP, Ott M, Barthold M, Arseniev L, Becker T, Panning B (2006) Hepatocyte transplantation in an acute liver failure due to mushroom poisoning. Transplantation 82:1115–1116

    Article  Google Scholar 

  14. Najimi M, Sokal E (2005) Liver cell transplantation. Minerva Pediatr 57:243–257

    CAS  Google Scholar 

  15. Lysy PA, Campard D, Smets F, Najimi M, Sokal EM (2008) Stem cells for liver tissue repair: current knowledge and perspectives. World J Gastroenterol 14:864–875

    Article  Google Scholar 

  16. Stephenne X, Vosters O, Najimi M, Beuneu C, Dung KN, Wijns W, Goldman M, Sokal EM (2007) Tissue factor-dependent procoagulant activity of isolated human hepatocytes: relevance to liver cell transplantation. Liver Transpl 13:599–606

    Article  Google Scholar 

  17. Dhawan A, Mitry RR, Hughes RD (2006) Hepatocyte transplantation for liver-based metabolic disorders. J Inherit Metab Dis 29:431–435

    Article  Google Scholar 

  18. Soonpaa MH, Field LJ (1997) Assessment of cardiomyocyte DNA synthesis in normal and injured adult mouse hearts. Am J Physiol 272:H220–H226

    CAS  Google Scholar 

  19. Cantz T, Sharma AD, Jochheim-Richter A, Arseniev L, Klein C, Manns MP, Ott M (2004) Reevaluation of bone marrow-derived cells as a source for hepatocyte regeneration. Cell Transplant 13:659–666

    Article  Google Scholar 

  20. Gruh I, Beilner J, Blomer U, Schmiedl A, Schmidt-Richter I, Kruse ML, Haverich A, Martin U (2006) No evidence of transdifferentiation of human endothelial progenitor cells into cardiomyocytes after coculture with neonatal rat cardiomyocytes. Circulation 113:1326–1334

    Article  CAS  Google Scholar 

  21. Murry CE, Soonpaa MH, Reinecke H, Nakajima H, Nakajima HO, Rubart M, Pasumarthi KB, Virag JI, Bartelmez SH, Poppa V et al (2004) Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428:664–668

    Article  CAS  Google Scholar 

  22. Nygren JM, Jovinge S, Breitbach M, Sawen P, Roll W, Hescheler J, Taneera J, Fleischmann BK, Jacobsen SE (2004) Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat Med 10:494–501

    Article  CAS  Google Scholar 

  23. Wagers AJ, Sherwood RI, Christensen JL, Weissman IL (2002) Little evidence for developmental plasticity of adult hematopoietic stem cells. Science 297:2256–2259

    Article  CAS  Google Scholar 

  24. Geiger H, Rudolph KL (2009) Aging in the lympho-hematopoietic stem cell compartment. Trends Immunol 30:360–365

    Article  CAS  Google Scholar 

  25. Buehr M, Meek S, Blair K, Yang J, Ure J, Silva J, McLay R, Hall J, Ying QL, Smith A (2008) Capture of authentic embryonic stem cells from rat blastocysts. Cell 135:1287–1298

    Article  CAS  Google Scholar 

  26. Conrad S, Renninger M, Hennenlotter J, Wiesner T, Just L, Bonin M, Aicher W, Buhring HJ, Mattheus U, Mack A et al (2008) Generation of pluripotent stem cells from adult human testis. Nature 456:344–349

    Article  CAS  Google Scholar 

  27. Golestaneh N, Kokkinaki M, Pant D, Jiang J, DeStefano D, Fernandez-Bueno C, Rone JD, Haddad BR, Gallicano GI, Dym M (2009) Pluripotent stem cells derived from adult human testes. Stem Cells Dev 18:1115–1126

    Article  Google Scholar 

  28. Guan K, Nayernia K, Maier LS, Wagner S, Dressel R, Lee JH, Nolte J, Wolf F, Li M, Engel W et al (2006) Pluripotency of spermatogonial stem cells from adult mouse testis. Nature 440:1199–1203

    Article  CAS  Google Scholar 

  29. Kanatsu-Shinohara M, Inoue K, Lee J, Yoshimoto M, Ogonuki N, Miki H, Baba S, Kato T, Kazuki Y, Toyokuni S et al (2004) Generation of pluripotent stem cells from neonatal mouse testis. Cell 119:1001–1012

    Article  CAS  Google Scholar 

  30. Ko K, Tapia N, Wu G, Kim JB, Arauzo-Bravo MJ, Sasse P, Glaser T, Ruau D, Han DW, Greber B et al (2009) Induction of pluripotency in adult unipotent germline stem cells. Cell Stem Cell 5:87–96

    Article  CAS  Google Scholar 

  31. Seandel M, James D, Shmelkov SV, Falciatori I, Kim J, Chavala S, Scherr DS, Zhang F, Torres R, Gale NW et al (2007) Generation of functional multipotent adult stem cells from GPR125+ germline progenitors. Nature 449:346–350

    Article  CAS  Google Scholar 

  32. Cibelli JB, Cunniff K, Vrana KE (2006) Embryonic stem cells from parthenotes. Methods Enzymol 418:117–135

    Article  CAS  Google Scholar 

  33. Kim K, Ng K, Rugg-Gunn PJ, Shieh JH, Kirak O, Jaenisch R, Wakayama T, Moore MA, Pedersen RA, Daley GQ (2007) Recombination signatures distinguish embryonic stem cells derived by parthenogenesis and somatic cell nuclear transfer. Cell Stem Cell 1:346–352

    Article  CAS  Google Scholar 

  34. Gurdon JB, Melton DA (2008) Nuclear reprogramming in cells. Science 322:1811–1815

    Article  CAS  Google Scholar 

  35. Wilmut I, Schnieke AE, McWhir J, Kind AJ, Campbell KH (1997) Viable offspring derived from fetal and adult mammalian cells. Nature 385:810–813

    Article  CAS  Google Scholar 

  36. Taranger CK, Noer A, Sorensen AL, Hakelien AM, Boquest AC, Collas P (2005) Induction of dedifferentiation, genomewide transcriptional programming, and epigenetic reprogramming by extracts of carcinoma and embryonic stem cells. Mol Biol Cell 16:5719–5735

    Article  CAS  Google Scholar 

  37. Cantz T, Bleidissel M, Stehling M, Scholer HR (2008) In vitro differentiation of reprogrammed murine somatic cells into hepatic precursor cells. Biol Chem 389:889–896

    Article  CAS  Google Scholar 

  38. Do JT, Scholer HR (2004) Nuclei of embryonic stem cells reprogram somatic cells. Stem Cells 22:941–949

    Article  CAS  Google Scholar 

  39. Tada M, Takahama Y, Abe K, Nakatsuji N, Tada T (2001) Nuclear reprogramming of somatic cells by in vitro hybridization with ES cells. Curr Biol 11:1553–1558

    Article  CAS  Google Scholar 

  40. Stadtfeld M, Maherali N, Breault DT, Hochedlinger K (2008) Defining molecular cornerstones during fibroblast to iPS cell reprogramming in mouse. Cell Stem Cell 2:230–240

    Article  CAS  Google Scholar 

  41. Wernig M, Lengner CJ, Hanna J, Lodato MA, Steine E, Foreman R, Staerk J, Markoulaki S, Jaenisch R (2008) A drug-inducible transgenic system for direct reprogramming of multiple somatic cell types. Nat Biotechnol 26:916–924

    Article  CAS  Google Scholar 

  42. Yamanaka S (2009) Elite and stochastic models for induced pluripotent stem cell generation. Nature 460:49–52

    Article  CAS  Google Scholar 

  43. Hanna J, Saha K, Pando B, van Zon J, Lengner CJ, Creyghton MP, van Oudenaarden A, Jaenisch R (2009) Direct cell reprogramming is a stochastic process amenable to acceleration. Nature 462:595–601

    Article  CAS  Google Scholar 

  44. Li Z, Dullmann J, Schiedlmeier B, Schmidt M, von Kalle C, Meyer J, Forster M, Stocking C, Wahlers A, Frank O et al (2002) Murine leukemia induced by retroviral gene marking. Science 296:497

    Article  CAS  Google Scholar 

  45. Aoi T, Yae K, Nakagawa M, Ichisaka T, Okita K, Takahashi K, Chiba T, Yamanaka S (2008) Generation of pluripotent stem cells from adult mouse liver and stomach cells. Science 321:699–702

    Article  CAS  Google Scholar 

  46. Kim JB, Zaehres H, Wu G, Gentile L, Ko K, Sebastiano V, Arauzo-Bravo MJ, Ruau D, Han DW, Zenke M, Schöler HR (2008) Pluripotent stem cells induced from adult neural stem cells by reprogramming with two factors. Nature 454:646–650

    Article  CAS  Google Scholar 

  47. Aasen T, Raya A, Barrero MJ, Garreta E, Consiglio A, Gonzalez F, Vassena R, Bilic J, Pekarik V, Tiscornia G, Edel M, Boué S, Izpisúa Belmonte JC (2008) Efficient and rapid generation of induced pluripotent stem cells from human keratinocytes. Nat Biotechnol 26:1276–1284

    Article  CAS  Google Scholar 

  48. Eminli S, Foudi A, Stadtfeld M, Maherali N, Ahfeldt T, Mostoslavsky G, Hock H, Hochedlinger K (2009) Differentiation stage determines potential of hematopoietic cells for reprogramming into induced pluripotent stem cells. Nat Genet 41:968–976

    Article  CAS  Google Scholar 

  49. Haase A, Olmer R, Schwanke K, Wunderlich S, Merkert S, Hess C, Zweigerdt R, Gruh I, Meyer J, Wagner S et al (2009) Generation of induced pluripotent stem cells from human cord blood. Cell Stem Cell 5:434–441

    Article  CAS  Google Scholar 

  50. Hanna J, Markoulaki S, Schorderet P, Carey BW, Beard C, Wernig M, Creyghton MP, Steine EJ, Cassady JP, Foreman R et al (2008) Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency. Cell 133:250–264

    Article  CAS  Google Scholar 

  51. Loh YH, Agarwal S, Park IH, Urbach A, Huo H, Heffner GC, Kim K, Miller JD, Ng K, Daley GQ (2009) Generation of induced pluripotent stem cells from human blood. Blood 113:5476–5479

    Article  CAS  Google Scholar 

  52. Lin T, Ambasudhan R, Yuan X, Li W, Hilcove S, Abujarour R, Lin X, Hahm HS, Hao E, Hayek A et al (2009) A chemical platform for improved induction of human iPSCs. Nat Methods 6:805–808

    Article  CAS  Google Scholar 

  53. Kim JB, Greber B, Arauzo-Bravo MJ, Meyer J, Park KI, Zaehres H, Scholer HR (2009) Direct reprogramming of human neural stem cells by OCT4. Nature 461:649–653

    Article  CAS  Google Scholar 

  54. Kim JB, Sebastiano V, Wu G, Arauzo-Bravo MJ, Sasse P, Gentile L, Ko K, Ruau D, Ehrich M, van den Boom D et al (2009) Oct4-induced pluripotency in adult neural stem cells. Cell 136:411–419

    Article  CAS  Google Scholar 

  55. Kawamura T, Suzuki J, Wang YV, Menendez S, Morera LB, Raya A, Wahl GM, Belmonte JC (2009) Linking the p53 tumour suppressor pathway to somatic cell reprogramming. Nature 460:1140–1144

    Article  CAS  Google Scholar 

  56. Mikkelsen TS, Hanna J, Zhang X, Ku M, Wernig M, Schorderet P, Bernstein BE, Jaenisch R, Lander ES, Meissner A (2008) Dissecting direct reprogramming through integrative genomic analysis. Nature 454:49–55

    Article  CAS  Google Scholar 

  57. Zhao Y, Yin X, Qin H, Zhu F, Liu H, Yang W, Zhang Q, Xiang C, Hou P, Song Z et al (2008) Two supporting factors greatly improve the efficiency of human iPSC generation. Cell Stem Cell 3:475–479

    Article  CAS  Google Scholar 

  58. Feng B, Ng JH, Heng JC, Ng HH (2009) Molecules that promote or enhance reprogramming of somatic cells to induced pluripotent stem cells. Cell Stem Cell 4:301–312

    Article  CAS  Google Scholar 

  59. Huangfu D, Osafune K, Maehr R, Guo W, Eijkelenboom A, Chen S, Muhlestein W, Melton DA (2008) Induction of pluripotent stem cells from primary human fibroblasts with only Oct4 and Sox2. Nat Biotechnol 26:1269–1275

    Article  CAS  Google Scholar 

  60. Shi Y, Do JT, Desponts C, Hahm HS, Scholer HR, Ding S (2008) A combined chemical and genetic approach for the generation of induced pluripotent stem cells. Cell Stem Cell 2:525–528

    Article  CAS  Google Scholar 

  61. Shi Y, Desponts C, Do JT, Hahm HS, Scholer HR, Ding S (2008) Induction of pluripotent stem cells from mouse embryonic fibroblasts by Oct4 and Klf4 with small-molecule compounds. Cell Stem Cell 3:568–574

    Article  CAS  Google Scholar 

  62. Li W, Zhou H, Abujarour R, Zhu S, Young Joo J, Lin T, Hao E, Scholer HR, Hayek A, Ding S (2009) Generation of human-induced pluripotent stem cells in the absence of exogenous Sox2. Stem Cells 27:2992–3000

    CAS  Google Scholar 

  63. Silva J, Barrandon O, Nichols J, Kawaguchi J, Theunissen TW, Smith A (2008) Promotion of reprogramming to ground state pluripotency by signal inhibition. PLoS Biol 6:e253

    Article  CAS  Google Scholar 

  64. Ichida JK, Blanchard J, Lam K, Son EY, Chung JE, Egli D, Loh KM, Carter AC, Di Giorgio FP, Koszka K et al (2009) A small-molecule inhibitor of tgf-beta signaling replaces sox2 in reprogramming by inducing nanog. Cell Stem Cell 5:491–503

    Article  CAS  Google Scholar 

  65. Maherali N, Hochedlinger K (2009) Tgfbeta signal inhibition cooperates in the induction of iPSCs and replaces Sox2 and cMyc. Curr Biol 19:1718–1723

    Article  CAS  Google Scholar 

  66. Lyssiotis CA, Foreman RK, Staerk J, Garcia M, Mathur D, Markoulaki S, Hanna J, Lairson LL, Charette BD, Bouchez LC et al (2009) Reprogramming of murine fibroblasts to induced pluripotent stem cells with chemical complementation of Klf4. Proc Natl Acad Sci USA 106:8912–8917

    Article  Google Scholar 

  67. Judson RL, Babiarz JE, Venere M, Blelloch R (2009) Embryonic stem cell-specific microRNAs promote induced pluripotency. Nat Biotechnol 27:459–461

    Article  CAS  Google Scholar 

  68. Lin SL, Chang DC, Chang-Lin S, Lin CH, Wu DT, Chen DT, Ying SY (2008) Mir-302 reprograms human skin cancer cells into a pluripotent ES-cell-like state. RNA 14:2115–2124

    Article  CAS  Google Scholar 

  69. Okita K, Nakagawa M, Hyenjong H, Ichisaka T, Yamanaka S (2008) Generation of mouse induced pluripotent stem cells without viral vectors. Science 322:949–953

    Article  CAS  Google Scholar 

  70. Stadtfeld M, Nagaya M, Utikal J, Weir G, Hochedlinger K (2008) Induced pluripotent stem cells generated without viral integration. Science 322:945–949

    Article  CAS  Google Scholar 

  71. Yu J, Hu K, Smuga-Otto K, Tian S, Stewart R, Slukvin II, Thomson JA (2009) Human induced pluripotent stem cells free of vector and transgene sequences. Science 324:797–801

    Article  CAS  Google Scholar 

  72. Kim D, Kim CH, Moon JI, Chung YG, Chang MY, Han BS, Ko S, Yang E, Cha KY, Lanza R et al (2009) Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins. Cell Stem Cell 4:472–476

    Article  CAS  Google Scholar 

  73. Utikal J, Polo JM, Stadtfeld M, Maherali N, Kulalert W, Walsh RM, Khalil A, Rheinwald JG, Hochedlinger K (2009) Immortalization eliminates a roadblock during cellular reprogramming into iPS cells. Nature 460:1145–1148

    Article  CAS  Google Scholar 

  74. Fusaki N, Ban H, Nishiyama A, Saeki K, Hasegawa M (2009) Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc Jpn Acad Ser B Phys Biol Sci 85:348–362

    Article  CAS  Google Scholar 

  75. Zhou H, Wu S, Joo JY, Zhu S, Han DW, Lin T, Trauger S, Bien G, Yao S, Zhu Y et al (2009) Generation of induced pluripotent stem cells using recombinant proteins. Cell Stem Cell 4:381–384

    Article  CAS  Google Scholar 

  76. Mauritz C, Schwanke K, Reppel M, Neef S, Katsirntaki K, Maier LS, Nguemo F, Menke S, Haustein M, Hescheler J et al (2008) Generation of functional murine cardiac myocytes from induced pluripotent stem cells. Circulation 118:507–517

    Article  Google Scholar 

  77. Hu BY, Weick JP, Yu J, Ma LX, Zhang XQ, Thomson JA, Zhang SC (2010) Neural differentiation of human induced pluripotent stem cells follows developmental principles but with variable potency. Proc Natl Acad Sci USA 107:4335–4340

    Article  CAS  Google Scholar 

  78. Catalina P, Montes R, Ligero G, Sanchez L, de la Cueva T, Bueno C, Leone PE, Menendez P (2008) Human ESCs predisposition to karyotypic instability: is a matter of culture adaptation or differential vulnerability among hESC lines due to inherent properties? Mol Cancer 7:76

    Article  CAS  Google Scholar 

  79. Draper JS, Smith K, Gokhale P, Moore HD, Maltby E, Johnson J, Meisner L, Zwaka TP, Thomson JA, Andrews PW (2004) Recurrent gain of chromosomes 17q and 12 in cultured human embryonic stem cells. Nat Biotechnol 22:53–54

    Article  CAS  Google Scholar 

  80. Hanson C, Caisander G (2005) Human embryonic stem cells and chromosome stability. APMIS 113:751–755

    Article  Google Scholar 

  81. Lefort N, Feyeux M, Bas C, Feraud O, Bennaceur-Griscelli A, Tachdjian G, Peschanski M, Perrier AL (2008) Human embryonic stem cells reveal recurrent genomic instability at 20q11.21. Nat Biotechnol 26:1364–1366

    Article  CAS  Google Scholar 

  82. Spits C, Mateizel I, Geens M, Mertzanidou A, Staessen C, Vandeskelde Y, Van der Elst J, Liebaers I, Sermon K (2008) Recurrent chromosomal abnormalities in human embryonic stem cells. Nat Biotechnol 26:1361–1363

    Article  CAS  Google Scholar 

  83. Kiuru M, Boyer JL, O’Connor TP, Crystal RG (2009) Genetic control of wayward pluripotent stem cells and their progeny after transplantation. Cell Stem Cell 4:289–300

    Article  CAS  Google Scholar 

  84. Niculescu-Duvaz I, Springer CJ (2005) Introduction to the background, principles, and state of the art in suicide gene therapy. Mol Biotechnol 30:71–88

    Article  CAS  Google Scholar 

  85. Martin GM (1991) Genetic and environmental modulations of chromosomal stability: their roles in aging and oncogenesis. Ann N Y Acad Sci 621:401–417

    Article  CAS  Google Scholar 

  86. Martin GM (1996) Somatic mutagenesis and antimutagenesis in aging research. Mutat Res 350:35–41

    Article  Google Scholar 

  87. Fraga MF, Agrelo R, Esteller M (2007) Cross-talk between aging and cancer: the epigenetic language. Ann N Y Acad Sci 1100:60–74

