Skip to main content

Human-Drone Interaction (HDI): Opportunities and Considerations in Construction

  • Chapter
  • First Online:
Automation and Robotics in the Architecture, Engineering, and Construction Industry

Abstract

The construction industry is witnessing significant growth in drone applications, ranging from site mapping and surveying and progress monitoring to safety monitoring and structure inspection and maintenance. Drones’ recent technological advancements and successful integration with other technologies, along with their ability to accomplish tasks safely, quickly, and cost-effectively, have made them popular robots on construction jobsites. In the upcoming years, drones will be an integral component of construction teams, and these flying robots are envisioned to cooperate collectively or with other types of robots while closely interacting with jobsite workers and personnel. This chapter focuses on: providing a comprehensive overview of the different applications of drone technology in construction; understanding the human-drone interaction elements, research areas, and opportunities; as well as summarizing the interaction considerations while proposing a future research roadmap that ultimately paves the way to safely and more efficiently integrate drones on construction jobsites.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Albeaino, M. Gheisari, B.W. Franz, A systematic review of unmanned aerial vehicle application areas and technologies in the AEC domain. J. Inf. Technol. Constr. ITcon. 24, 381–405 (2019). https://www.itcon.org/2019/20

    Google Scholar 

  2. Z. Zhou, J. Irizarry, Y. Lu, A multidimensional framework for unmanned aerial system applications in construction project management. J. Manag. Eng. 34, 04018004–04018004 (2018). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000597

    Article  Google Scholar 

  3. S. Zhou, M. Gheisari, Unmanned aerial system applications in construction: a systematic review. Constr. Innov., CI-02-2018–0010 (2018). https://doi.org/10.1108/CI-02-2018-0010

  4. J.G. Martinez, M. Gheisari, L.F. Alarcón, UAV integration in current construction safety planning and monitoring processes: case study of a high-rise building construction project in Chile. J. Manag. Eng. 36 (2020). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000761

  5. J.G. Martinez, G. Albeaino, M. Gheisari, R.R.A. Issa, L.F. Alarcón, iSafeUAS: An unmanned aerial system for construction safety inspection. Autom. Constr. 125, 103595 (2021). https://doi.org/10.1016/j.autcon.2021.103595

    Article  Google Scholar 

  6. A. Ibrahim, M. Golparvar-Fard, 4D BIM based optimal flight planning for construction monitoring applications using camera-equipped UAVs, in Computing in Civil Engineering 2019, Atlanta, Georgia, (2019), pp. 217–224. https://doi.org/10.1061/9780784482438.028

    Chapter  Google Scholar 

  7. I. Mutis, A.F. Romero, Thermal performance assessment of curtain walls of fully operational buildings using infrared thermography and unmanned aerial vehicles, in Advances in Informatics and Computing in Civil and Construction Engineering, ed. by I. Mutis, T. Hartmann, (Springer International Publishing, Cham, 2019), pp. 703–709

    Chapter  Google Scholar 

  8. D. Roca, S. Lagüela, L. Díaz-Vilariño, J. Armesto, P. Arias, Low-cost aerial unit for outdoor inspection of building façades. Autom. Constr. 36, 128–135 (2013). https://doi.org/10.1016/j.autcon.2013.08.020

    Article  Google Scholar 

  9. M. Obaid, O. Mubin, C.A. Basedow, A.A. Ünlüer, M.J. Bergström, M. Fjeld, A drone agent to support a clean environment, in Proceedings of the 3rd International Conference on Human-Agent Interaction, (Association for Computing Machinery, New York, 2015), pp. 55–61. https://doi.org/10.1145/2814940.2814947

    Chapter  Google Scholar 

  10. S. Schneegass, F. Alt, J. Scheible, A. Schmidt, Midair displays: concept and first experiences with free-floating pervasive displays, in Proceedings of the International Symposium on Pervasive Displays, (Association for Computing Machinery, New York, 2014), pp. 27–31. https://doi.org/10.1145/2611009.2611013

    Chapter  Google Scholar 

  11. M. Avila, M. Funk, N. Henze, DroneNavigator: using drones for navigating visually impaired persons, in Proceedings of the 17th International ACM SIGACCESS Conference on Computers & Accessibility, (Association for Computing Machinery, New York, 2015), pp. 327–328. https://doi.org/10.1145/2700648.2811362

    Chapter  Google Scholar 

  12. M. Al Zayer, S. Tregillus, J. Bhandari, D. Feil-Seifer, E. Folmer, Exploring the use of a drone to guide blind runners, in Proceedings of the 18th International ACM SIGACCESS Conference on Computers & Accessibility, (Association for Computing Machinery, New York, 2016), pp. 263–264. https://doi.org/10.1145/2982142.2982204

    Chapter  Google Scholar 

  13. F. Mueller, M. Muirhead, Understanding the design of a flying jogging companion, in Proceedings of the Adjunct Publication of the 27th Annual ACM Symposium on User Interface Software and Technology, (Association for Computing Machinery, New York, 2014), pp. 81–82. https://doi.org/10.1145/2658779.2658786

    Chapter  Google Scholar 

  14. M. Gheisari, B. Esmaeili, Applications and requirements of unmanned aerial systems (UASs) for construction safety. Saf. Sci. 118, 230–240 (2019). https://doi.org/10.1016/j.ssci.2019.05.015

    Article  Google Scholar 

  15. H. Golizadeh, M.R. Hosseini, D.J. Edwards, S. Abrishami, N. Taghavi, S. Banihashemi, Barriers to adoption of RPAs on construction projects: a task–technology fit perspective. Constr. Innov. 19, 149–169 (2019). https://doi.org/10.1108/CI-09-2018-0074

    Article  Google Scholar 

  16. J.G. Martinez, G. Albeaino, M. Gheisari, W. Volkmann, L.F. Alarcón, UAS point cloud accuracy assessment using structure from motion–based photogrammetry and PPK georeferencing technique for building surveying applications. J. Comput. Civ. Eng. 35, 05020004 (2021). https://doi.org/10.1061/(ASCE)CP.1943-5487.0000936

    Article  Google Scholar 

  17. R. Eiris, G. Albeaino, M. Gheisari, B. Benda, R. Faris, Indrone: visualizing drone flight patterns for indoor building inspection tasks, in Proceedings of the 20th International Conference on Construction Applications of Virtual Reality, (Teesside University Press, Middlesbrough, 2020), pp. 273–282. https://www.researchgate.net/publication/344444905_Enabling_the_Development_and_Implementation_of_Digital_Twins_Proceedings_of_the_20th_International_Conference_on_Construction_Applications_of_Virtual_Reality

    Google Scholar 

  18. C.H. Hugenholtz, J. Walker, O. Brown, S. Myshak, Earthwork Volumetrics with an Unmanned Aerial Vehicle and Softcopy Photogrammetry. J. Surv. Eng. 141, 06014003 (2015). https://doi.org/10.1061/(ASCE)SU.1943-5428.0000138

    Article  Google Scholar 

  19. P. Sestras, S. Roșca, Ș. Bilașco, S. Naș, S.M. Buru, L. Kovacs, V. Spalević, A.F. Sestras, Feasibility assessments using unmanned aerial vehicle technology in heritage buildings: rehabilitation-restoration, spatial analysis and tourism potential analysis. Sensors 20, 2054 (2020). https://doi.org/10.3390/s20072054

    Article  Google Scholar 

  20. M.-C. Wen, S.-C. Kang, Augmented reality and unmanned aerial vehicle assist in construction management, in Computing in Civil and Building Engineering 2014, (American Society of Civil Engineers, Orlando, 2014), pp. 1570–1577. https://doi.org/10.1061/9780784413616.195

    Chapter  Google Scholar 

  21. W. Jiang, Y. Zhou, L. Ding, C. Zhou, X. Ning, UAV-based 3D reconstruction for hoist site mapping and layout planning in petrochemical construction. Autom. Constr. 113, 103137 (2020). https://doi.org/10.1016/j.autcon.2020.103137

    Article  Google Scholar 

  22. S. Siebert, J. Teizer, Mobile 3D mapping for surveying earthwork projects using an Unmanned Aerial Vehicle (UAV) system. Autom. Constr. 41, 1–14 (2014). https://doi.org/10.1016/j.autcon.2014.01.004

    Article  Google Scholar 

  23. C.A.F. Ezequiel, M. Cua, N.C. Libatique, G.L. Tangonan, R. Alampay, R.T. Labuguen, C.M. Favila, J.L.E. Honrado, V. Canos, C. Devaney, A.B. Loreto, J. Bacusmo, B. Palma, UAV aerial imaging applications for post-disaster assessment, environmental management and infrastructure development, in 2014 International Conference on Unmanned Aircraft Systems (ICUAS), (IEEE, 2014), pp. 274–283. https://doi.org/10.1109/ICUAS.2014.6842266

    Chapter  Google Scholar 

  24. J. Unger, M. Reich, C. Heipke, UAV-based photogrammetry: monitoring of a building zone. ISPRS – Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. XL–5, 601–606 (2014). https://doi.org/10.5194/isprsarchives-XL-5-601-2014

    Article  Google Scholar 

  25. U.S. Bureau of Labor Statistics, National Census of Fatal Occupational Injuries in 2017, 9 (2018)

    Google Scholar 

  26. M. Gheisari, A. Rashidi, B. Esmaeili, Using unmanned aerial systems for automated fall hazard monitoring, in Construction Research Congress 2018, vol. 2018, (American Society of Civil Engineers, New Orleans), pp. 62–72. https://doi.org/10.1061/9780784481288.007

  27. National Equipment Register, Annual Theft Report (2016), 2017. http://www.ner.net/wp-content/uploads/2017/10/Annual-Theft-Report-2016.pdf

  28. A. Bürkle, F. Segor, M. Kollmann, Towards autonomous micro UAV swarms. J. Intell. Robot. Syst. 61, 339–353 (2011). https://doi.org/10.1007/s10846-010-9492-x

    Article  Google Scholar 

  29. N. Michael, J. Fink, V. Kumar, Cooperative manipulation and transportation with aerial robots. Auton. Robots. 30, 73–86 (2011). https://doi.org/10.1007/s10514-010-9205-0

    Article  MATH  Google Scholar 

  30. Q. Lindsey, D. Mellinger, V. Kumar, Construction of cubic structures with quadrotor teams, in Proceedings of the Robotics Science and Systems, Los Angeles, CA, USA, (2011) https://doi.org/10.15607/RSS.2011.VII.025

    Google Scholar 

  31. S. Goessens, C. Mueller, P. Latteur, Feasibility study for drone-based masonry construction of real-scale structures. Autom. Constr. 94, 458–480 (2018). https://doi.org/10.1016/j.autcon.2018.06.015

    Article  Google Scholar 

  32. J. Irizarry, M. Gheisari, B.N. Walker, Usability assessment of drone technology as safety inspection tools. J. Inf. Technol. Constr. ITcon. 17, 194–212 (2012)

    Google Scholar 

  33. C.-H. Yang, M.-C. Wen, Y.-C. Chen, S.-C. Kang, An optimized unmanned aerial system for bridge inspection, in Proceedings of the 32nd International Symposium on Automation and Robotics in Construction and Mining ISARC 2015, ed. by M. Malaska, R. Heikkilä, (International Association for Automation and Robotics in Construction (IAARC), Oulu, 2015), pp. 1–6. https://doi.org/10.22260/ISARC2015/0084

    Chapter  Google Scholar 

  34. L. Duque, J. Seo, J. Wacker, Bridge deterioration quantification protocol using UAV. J. Bridge Eng. 23, 04018080 (2018). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001289

    Article  Google Scholar 

  35. A.P. Tomiczek, T.J. Whitley, J.A. Bridge, P.G. Ifju, Bridge inspections with small unmanned aircraft systems: case studies. J. Bridge Eng. 24, 05019003 (2019). https://doi.org/10.1061/(ASCE)BE.1943-5592.0001376

    Article  Google Scholar 

  36. D. Kang, Y.-J. Cha, Autonomous UAVs for structural health monitoring using deep learning and an ultrasonic beacon system with geo-tagging. Comput.-Aided Civ. Infrastruct. Eng. 33, 885–902 (2018). https://doi.org/10.1111/mice.12375

    Article  Google Scholar 

  37. S.M. Adams, M.L. Levitan, C.J. Friedland, High resolution imagery collection for post-disaster studies utilizing unmanned aircraft systems (UAS). Photogramm. Eng. Remote Sens. 80, 1161–1168 (2014). https://doi.org/10.14358/PERS.80.12.1161

    Article  Google Scholar 

  38. N. Michael, S. Shen, K. Mohta, Y. Mulgaonkar, V. Kumar, K. Nagatani, Y. Okada, S. Kiribayashi, K. Otake, K. Yoshida, K. Ohno, E. Takeuchi, S. Tadokoro, Collaborative mapping of an earthquake-damaged building via ground and aerial robots. J. Field Robot. 29, 832–841 (2012). https://doi.org/10.1002/rob.21436

    Article  Google Scholar 

  39. G.-J.M. Kruijff, F. Pirri, M. Gianni, P. Papadakis, M. Pizzoli, A. Sinha, V. Tretyakov, T. Linder, E. Pianese, S. Corrao, F. Priori, S. Febrini, S. Angeletti, Rescue robots at earthquake-hit Mirandola, Italy: A field report, in 2012 IEEE International Symposium on Safety, Security, and Rescue Robotics (SSRR), (IEEE, 2012), pp. 1–8. https://doi.org/10.1109/SSRR.2012.6523866

    Chapter  Google Scholar 

  40. D. Feil-Seifer, M.J. Matarić, Human-robot interaction, in Encyclopedia of Complexity and Systems Science, ed. by R. A. Meyers, (Springer, New York, 2009), pp. 4643–4659. https://doi.org/10.1007/978-0-387-30440-3_274

    Chapter  Google Scholar 

  41. S. Mirri, C. Prandi, P. Salomoni, Human-drone interaction: state of the art, open issues and challenges, in Proceedings of the ACM SIGCOMM 2019 Workshop on Mobile AirGround Edge Computing, Systems, Networks, and Applications, (Association for Computing Machinery, New York, 2019), pp. 43–48. https://doi.org/10.1145/3341568.3342111

    Chapter  Google Scholar 

  42. A. Yeh, P. Ratsamee, K. Kiyokawa, Y. Uranishi, T. Mashita, H. Takemura, M. Fjeld, M. Obaid, Exploring proxemics for human-drone interaction, in Proceedings of the 5th International Conference on Human Agent Interaction, (Association for Computing Machinery, New York, 2017), pp. 81–88. https://doi.org/10.1145/3125739.3125773

    Chapter  Google Scholar 

  43. A. Wojciechowska, J. Frey, S. Sass, R. Shafir, J.R. Cauchard, Collocated human-drone interaction: methodology and approach strategy, in 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI), (2019), pp. 172–181. https://doi.org/10.1109/HRI.2019.8673127

    Chapter  Google Scholar 

  44. D. Tezza, M. Andujar, The state-of-the-art of human–drone interaction: a survey. IEEE Access. 7, 167438–167454 (2019). https://doi.org/10.1109/ACCESS.2019.2953900

    Article  Google Scholar 

  45. C.A. Thiels, J.M. Aho, S.P. Zietlow, D.H. Jenkins, Use of unmanned aerial vehicles for medical product transport. Air Med. J. 34, 104–108 (2015). https://doi.org/10.1016/j.amj.2014.10.011

    Article  Google Scholar 

  46. K. Higuchi, T. Shimada, J. Rekimoto, Flying sports assistant: external visual imagery representation for sports training, in Proceedings of the 2nd Augmented Human International Conference, (Association for Computing Machinery, New York, 2011). https://doi.org/10.1145/1959826.1959833

    Chapter  Google Scholar 

  47. E. Graether, F. Mueller, Joggobot: a flying robot as jogging companion, in CHI ’12 Extended Abstracts on Human Factors in Computing Systems, (Association for Computing Machinery, New York, 2012), pp. 1063–1066. https://doi.org/10.1145/2212776.2212386

    Chapter  Google Scholar 

  48. J.R. Cauchard, J.L. E, K.Y. Zhai, J.A. Landay, Drone & Me: An Exploration into Natural Human-Drone Interaction, in Proceedings of the 2015 ACM International Joint Conference on Pervasive and Ubiquitous Computing, (Association for Computing Machinery, New York, 2015), pp. 361–365. https://doi.org/10.1145/2750858.2805823

    Chapter  Google Scholar 

  49. K. Miyoshi, R. Konomura, K. Hori, Above your hand: direct and natural interaction with aerial robot, in ACM SIGGRAPH 2014 Emerging Technologies, (Association for Computing Machinery, New York, 2014). https://doi.org/10.1145/2614066.2614086

    Chapter  Google Scholar 

  50. J.R. Cauchard, A. Tamkin, C.Y. Wang, L. Vink, M. Park, T. Fang, J.A. Landay, Drone.io: a gestural and visual interface for human-drone interaction, in Proceedings of the 14th ACM/IEEE International Conference on Human-Robot Interaction, (2019), pp. 153–162. https://doi.org/10.1109/HRI.2019.8673011

    Chapter  Google Scholar 

  51. A. Mashood, H. Noura, I. Jawhar, N. Mohamed, A gesture based kinect for quadrotor control, in 2015 International Conference on Information and Communication Technology Research (ICTRC), (2015), pp. 298–301. https://doi.org/10.1109/ICTRC.2015.7156481

    Chapter  Google Scholar 

  52. A. Sanna, F. Lamberti, G. Paravati, F. Manuri, A Kinect-based natural interface for quadrotor control. Entertain. Comput. 4, 179–186 (2013). https://doi.org/10.1016/j.entcom.2013.01.001

    Article  Google Scholar 

  53. J.L. E, I.L. E, J.A. Landay, J.R. Cauchard, Drone & Wo: cultural influences on human-drone interaction techniques, in Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems, (Association for Computing Machinery, New York, 2017), pp. 6794–6799. https://doi.org/10.1145/3025453.3025755

    Chapter  Google Scholar 

  54. R.A.S. Fernández, J.L. Sanchez-Lopez, C. Sampedro, H. Bavle, M. Molina, P. Campoy, Natural user interfaces for human-drone multi-modal interaction, in 2016 International Conference on Unmanned Aircraft Systems (ICUAS), (2016), pp. 1013–1022. https://doi.org/10.1109/ICUAS.2016.7502665

    Chapter  Google Scholar 

  55. M. Quigley, M.A. Goodrich, R.W. Beard, Semi-autonomous human-UAV interfaces for fixed-wing mini-UAVs, in 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566), vol. 3, (2004), pp. 2457–2462. https://doi.org/10.1109/IROS.2004.1389777

    Chapter  Google Scholar 

  56. G. Jones, N. Berthouze, R. Bielski, S. Julier, Towards a situated, multimodal interface for multiple UAV control, in 2010 IEEE International Conference on Robotics and Automation, (2010), pp. 1739–1744. https://doi.org/10.1109/ROBOT.2010.5509960

    Chapter  Google Scholar 

  57. B.N. Pavan Kumar, A. Balasubramanyam, A.K. Patil, B. Chethana, Y.H. Chai, GazeGuide: an eye-gaze-guided active immersive UAV camera. Appl. Sci. 10, 1668 (2020). https://doi.org/10.3390/app10051668

    Article  Google Scholar 

  58. M. Staudte, M.W. Crocker, Investigating joint attention mechanisms through spoken human–robot interaction. Cognition 120, 268–291 (2011). https://doi.org/10.1016/j.cognition.2011.05.005

    Article  Google Scholar 

  59. J.P. Hansen, A. Alapetite, I.S. MacKenzie, E. Møllenbach, The use of gaze to control drones, in Proceedings of the Symposium on Eye Tracking Research and Applications, (Association for Computing Machinery, New York, 2014), pp. 27–34. https://doi.org/10.1145/2578153.2578156

    Chapter  Google Scholar 

  60. L. Yuan, C. Reardon, G. Warnell, G. Loianno, Human gaze-driven spatial tasking of an autonomous MAV. IEEE Robot. Autom. Lett. 4, 1343–1350 (2019). https://doi.org/10.1109/LRA.2019.2895419

