Skip to main content

Balancing Wind and Batteries: Towards Predictive Verification of Smart Grids

  • Conference paper
  • First Online:
NASA Formal Methods (NFM 2021)

Part of the book series: Lecture Notes in Computer Science ((LNPSE,volume 12673))

Included in the following conference series:

Abstract

We study a smart grid with wind power and battery storage. Traditionally, day-ahead planning aims to balance demand and wind power, yet actual wind conditions often deviate from forecasts. Short-term flexibility in storage and generation fills potential gaps, planned on a minutes time scale for 30–60 min horizons. Finding the optimal flexibility deployment requires solving a semi-infinite non-convex stochastic program, which is generally intractable to do exactly. Previous approaches rely on sampling, yet such critical problems call for rigorous approaches with stronger guarantees. Our method employs probabilistic model checking techniques. First, we cast the problem as a continuous-space Markov decision process with discretized control, for which an optimal deployment strategy minimizes the expected grid frequency deviation. To mitigate state space explosion, we exploit specific structural properties of the model to implement an iterative exploration method that reuses pre-computed values as wind data is updated. Our experiments show the method’s feasibility and versatility across grid configurations and time scales.

This research has been partially funded by NWO grants OCENW.KLEIN.187 and NWA.1160.18.238, and by NWO VENI grant no. 639.021.754.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Aghaei, J., Alizadeh, M.I.: Demand response in smart electricity grids equipped with renewable energy sources: a review. Renew. Sustain. Energy Rev. 18, 64–72 (2013)

    Article  Google Scholar 

  2. Al-Saffar, M., Musílek, P.: Distributed optimal power flow for electric power systems with high penetration of distributed energy resources. In: CCECE 2019, pp. 1–5. IEEE (2019)

    Google Scholar 

  3. Badings, T.S.: MSc Thesis. Buildings-to-Grid Integration for Demand-Side Flexibility in Power Systems with Uncertain Generation. University of Groningen (2019)

    Google Scholar 

  4. Badings, T.S.: Balancing wind and batteries: towards predictive verification of smart grids (artifact). 4TU.ResearchData (2021). https://doi.org/10.4121/14185139

  5. Badings, T.S., Rostampour, V., Scherpen, J.M.: Distributed building energy storage units for frequency control service in power systems. IFAC-Pap. OnLine 52(4), 228–233 (2019)

    Article  Google Scholar 

  6. Baier, C., Katoen, J.P.: Principles of Model Checking. MIT Press, Cambridge (2008)

    MATH  Google Scholar 

  7. Bertsch, J., Hagspiel, S., Just, L.: Congestion management in power systems: long-term modeling framework and large-scale application. J. Regul. Econ. 50(3), 290–327 (2016)

    Article  Google Scholar 

  8. Boyd, S.P., Vandenberghe, L.: Convex Optimization. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  9. Calafiore, G.C., Campi, M.C.: The scenario approach to robust control design. IEEE Trans. Autom. Control. 51(5), 742–753 (2006)

    Article  MathSciNet  Google Scholar 

  10. Campi, M.C., Garatti, S.: The exact feasibility of randomized solutions of uncertain convex programs. SIAM J. Optim. 19(3), 1211–1230 (2008)

    Article  MathSciNet  Google Scholar 

  11. Cauchi, N., Abate, A.: \(\sf StocHy\): Automated verification and synthesis of stochastic processes. In: Vojnar, T., Zhang, L. (eds.) TACAS 2019. LNCS, vol. 11428, pp. 247–264. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-17465-1_14

    Chapter  MATH  Google Scholar 

  12. Chertkov, M., Chernyak, V.: Ensemble of thermostatically controlled loads: statistical physics approach. Scientific reports 7(1), 1–9 (2017)

    Article  Google Scholar 

  13. Ding, T., Zeng, Z., Bai, J., Qin, B., Yang, Y., Shahidehpour, M.: Optimal electric vehicle charging strategy with Markov decision process and reinforcement learning technique. IEEE Trans. Ind. Appl. 56(5), 5811–5823 (2020)

    Article  Google Scholar 

  14. ENTSO-e: Transparency Platform - Generation Forecasts for Wind and Solar, Control area Germany (2020)

    Google Scholar 

  15. Gerard, H., Rivero Puente, E.I., Six, D.: Coordination between transmission and distribution system operators in the electricity sector: a conceptual framework. Utilities Policy 50, 40–48 (2018)

    Article  Google Scholar 

  16. Grillo, S., Pievatolo, A., Tironi, E.: Optimal storage scheduling using Markov decision processes. IEEE Trans. Sustain. Energy 7(2), 755–764 (2016)

    Article  Google Scholar 

  17. Hartmanns, A., Hermanns, H., Berrang, P.: A comparative analysis of decentralized power grid stabilization strategies. In: Winter Simulation Conference, pp. 158:1–158:13. WSC (2012)

    Google Scholar 

  18. Hemmati, R., Saboori, H., Jirdehi, M.A.: Stochastic planning and scheduling of energy storage systems for congestion management in electric power systems including renewable energy resources. Energy 133, 380–387 (2017)

    Article  Google Scholar 

  19. Kempton, W., et al.: A test of Vehicle-to-Grid (V2G) for Energy Storage and Frequency Regulation in the PJM System. Results from an Industry-University Research Partnership (2008)

    Google Scholar 

  20. Liu, Y., et al.: Coordinating the operations of smart buildings in smart grids. Appl. Energy 228(July), 2510–2525 (2018)

    Article  Google Scholar 

  21. Lymperopoulos, I., Qureshi, F.A., Nghiem, T., Khatir, A.A., Jones, C.N.: Providing ancillary service with commercial buildings: the Swiss perspective. IFAC-Pap. OnLine 28(8), 6–13 (2015)

    Article  Google Scholar 

  22. MacDougall, P., Roossien, B., Warmer, C., Kok, K.: Quantifying flexibility for smart grid services. In: 2013 IEEE Power Energy Society General Meeting, pp. 1–5. IEEE (2013)

    Google Scholar 

  23. Machowski, J., Dong, Z.Y., Member, S., Zhang, P.: Power System Dynamics: Stability and Control. Wiley, Hoboken (2006)

    Google Scholar 

  24. Margellos, K., Goulart, P., Lygeros, J.: On the road between robust optimization and the scenario approach for chance constrained optimization problems. IEEE Trans. Autom. Control. 59(8), 2258–2263 (2014)

    Article  MathSciNet  Google Scholar 

  25. Margellos, K., Haring, T., Hokayem, P., Schubiger, M., Lygeros, J., Andersson, G.: a robust reserve scheduling technique for power systems with high wind penetration. In: Proceedings of PMAPS, pp. 870–875 (2012)

    Google Scholar 

  26. Murty, K.G., Kabadi, S.N.: Some NP-complete problems in quadratic and nonlinear programming. Math. Program. 39(2), 117–129 (1987)

    Article  MathSciNet  Google Scholar 

  27. NG ESO: Optional downward flexibility management (ODFM) service documents. National Grid ESO (2020)

    Google Scholar 

  28. Nguyen, D.B., Scherpen, J.M.A., Bliek, F.: Distributed optimal control of smart electricity grids with congestion management. IEEE Trans. Autom. Sci. Eng. 14(2), 494–504 (2017)

    Article  Google Scholar 

  29. Papaefthymiou, G., Klöckl, B.: MCMC for wind power simulation. IEEE Trans. Energy Convers. 23(1), 234–240 (2008)

    Article  Google Scholar 

  30. Peruffo, A., Guiu, E., Panciatici, P., Abate, A.: Safety guarantees for the electricity grid with significant renewables generation. In: Parker, D., Wolf, V. (eds.) QEST 2019. LNCS, vol. 11785, pp. 332–349. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-30281-8_19

    Chapter  Google Scholar 

  31. Pillay, A., Prabhakar Karthikeyan, S., Kothari, D.P.: Congestion management in power systems - a review. Int. J. Electr. Power Energy Syst. 70, 83–90 (2015)

    Article  Google Scholar 

  32. Puterman, M.L.: Markov Decision Processes: Discrete Stochastic Dynamic Programming. Wiley Series in Probability and Statistics, Wiley, Hoboken (1994)

    Book  Google Scholar 

  33. Razmara, M., Bharati, G.R., Shahbakhti, M., Paudyal, S., Robinett, R.D.: Bilevel optimization framework for smart building-to-grid systems. IEEE Trans. Smart Grid 9(2), 582–593 (2018)

    Article  Google Scholar 

  34. Rostampour, V., Badings, T.S., Scherpen, J.M.A.: Buildings-to-grid integration with high wind power penetration. In: CDC, pp. 2976–2981. IEEE (2019)

    Google Scholar 

  35. Rostampour, V., Badings, T.S., Scherpen, J.M.A.: Demand flexibility management for buildings-to-grid integration with uncertain generation. Energies 13(24) (2020)

    Google Scholar 

  36. Rostampour, V., Ter Haar, O., Keviczky, T.: Distributed stochastic reserve scheduling in ac power systems with uncertain generation. IEEE Trans. Power Syst. 34(2), 1005–1020 (2018)

    Article  Google Scholar 

  37. Sincovec, R.F., Erisman, A.M., Yip, E.L., Epton, M.A.: Analysis of descriptor systems using numerical algorithms. IEEE Trans. Autom. Control. 26(1), 139–147 (1981)

    Article  MathSciNet  Google Scholar 

  38. Soudjani, S.E.Z., Abate, A.: Aggregation and control of populations of thermostatically controlled loads by formal abstractions. IEEE Trans. Control. Syst. Technol. 23(3), 975–990 (2015)

    Article  Google Scholar 

  39. Soudjani, S.E.Z., Gevaerts, C., Abate, A.: FAUST\({}^{ \text{2}}\): formal abstractions of uncountable-state stochastic processes. In: TACAS. LNCS, vol. 9035, pp. 272–286. Springer (2015)

    Google Scholar 

  40. Taha, A.F., Gatsis, N., Dong, B., Pipri, A., Li, Z.: Buildings-to-grid integration framework. IEEE Trans. Smart Grid 10(2), 1237–1249 (2019)

    Article  Google Scholar 

  41. Trip, S., Bürger, M., Persis, C.D.: An internal model approach to frequency regulation in inverter-based microgrids with time-varying voltages. In: CDC, pp. 223–228. IEEE (2014)

    Google Scholar 

  42. Wang, J., Liu, C., Ton, D., Zhou, Y., Kim, J., Vyas, A.: Impact of plug-in hybrid electric vehicles on power systems with demand response and wind power. Energy Policy 39(7), 4016–4021 (2011)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thom S. Badings .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Badings, T.S., Hartmanns, A., Jansen, N., Suilen, M. (2021). Balancing Wind and Batteries: Towards Predictive Verification of Smart Grids. In: Dutle, A., Moscato, M.M., Titolo, L., Muñoz, C.A., Perez, I. (eds) NASA Formal Methods. NFM 2021. Lecture Notes in Computer Science(), vol 12673. Springer, Cham. https://doi.org/10.1007/978-3-030-76384-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-76384-8_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-76383-1

  • Online ISBN: 978-3-030-76384-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics