Skip to main content

Sensitivity of UTCI Thermal Comfort Prediction to Personal and Situational Factors—Residual Analysis of Pedestrian Survey Data

  • Chapter
  • First Online:
Applications of the Universal Thermal Climate Index UTCI in Biometeorology

Part of the book series: Biometeorology ((BIOMET,volume 4))

  • 505 Accesses

Abstract

The Universal Thermal Climate Index (UTCI) assesses the interaction of ambient temperature, wind, humidity and radiant fluxes on human physiology in outdoor environments on an equivalent temperature scale. Based upon the dynamic thermal sensation (DTS) from the UTCI-Fiala model of human thermoregulation, the UTCI allows for thermal comfort prediction. Here we compare those predictions to thermal sensation votes as recorded on the 7-unit ASHRAE scale for two Brazilian cities, Curitiba and Pelotas. Outdoor comfort surveys from 1551 respondents in Curitiba and 1148 in Pelotas, respectively, yielded negligible bias and less than one unit root-mean square error (rmse), which was similar in magnitude for both study areas. Residual analysis revealed that factors such as age, sex, body composition, site morphology (open space, street canyon), climatic state (comfort/discomfort) and clothing choice only explained a small portion of the prediction error variance, which in the total sample was dominated for over 94% by residual inter-individual variability. Adding historical weather information from the previous three days gave superior information compared to longer time lags and helped to reduce the residual variance to 88%. Those findings underpin current limitations in individual thermal comfort prediction, whereas personal and situational factors hardly affected UTCI predictive performance, which showed reasonable accuracy at the population level.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anderson V, Leung ACW, Mehdipoor H, Jänicke B, Milošević D, Oliveira A, Manavvi S, Kabano P, Dzyuban Y, Aguilar R, Agan PN, Kunda JJ, Garcia-Chapeton G, de França Carvalho Fonsêca V, Nascimento ST, Zurita-Milla R (2021) Technological opportunities for sensing of the health effects of weather and climate change: a state-of-the-art-review. Int J Biometeorol 65(6):779–803.https://doi.org/10.1007/s00484-020-02063-z

  • ASHRAE (2004) Standard 55—thermal environmental conditions for human occupancy. ASHRAE Inc., Atlanta

    Google Scholar 

  • Brecht BM, Schädler G, Schipper JW (2020) UTCI climatology and its future change in Germany – An RCM ensemble approach. Meteorol Z 29(2):97–116. https://doi.org/10.1127/metz/2020/1010

  • Bröde P (2019) UTCI-to-DTS [Data set]. 1.0 edn. Zenodo. https://doi.org/10.5281/zenodo.3372231

  • Bröde P, Fiala D, Blazejczyk K, Holmér I, Jendritzky G, Kampmann B, Tinz B, Havenith G (2012a) Deriving the operational procedure for the universal thermal climate index (UTCI). Int J Biometeorol 56(3):481–494. https://doi.org/10.1007/s00484-011-0454-1

  • Bröde P, Krüger EL, Rossi FA, Fiala D (2012b) Predicting urban outdoor thermal comfort by the universal thermal climate index UTCI—a case study in Southern Brazil. Int J Biometeorol 56(3):471–480. https://doi.org/10.1007/s00484-011-0452-3

  • Bröde P, Krüger EL, Fiala D (2013) UTCI: validation and practical application to the assessment of urban outdoor thermal comfort. Geogr Pol 86(1):11–20. https://doi.org/10.7163/GPol.2013.2

    Article  Google Scholar 

  • Bröde P, Krüger EL, Fiala D (2014) Residual analysis of UTCI predictions on outdoor thermal sensation survey data. In: Cumberland Lodge, Windsor, UK, 10–13 April 2014. Network for Comfort and Energy Use in Buildings, London, pp 776–784

    Google Scholar 

  • Buller MJ, Welles AP, Friedl KE (2018) Wearable physiological monitoring for human thermal-work strain optimization. J Appl Physiol 124(2):432–441. https://doi.org/10.1152/japplphysiol.00353.2017

    Article  Google Scholar 

  • Cabanac M (1971) Physiological role of pleasure. Science 173(4002):1103–1107. https://doi.org/10.1126/science.173.4002.1103

    Article  Google Scholar 

  • Di Napoli C, Barnard C, Prudhomme C, Cloke HL, Pappenberger F (2020) ERA5-HEAT: a global gridded historical dataset of human thermal comfort indices from climate reanalysis. Geosci Data J. https://doi.org/10.1002/gdj3.102

    Article  Google Scholar 

  • Fiala D, Lomas KJ, Stohrer M (2003) First principles modeling of thermal sensation responses in steady-state and transient conditions. ASHRAE Trans 109(1):179–186

    Google Scholar 

  • Fiala D, Havenith G, Bröde P, Kampmann B, Jendritzky G (2012) UTCI-Fiala multi-node model of human heat transfer and temperature regulation. Int J Biometeorol 56(3):429–441. https://doi.org/10.1007/s00484-011-0424-7

    Article  Google Scholar 

  • Havenith G (2001) Individualized model of human thermoregulation for the simulation of heat stress response. J Appl Physiol 90(5):1943–1954

    Article  Google Scholar 

  • Havenith G, Coenen JML, Kistemaker L, Kenney WL (1998) Relevance of individual characteristics for human heat stress response is dependent on exercise intensity and climate type. Eur J Appl Physiol 77(3):231–241. https://doi.org/10.1007/s004210050327

    Article  Google Scholar 

  • Havenith G, Fiala D, Blazejczyk K, Richards M, Bröde P, Holmér I, Rintamaki H, Ben Shabat Y, Jendritzky G (2012) The UTCI-clothing model. Int J Biometeorol 56(3):461–470. https://doi.org/10.1007/s00484-011-0451-4

    Article  Google Scholar 

  • Havenith G, Griggs K, Qiu Y, Dorman L, Kulasekaran V, Hodder S (2020) Higher comfort temperature preferences for anthropometrically matched Chinese and Japanese versus white-western-middle-European individuals using a personal comfort/cooling system. Build Environ 183:107162. https://doi.org/10.1016/j.buildenv.2020.107162

    Article  Google Scholar 

  • Hellwig RT (2015) Perceived control in indoor environments: a conceptual approach. Build Res Inf 43(3):302–315. https://doi.org/10.1080/09613218.2015.1004150

    Article  Google Scholar 

  • Hondula DM, Kuras ER, Betzel S, Drake L, Eneboe J, Kaml M, Munoz M, Sevig M, Singh M, Ruddell BL, Harlan SL (2021) Novel metrics for relating personal heat exposure to social risk factors and outdoor ambient temperature. Environ Int 146:106271. https://doi.org/10.1016/j.envint.2020.106271

    Article  Google Scholar 

  • ISO 10551 (1995) Ergonomics of the thermal environment—assessment of the influence of the thermal environment using subjective judgement scales. International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO 7726 (1998) Ergonomics of the thermal environment—instruments for measuring physical quantities. International Organisation for Standardisation, Geneva

    Google Scholar 

  • ISO 9920 (2007) Ergonomics of the thermal environment—estimation of thermal insulation and water vapour resistance of a clothing ensemble. International Organisation for Standardisation, Geneva

    Google Scholar 

  • Jendritzky G, Höppe P (2017) The UTCI and the ISB. Int J Biometeorol 61(Suppl 1):23–27. https://doi.org/10.1007/s00484-017-1390-5

    Article  Google Scholar 

  • Jendritzky G, de Dear R, Havenith G (2012) UTCI—why another thermal index? Int J Biometeorol 56(3):421–428. https://doi.org/10.1007/s00484-011-0513-7

    Article  Google Scholar 

  • Knez I, Thorsson S, Eliasson I, Lindberg F (2009) Psychological mechanisms in outdoor place and weather assessment: towards a conceptual model. Int J Biometeorol 53(1):101–111. https://doi.org/10.1007/s00484-008-0194-z

    Article  Google Scholar 

  • Krüger EL, Drach P (2017) Identifying potential effects from anthropometric variables on outdoor thermal comfort. Build Environ 117:230–237. https://doi.org/10.1016/j.buildenv.2017.03.020

    Article  Google Scholar 

  • Krüger EL, Bröde P, Emmanuel R, Fiala D (2012) Predicting outdoor thermal sensation from two field studies in Curitiba, Brazil and Glasgow, UK using the universal thermal climate index (UTCI). In: 7th Windsor conference, Cumberland lodge, Windsor, UK, 12–15 April 2012 2012. Proceedings of 7th Windsor conference. Network for Comfort and Energy Use in Buildings, London, pp 1–12

    Google Scholar 

  • Krüger EL, Tamura CA, Bröde P, Schweiker M, Wagner A (2017) Short- and long-term acclimatization in outdoor spaces: exposure time, seasonal and heatwave adaptation effects. Build Environ 116:17–29. https://doi.org/10.1016/j.buildenv.2017.02.001

    Article  Google Scholar 

  • Krüger EL, Silva TJV, da Silveira Hirashima SQ, da Cunha EG, Rosa LA (2020) Calibrating UTCI’S comfort assessment scale for three Brazilian cities with different climatic conditions. Int J Biometeorol. https://doi.org/10.1007/s00484-020-01897-x

    Article  Google Scholar 

  • Lam CKC, Gao Y, Yang H, Chen T, Zhang Y, Ou C, Hang J (2021) Interactive effect between long-term and short-term thermal history on outdoor thermal comfort: comparison between Guangzhou, Zhuhai and Melbourne. Sci Total Environ 760:144141. https://doi.org/10.1016/j.scitotenv.2020.144141

    Article  Google Scholar 

  • Lenzholzer S, Nikolopoulou M (2020) Foreword to the special issue on subjective approaches to thermal perception. Int J Biometeorol 64(2):167–171. https://doi.org/10.1007/s00484-019-01857-0

  • Nasrollahi N, Ghosouri A, Khodakarami J, Taleghani M (2020) Heat-mitigation strategies to improve pedestrian thermal comfort in urban environments: a review. Sustainability 12(23):10000. https://doi.org/10.3390/su122310000

    Article  Google Scholar 

  • Nikolopoulou M (2011) Outdoor thermal comfort. Front Biosci 3:1552–1568. https://doi.org/10.2741/245

    Article  Google Scholar 

  • Nikolopoulou M, Lykoudis S (2006) Thermal comfort in outdoor urban spaces: analysis across different European countries. Build Environ 41(11):1455–1470. https://doi.org/10.1016/j.buildenv.2005.05.031

    Article  Google Scholar 

  • Nikolopoulou M, Steemers K (2003) Thermal comfort and psychological adaptation as a guide for designing urban spaces. Energy Build 35(1):95–101. https://doi.org/10.1016/S0378-7788(02)00084-1

    Article  Google Scholar 

  • Nikolopoulou M, Baker N, Steemers K (2001) Thermal comfort in outdoor urban spaces: understanding the human parameter. Sol Energy 70(3):227–235. https://doi.org/10.1016/S0038-092X(00)00093-1

    Article  Google Scholar 

  • Pantavou K, Koletsis I, Lykoudis S, Melas E, Nikolopoulou M, Tsiros IX (2020) Native influences on the construction of thermal sensation scales. Int J Biometeorol 64:1497. https://doi.org/10.1007/s00484-020-01927-8

    Article  Google Scholar 

  • Petersson J, Kuklane K, Gao C (2019) Is there a need to integrate human thermal models with weather forecasts to predict thermal stress? Int J Environ Res Public Health 16(22):4586. https://doi.org/10.3390/ijerph16224586

    Article  Google Scholar 

  • R Core Team (2020) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Accessed 12 Apr 2020

  • Rossi FA, Krüger EL, Bröde P (2012) Definição de faixas de conforto e desconforto térmico para espaços abertos em Curitiba, PR, com o índice UTCI (Definition of thermal comfort and discomfort ranges for open spaces in Curitiba, PR, with the UCTI index). Ambiente Construído 12:41–59. https://doi.org/10.1590/S1678-86212012000100004

    Article  Google Scholar 

  • Runkle JD, Cui C, Fuhrmann C, Stevens S, Del Pinal J, Sugg MM (2019) Evaluation of wearable sensors for physiologic monitoring of individually experienced temperatures in outdoor workers in southeastern U.S. Environ Int 129:229–238. https://doi.org/10.1016/j.envint.2019.05.026

    Article  Google Scholar 

  • Schützenmeister A, Piepho H-P (2012) Residual analysis of linear mixed models using a simulation approach. Comput Stat Data Anal 56(6):1405–1416. https://doi.org/10.1016/j.csda.2011.11.006

    Article  Google Scholar 

  • Schweiker M, Brasche S, Bischof W, Hawighorst M, Wagner A (2013) Explaining the individual processes leading to adaptive comfort: exploring physiological, behavioural and psychological reactions to thermal stimuli. J Build Phys 36(4):438–463. https://doi.org/10.1177/1744259112473945

    Article  Google Scholar 

  • Schweiker M, Hawighorst M, Wagner A (2016) The influence of personality traits on occupant behavioural patterns. Energy Build 131:63–75. https://doi.org/10.1016/j.enbuild.2016.09.019

    Article  Google Scholar 

  • Schweiker M, Rissetto R, Wagner A (2020b) Thermal expectation: influencing factors and its effect on thermal perception. Energy Build 210:109729. https://doi.org/10.1016/j.enbuild.2019.109729