    Article  Google Scholar 

  61. N. Kosmyna, F. Tarpin-Bernard, B. Rivet, Towards brain computer interfaces for recreational activities: piloting a drone, in Human-Computer Interaction – INTERACT 2015, ed. by J. Abascal, S. Barbosa, M. Fetter, T. Gross, P. Palanque, M. Winckler, (Springer International Publishing, Cham, 2015), pp. 506–522

    Chapter  Google Scholar 

  62. B.H. Kim, M. Kim, S. Jo, Quadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye tracking. Comput. Biol. Med. 51, 82–92 (2014). https://doi.org/10.1016/j.compbiomed.2014.04.020

    Article  Google Scholar 

  63. K. LaFleur, K. Cassady, A. Doud, K. Shades, E. Rogin, B. He, Quadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interface. J. Neural Eng. 10, 046003–046003 (2013). https://doi.org/10.1088/1741-2560/10/4/046003

    Article  Google Scholar 

  64. c.W. Mueller, c. D’Andrea, Critical subsystem failure mitigation in an indoor UAV testbed, in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems, (2012), pp. 780–785. https://doi.org/10.1109/IROS.2012.6385910

    Chapter  Google Scholar 

  65. P. Abtahi, B. Landry, J. (Junrui) Yang, M. Pavone, S. Follmer, J.A. Landay, Beyond the force: using quadcopters to appropriate objects and the environment for haptics in virtual reality, in Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, (Association for Computing Machinery, New York, 2019), pp. 1–13. https://doi.org/10.1145/3290605.3300589

    Chapter  Google Scholar 

  66. P. Abtahi, D.Y. Zhao, J.L. E, J.A. Landay, Drone near me: exploring touch-based human-drone interaction, in Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, vol. 1, (2017). https://doi.org/10.1145/3130899

    Chapter  Google Scholar 

  67. K. Nitta, K. Higuchi, J. Rekimoto, HoverBall: augmented sports with a flying ball, in Proceedings of the 5th Augmented Human International Conference, (Association for Computing Machinery, New York, 2014). https://doi.org/10.1145/2582051.2582064

    Chapter  Google Scholar 

  68. E.T. Hall, Distances in man, in Hidden dimens, (Anchor Books, New York, 1969)

    Google Scholar 

  69. B.A. Duncan, R.R. Murphy, A preliminary model for comfortable approach distance based on environmental conditions and personal factors, in 2012 International Conference on Collaboration Technologies and Systems (CTS), (2012), pp. 622–627. https://doi.org/10.1109/CTS.2012.6261117

    Chapter  Google Scholar 

  70. U. Acharya, A. Bevins, B.A. Duncan, Investigation of human-robot comfort with a small Unmanned Aerial Vehicle compared to a ground robot, in 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), (2017), pp. 2758–2765. https://doi.org/10.1109/IROS.2017.8206104

    Chapter  Google Scholar 

  71. W. Jensen, S. Hansen, H. Knoche, Knowing you, seeing me: investigating user preferences in drone-human acknowledgement, in Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems, (Association for Computing Machinery, New York, 2018), pp. 1–12. https://doi.org/10.1145/3173574.3173939

    Chapter  Google Scholar 

  72. W.S. Ng, E. Sharlin, Collocated interaction with flying robots, in 2011 RO-MAN, (2011), pp. 143–149. https://doi.org/10.1109/ROMAN.2011.6005280

    Chapter  Google Scholar 

  73. J.R. Cauchard, K.Y. Zhai, M. Spadafora, J.A. Landay, Emotion encoding in human-drone interaction, in 2016 11th ACM/IEEE International Conference on Human-Robot Interaction (HRI), (2016), pp. 263–270. https://doi.org/10.1109/HRI.2016.7451761

    Chapter  Google Scholar 

  74. G. Morgenthal, N. Hallermann, Quality assessment of Unmanned Aerial Vehicle (UAV) based visual inspection of structures. Adv. Struct. Eng. 17, 289–302 (2014). https://doi.org/10.1260/1369-4332.17.3.289

    Article  Google Scholar 

  75. Y. Ham, K.K. Han, J.J. Lin, M. Golparvar-Fard, Visual monitoring of civil infrastructure systems via camera-equipped Unmanned Aerial Vehicles (UAVs): a review of related works. Vis. Eng. 4, 1 (2016). https://doi.org/10.1186/s40327-015-0029-z

    Article  Google Scholar 

  76. S. Kim, J. Irizarry, D.B. Costa, Field test-based UAS operational procedures and considerations for construction safety management: a qualitative exploratory study. Int. J. Civ. Eng. 9 (2020). https://doi.org/10.1007/s40999-020-00512-9

  77. S. Alizadehsalehi, I. Yitmen, T. Celik, D. Arditi, The effectiveness of an integrated BIM/UAV model in managing safety on construction sites. Int. J. Occup. Saf. Ergon. 0, 1–16 (2018). https://doi.org/10.1080/10803548.2018.1504487

    Article  Google Scholar 

  78. S. Kim, J. Irizarry, D.B. Costa, Potential factors influencing the performance of Unmanned Aerial System (UAS) integrated safety control for construction worksites, in Construction Research Congress 2016, (American Society of Civil Engineers, San Juan, 2016), pp. 2614–2623. https://doi.org/10.1061/9780784479827.260

    Chapter  Google Scholar 

  79. C. Eschmann, C.-M. Kuo, C.-H. Kuo, C. Boller, Unmanned aircraft systems for remote building inspection and monitoring, in 6th European Workshop on Structural Health Monitoring – Th2B1, (2012) http://www.ndt.net/?id=14139

    Google Scholar 

  80. C. Mendes, D. Costa, R. Melo, Evaluating Uas-Image Pattern Recognition System Application For Safety Guardrails Inspection, 1–3 (2018)

    Google Scholar 

  81. R.R.S. de Melo, D.B. Costa, J.S. Álvares, J. Irizarry, Applicability of unmanned aerial system (UAS) for safety inspection on construction sites. Saf. Sci. 98, 174–185 (2017). https://doi.org/10.1016/j.ssci.2017.06.008

    Article  Google Scholar 

  82. R.R.S. de Melo, D.B. Costa, Integrating resilience engineering and UAS technology into construction safety planning and control. Eng. Constr. Archit. Manag. 26, 2705–2722 (2019). https://doi.org/10.1108/ECAM-12-2018-0541

    Article  Google Scholar 

  83. M. Herrmann, Unmanned aerial vehicles in construction: an overview of current and proposed rules. Constr. Res. Congr. 2016, 588–596 (2016). https://doi.org/10.1061/9780784479827.060

    Article  Google Scholar 

  84. J. Irizarry, D.B. Costa, Exploratory study of potential applications of unmanned aerial systems for construction management tasks. J. Manag. Eng. 32, 05016001 (2016). https://doi.org/10.1061/(ASCE)ME.1943-5479.0000422

    Article  Google Scholar 

  85. US Department of Transportation, Advisory Circular 107-2 – Small Unmanned Aircraft Systems (sUAS), 2016. https://www.faa.gov/documentlibrary/media/advisory_circular/ac_107-2.pdf.

  86. European Union Aviation Safety Agency, Drones Information Notices 2020. Eur. Union Aviat. Saf. Agency. (2020). https://www.easa.europa.eu/document-library/general-publications/drones-information-notices-2020. Accessed 11 Feb 2021

  87. G. Albeaino, M. Gheisari, Trends, benefits, and barriers of unmanned aerial systems in the construction industry: a survey study in the United States. J. Inf. Technol. Constr. ITcon. 26, 84-111 (2021). https://doi.org/10.36680/j.itcon.2021.006

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilles Albeaino .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2022 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Albeaino, G., Gheisari, M., Issa, R.R.A. (2022). Human-Drone Interaction (HDI): Opportunities and Considerations in Construction. In: Jebelli, H., Habibnezhad, M., Shayesteh, S., Asadi, S., Lee, S. (eds) Automation and Robotics in the Architecture, Engineering, and Construction Industry. Springer, Cham. https://doi.org/10.1007/978-3-030-77163-8_6

Download citation

Publish with us

Policies and ethics