Skip to main content

Measuring Flow, Immersion and Arousal/Valence for Application in Adaptive Learning Systems

  • Conference paper
  • First Online:
Adaptive Instructional Systems. Adaptation Strategies and Methods (HCII 2021)

Abstract

Flow and Immersion are states of deep focus and thorough concentration on an activity, in which the subjective perception of performance reaches an optimum and intrinsic motivation peaks. High intrinsic motivation and deep focus does not only influence learning effects positively, deriving or enriching user models with raw and processed physiological data might also prove invaluable for successful adaptation processes that may be used to further improve learning outcome. So far, there is no reliable method to underpin states of deep focus with physiological characteristics, which would allow detecting such states objectively. Both Flow and Immersion are therefore classically measured using questionnaires. Given that the subjects are not answering the questionnaires during the activity, thus potentially breaking chances to reach states of Flow and Immersion, this method is both highly subjective and delayed - at least the latter somewhat impacting on the accuracy of the questionnaires results. To address these shortcomings, the design of a study to measure deep focus states through finding correlations between questionnaire answers and physiological sensor data (galvanic skin response, electrocardiography, eye tracking) is briefly referenced. The results of the study are discussed, motivating why the Flow model, as is, needs to be revised to allow a more fine grained measurement approach.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Csikszentmihalyi, M.: Beyond Boredom and Anxiety: Experiencing Flow in Work and Play. Jossey-Bass, San Francisco (1975)

    Google Scholar 

  2. Cairns, P., Cox, A., Berthouze, N., Jennett, C., Dhoparee, S.: Quantifying the experience of immersion in games. In: CogSci 2006 Workshop: Cognitive Science of Games and Gameplay (2006)

    Google Scholar 

  3. Csikszentmihalyi, M.: Flow: The Psychology of Optimal Experience. Harper Perennial, New York (1991)

    Google Scholar 

  4. Minsky, M.: Telepresence, pp. 45–51 (1980)

    Google Scholar 

  5. Witmer, B.G., Singer, M.J.: Measuring presence in virtual environments: a presence questionnaire. Presence Teleoperators Virtual Environ. 7(3), 225–240 (1998). https://doi.org/10.1162/105474698565686

    Article  Google Scholar 

  6. Nordin, A.I., Denisova, A., Cairns, P.: Too many questionnaires: measuring player experience whilst playing digital games. In: The Seventh York Doctoral Symposium on Computer Science and Electronics (2014)

    Google Scholar 

  7. Slater, M.: Measuring presence: a response to the Witmer and singer presence questionnaire. Presence 8(5), 560–565 (1999)

    Article  Google Scholar 

  8. Zhang, C., Perkis, A., Arndt, S.: Spatial immersion versus emotional immersion, which is more immersive? In: 2017 Ninth International Conference on Quality of Multimedia Experience (QoMEX), pp. 1–6 (2017)

    Google Scholar 

  9. Qin, H., Rau, P.-L., Salvendy, G.: Player immersion in the computer game narrative. In: Ma, L., Rauterberg, M., Nakatsu, R. (eds.) ICEC 2007. LNCS, vol. 4740, pp. 458–461. Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-74873-1_60

    Chapter  Google Scholar 

  10. Ermi, L., Mäyrä, F.: Fundamental components of the gameplay experience: analysing immersion. In: Proceedings of the DiGRA International Conference: Changing Views: Worlds in Play (2005)

    Google Scholar 

  11. Jennett, C., et al.: Measuring and defining the experience of immersion in games. Int. J. Hum.-Comput. Stud. 66(9), 641–661 (2008)

    Article  Google Scholar 

  12. Cheng, M.-T., She, H.-C., Annetta, L.A.: Game immersion experience: its hierarchical structure and impact on game-based science learning. J. Comp. Assist. Learn. 31(3), 232–253 (2015)

    Article  Google Scholar 

  13. Sullivan, G.M., Artino, A.R.: Analyzing and interpreting data from likert-type scales. J. Grad. Med. Educ. 5(4), 541–542 (2013)

    Article  Google Scholar 

  14. Sweetser, P., Wyeth, P.: GameFlow: a model for evaluating player enjoyment in games. Comput. Entertain. 3(3), 3 (2005)

    Article  Google Scholar 

  15. Fu, F.-L., Su, R.-C., Yu, S.-C.: EGameFlow: a scale to measure learners’ enjoyment of e-learning games. Comput. Educ. 52(1), 101–112 (2009)