  • Schweiker M, André M, Al-Atrash F, Al-Khatri H, Alprianti RR, Alsaad H, Amin R, Ampatzi E, Arsano AY, Azar E, Bannazadeh B, Batagarawa A, Becker S, Buonocore C, Cao B, Choi J-H, Chun C, Daanen H, Damiati SA, Daniel L, De Vecchi R, Dhaka S, Domínguez-Amarillo S, Dudkiewicz E, Edappilly LP, Fernández-Agüera J, Folkerts M, Frijns A, Gaona G, Garg V, Gauthier S, Jabbari SG, Harimi D, Hellwig RT, Huebner GM, Jin Q, Jowkar M, Kim J, King N, Kingma B, Koerniawan MD, Kolarik J, Kumar S, Kwok A, Lamberts R, Laska M, Lee MCJ, Lee Y, Lindermayr V, Mahaki M, Marcel-Okafor U, Marín-Restrepo L, Marquardsen A, Martellotta F, Mathur J, Mino-Rodriguez I, Montazami A, Mou D, Moujalled B, Nakajima M, Ng E, Okafor M, Olweny M, Ouyang W, Papst de Abreu AL, Pérez-Fargallo A, Rajapaksha I, Ramos G, Rashid S, Reinhart CF, Rivera MI, Salmanzadeh M, Schakib-Ekbatan K, Schiavon S, Shooshtarian S, Shukuya M, Soebarto V, Suhendri S, Tahsildoost M, Tartarini F, Teli D, Tewari P, Thapa S, Trebilcock M, Trojan J, Tukur RB, Voelker C, Yam Y, Yang L, Zapata-Lancaster G, Zhai Y, Zhu Y, Zomorodian Z (2020a) Evaluating assumptions of scales for subjective assessment of thermal environments—do laypersons perceive them the way, we researchers believe? Energy Build 211:109761.https://doi.org/10.1016/j.enbuild.2020.109761

  • Sugg MM, Fuhrmann CM, Runkle JD (2020) Perceptions and experiences of outdoor occupational workers using digital devices for geospatial biometeorological monitoring. Int J Biometeorol 64(3):471–483. https://doi.org/10.1007/s00484-019-01833-8

    Article  Google Scholar 

  • Tochihara Y, Lee JY, Wakabayashi H, Wijayanto T, Bakri I, Parsons K (2012) The use of language to express thermal sensation suggests heat acclimatization by Indonesian people. Int J Biometeorol 56(6):1055–1064. https://doi.org/10.1007/s00484-011-0519-1

    Article  Google Scholar 

  • WHO (1995) Physical status: the use and interpretation of anthropometry. Report of a WHO Expert Committee. WHO Technical Report Series. Geneva. http://whqlibdoc.who.int/trs/WHO_TRS_854.pdf. Accessed 20 Jul 2010

  • Wood SN (2017) Generalized additive models: an introduction with R, 2nd edn. Chapman & Hall/CRC, Boca Raton, Florida

    Google Scholar 

  • Xue J, Hu X, Sani SN, Wu Y, Li X, Chai L, Lai D (2020) Outdoor thermal comfort at a university campus: studies from personal and long-term thermal history perspectives. Sustainability 12(21):9284. https://doi.org/10.3390/su12219284

    Article  Google Scholar 

  • Zhou X, Lian Z, Lan L (2013) An individualized human thermoregulation model for Chinese adults. Build Environ 70:257–265. https://doi.org/10.1016/j.buildenv.2013.08.031

    Article  Google Scholar 

  • Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Things are not always linear: additive modelling. In: Zuur AF, Ieno EN, Walker NJ, Saveliev AA, Smith GM (eds) Mixed effects models and extensions in ecology with R. Statistics for Biology and Health. Springer, New York, pp 35–69. https://doi.org/10.1007/978-0-387-87458-6_3

Download references

Acknowledgements

UTCI was developed within COST Action 730, the COST office is supported by the EU framework program Horizon 2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Bröde .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Bröde, P., Di Napoli, C., Rosa, L.A., da Cunha, E.G., Krüger, E.L. (2021). Sensitivity of UTCI Thermal Comfort Prediction to Personal and Situational Factors—Residual Analysis of Pedestrian Survey Data. In: Krüger, E.L. (eds) Applications of the Universal Thermal Climate Index UTCI in Biometeorology. Biometeorology, vol 4. Springer, Cham. https://doi.org/10.1007/978-3-030-76716-7_4

Download citation

Publish with us

Policies and ethics