    Article  CAS  Google Scholar 

  88. Zhang X, Chang A (2007) Somatic mutations of the epidermal growth factor receptor and non-small-cell lung cancer. J Med Genet 44:166–172

    Article  CAS  Google Scholar 

  89. Nusbaum NJ (1998) The aging/cancer connection. Am J Med Sci 315:40–49

    Article  CAS  Google Scholar 

  90. Marion RM, Strati K, Li H, Tejera A, Schoeftner S, Ortega S, Serrano M, Blasco MA (2009) Telomeres acquire embryonic stem cell characteristics in induced pluripotent stem cells. Cell Stem Cell 4:141–154

    Article  CAS  Google Scholar 

  91. Sanguinetti MC, Tristani-Firouzi M (2006) hERG potassium channels and cardiac arrhythmia. Nature 440:463–469

    Article  CAS  Google Scholar 

  92. Scholz G, Pohl I, Genschow E, Klemm M, Spielmann H (1999) Embryotoxicity screening using embryonic stem cells in vitro: correlation to in vivo teratogenicity. Cells Tissues Organs 165:203–211

    Article  CAS  Google Scholar 

  93. Roden DM (2004) Drug-induced prolongation of the QT interval. N Engl J Med 350:1013–1022

    Article  CAS  Google Scholar 

  94. Si-Tayeb K, Noto FK, Nagaoka M, Li J, Battle MA, Duris C, North PE, Dalton S, Duncan SA (2010) Highly efficient generation of human hepatocyte-like cells from induced pluripotent stem cells. Hepatology 51:297–305

    Article  CAS  Google Scholar 

  95. Sullivan GJ, Hay DC, Park IH, Fletcher J, Hannoun Z, Payne CM, Dalgetty D, Black JR, Ross JA, Samuel K et al (2010) Generation of functional human hepatic endoderm from human induced pluripotent stem cells. Hepatology 51:329–335

    Article  CAS  Google Scholar 

  96. Ye ZH, Zhan HC, Mali P, Dowey S, Williams DM, Jang YY, Dang CV, Spivak JL, Moliterno AR, Cheng LZ (2009) Human-induced pluripotent stem cells from blood cells of healthy donors and patients with acquired blood disorders. Blood 114:5473–5480

    Article  CAS  Google Scholar 

  97. Wang YX, Jiang YH, Liu S, Sun XF, Gao SR (2009) Generation of induced pluripotent stem cells from human beta-thalassemia fibroblast cells. Cell Res 19:1120–1123

    Article  Google Scholar 

  98. Dimos JT, Rodolfa KT, Niakan KK, Weisenthal LM, Mitsumoto H, Chung W, Croft GF, Saphier G, Leibel R, Goland R et al (2008) Induced pluripotent stem cells generated from patients with ALS can be differentiated into motor neurons. Science 321:1218–1221

    Article  CAS  Google Scholar 

  99. Ebert AD, Yu J, Rose FF Jr, Mattis VB, Lorson CL, Thomson JA, Svendsen CN (2009) Induced pluripotent stem cells from a spinal muscular atrophy patient. Nature 457:277–280

    Article  CAS  Google Scholar 

  100. Soldner F, Hockemeyer D, Beard C, Gao Q, Bell GW, Cook EG, Hargus G, Blak A, Cooper O, Mitalipova M et al (2009) Parkinson’s disease patient-derived induced pluripotent stem cells free of viral reprogramming factors. Cell 136:964–977

    Article  CAS  Google Scholar 

  101. Lee G, Papapetrou EP, Kim H, Chambers SM, Tomishima MJ, Fasano CA, Ganat YM, Menon J, Shimizu F, Viale A et al (2009) Modelling pathogenesis and treatment of familial dysautonomia using patient-specific iPSCs. Nature 461:402–U100

    Article  CAS  Google Scholar 

  102. D’Amour KA, Bang AG, Eliazer S, Kelly OG, Agulnick AD, Smart NG, Moorman MA, Kroon E, Carpenter MK, Baetge EE (2006) Production of pancreatic hormone-expressing endocrine cells from human embryonic stem cells. Nat Biotechnol 24:1392–1401

    Article  CAS  Google Scholar 

  103. Kroon E, Martinson LA, Kadoya K, Bang AG, Kelly OG, Eliazer S, Young H, Richardson M, Smart NG, Cunningham J et al (2008) Pancreatic endoderm derived from human embryonic stem cells generates glucose-responsive insulin-secreting cells in vivo. Nat Biotechnol 26:443–452

    Article  CAS  Google Scholar 

  104. Maehr R, Chen SB, Snitow M, Ludwig T, Yagasaki L, Goland R, Leibel RL, Melton DA (2009) Generation of pluripotent stem cells from patients with type 1 diabetes. Proc Natl Acad Sci USA 106:15768–15773

    Article  CAS  Google Scholar 

  105. Dufrane D, Goebbels RM, Saliez A, Guiot Y, Gianello P (2006) Six-month survival of microencapsulated pig islets and alginate biocompatibility in primates: proof of concept. Transplantation 81:1345–1353

    Article  Google Scholar 

  106. Hanna J, Wernig M, Markoulaki S, Sun CW, Meissner A, Cassady JP, Beard C, Brambrink T, Wu LC, Townes TM, Jaenisch R (2007) Treatment of sickle cell anemia mouse model with iPS cells generated from autologous skin. Science 318:1920–1923

    Article  CAS  Google Scholar 

  107. Raya A, Rodriguez-Piza I, Guenechea G, Vassena R, Navarro S, Barrero MJ, Consiglio A, Castella M, Rio P, Sleep E et al (2009) Disease-corrected haematopoietic progenitors from Fanconi anaemia induced pluripotent stem cells. Nature 460:53–61

    Article  CAS  Google Scholar 

  108. Haridass D, Yuan Q, Becker PD, Cantz T, Iken M, Rothe M, Narain N, Bock M, Norder M, Legrand N et al (2009) Repopulation efficiencies of adult hepatocytes, fetal liver progenitor cells, and embryonic stem cell-derived hepatic cells in albumin-promoter-enhancer urokinase-type plasminogen activator mice. Am J Pathol 175:1483–1492

    Article  CAS  Google Scholar 

  109. Osakada F, Jin ZB, Hirami Y, Ikeda H, Danjyo T, Watanabe K, Sasai Y, Takahashi M (2009) In vitro differentiation of retinal cells from human pluripotent stem cells by small-molecule induction. J Cell Sci 122:3169–3179

    Article  CAS  Google Scholar 

  110. Lamba DA, McUsic A, Hirata RK, Wang PR, Russell D, Reh TA (2010) Generation, purification and transplantation of photoreceptors derived from human induced pluripotent stem cells. PLoS One 5:e8763

    Article  CAS  Google Scholar 

  111. Park IH, Zhao R, West JA, Yabuuchi A, Huo H, Ince TA, Lerou PH, Lensch MW, Daley GQ (2008) Reprogramming of human somatic cells to pluripotency with defined factors. Nature 451:141–146

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We are very grateful to the members of our labs for providing intensive discussions and a lot of critical input, which contributed to this review. Both authors are group leaders within the cluster of excellence REBIRTH (REgenerative BIology and Reconstructive THerapy), which is funded by the German Research Foundation (DFG; EXC 62/1). Further funding is provided by the DFG (MA 2331/6-1, SCHO 340/4-1), the Federal Ministry of Education and Research through grants 0313926A, 01GN0812, 01GN0816 and 01GM0854, 01GN0958 and 0315493, as well as by the José Carreras leukemia foundation (DJCLS R09/01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ulrich Martin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Cantz, T., Martin, U. (2010). Induced Pluripotent Stem Cells: Characteristics and Perspectives. In: Kasper, C., van Griensven, M., Pörtner, R. (eds) Bioreactor Systems for Tissue Engineering II. Advances in Biochemical Engineering / Biotechnology, vol 123. Springer, Berlin, Heidelberg. https://doi.org/10.1007/10_2010_74

Download citation

Publish with us

Policies and ethics