    Article  Google Scholar 

  16. Rheinberg, F., Vollmeyer, R., Engeser, S.: Die Erfassung des Flow-Erlebens. In: Diagnostik von Motivation und Selbstkonzept, pp. 261–279. Hogrefe, Göttingen (2003)

    Google Scholar 

  17. Georgiou, Y., Kyza, E.A.: The development and validation of the ARI questionnaire. Int. J. Hum.-Comput. Stud. 98(C), 24–37 (2017)

    Article  Google Scholar 

  18. IJsselsteijn, W.A., de Kort, Y.A.W., Poels, K.: The Game Experience Questionnaire. Technische Universiteit Eindhoven, Eindhoven (2013)

    Google Scholar 

  19. Gravenhorst, F., Muaremi, A., Tröster, G., Arnrich, B., Grünerbl, A.: Towards a mobile galvanic skin response measurement system for mentally disordered patients. In: Proceedings of the 8th International Conference on Body Area Networks 432–435. (2013)

    Google Scholar 

  20. Landau, S., Everitt, B.S.: A Handbook of Statistical Analyses Using SPSS. Statistics (Chapman & Hall/CRC). Taylor & Francis (2004)

    Google Scholar 

  21. Kannegieser, E., Atorf, D., Meier, J.: Conduction an experiment for validating the combined model of immersion and flow. In: Proceedings of the 11th International Conference on Computer Supported Education, vol. 2, pp. 252–259 (2019)

    Google Scholar 

  22. Kannegieser, E., Atorf, D., Meier, J.: Surveying games with a combined model of immersion and flow. In: Proceedings of the International Conferences on Interfaces and Human Computer Interaction, Game and Entertainment Technologies, pp. 353–356 (2018)

    Google Scholar 

  23. Tomkins, S.S., Karon, B.P.: Affect, Imagery, Consciousness, vol. I. Springer, New York (1962)

    Google Scholar 

  24. Ekman, I., Chanel, G., Järvelä, S., Kivikangas, J.M., Salminen, M., Ravaja, N.: Social interaction in games: measuring physiological linkage and social presence. Simul. Gaming 43, 321–338 (2012)

    Article  Google Scholar 

  25. Hamann, S.: Mapping discrete and dimensional emotions onto the brain: controversies and consensus. Trends Cogn. Sci. 16(9), 458–466 (2012)

    Article  Google Scholar 

  26. Wundt, W.: Outlines of Psychology (1897)

    Google Scholar 

  27. Mäntylä, M., Adams, B., Destefanis, G., Graziotin, D., Ortu, M.: Mining valence, arousal, and dominance: possibilities for detecting burnout and productivity? In: Proceedings of the 13th International Conference on Mining Software Repositories, pp. 247–258. ACM, Austin (2016)

    Google Scholar 

  28. Bakker, I., van der Voordt, T., Vink, P., de Boon, J.: Pleasure, arousal, dominance: Mehrabian and Russell revisited. Curr. Psychol. 33, 405–421 (2014). https://doi.org/10.1007/s12144-014-9219-4

    Article  Google Scholar 

  29. Lane, R.D., Chua, P.M., Dolan, R.J.: Common effects of emotional valence, arousal and attention on neural activation during visual processing of pictures. Neuropsychologia 37, 989–997 (1999)

    Article  Google Scholar 

  30. Russell, J.A.: A circumplex model of affect. J. Pers. Soc. Psychol. 39, 1161 (1980)

    Article  Google Scholar 

  31. Russell, J.A., Lanius, U.F.: Adaptation level and the affective appraisal of environments. J. Environ. Psychol. 4(2), 119–135 (1984)

    Article  Google Scholar 

  32. Nogueira, P.A., Torres, V., Rodrigues, R., Oliveira, E., Nacke, L.E.: Vanishing scares: biofeedback modulation of affective player experiences in a procedural horror game. J. Multimodal User Interfaces 10(1), 31–62 (2015). https://doi.org/10.1007/s12193-015-0208-1

    Article  Google Scholar 

  33. Ravaja, N., Kivikangas, J.M.: Psychophysiology of digital game playing: effects of competition versus collaboration in the laboratory and in real life (2008)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ehm Kannegieser .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kannegieser, E., Atorf, D., Herold, J. (2021). Measuring Flow, Immersion and Arousal/Valence for Application in Adaptive Learning Systems. In: Sottilare, R.A., Schwarz, J. (eds) Adaptive Instructional Systems. Adaptation Strategies and Methods. HCII 2021. Lecture Notes in Computer Science(), vol 12793. Springer, Cham. https://doi.org/10.1007/978-3-030-77873-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-77873-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-77872-9

  • Online ISBN: 978-3-030-77873-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics