Skip to main content

Other Applications of Superconducting Magnets

  • Chapter
  • First Online:
Superconductivity

Part of the book series: Springer Series in Materials Science ((SSMATERIALS,volume 214))

  • 2184 Accesses

Abstract

One area in which superconductivity has directly benefited the society is the health care. Magnetic resonance imaging (MRI), built around a superconducting magnet, is widely used world over for diagnostic purposes like imaging soft tissues of human body. MRI is based on the principle of nuclear magnetic resonance (NMR). High-resolution NMR spectrometers used for studying structure of most complex molecules require high magnetic field with high homogeneity and high temporal stability. Superconducting magnets run in persistent mode with power supply disconnected and produce field with unprecedented stability. High-field homogeneity is provided by the compensating coils and the shim coils. 1.2 GHz (~28.2 T) NMR spectrometers are commercially available with Nb–Ti/Nb3Sn/HTS combination magnets operating at 1.5–2.2 K. Another potential application is superconducting high-gradient magnetic separator (SHGMS) used to reduce magnetic impurities to ppm level in a variety of minerals. Superconducting magnet energy storage (SMES) is an ideal device to store large amount of energy and releasing it to the grid for load levelling and to balance short duration transient faults. It is used as an attractive pulse power source in strategic applications. Superconducting magnet in persistence mode stores an energy equal to ½ LI2. Large SMES with stored energy in TJ range for power network system and medium energy 400 MW (70 GJ) SMES for FEL-guided weapons were designed but not built. Micro 5 MVA and 10 MVA SMES have been built and put in use in Japan. All the SMES are designed and built with Nb–Ti superconductors. Attention is now focused on the design of magnets for all the applications based upon 2G REBCO-coated conductor which promises high critical current at elevated temperature, 30–50 K. All these HTS devices will be conduction cooled using cryocoolers and will become commercially competitive. There are many other applications like the Maglev trains largely developed in Japan but not commercialized yet. Superconducting rotating machines like motors and generators have been built for specific applications but not commercialized on cost considerations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G. Roth, Ultra high field NMR magnet design. http://www2.warwick.ac.uk/fac/sci/physics/current/teach/module_home/px388/extra_material/bruker_magnets.pdf

  2. T. Kiyoshi, S. Matsumoto, A. Satoet et al., IEEE Trans. Appl. Supercond. 15, 1330 (2005)

    Article  ADS  Google Scholar 

  3. Overview by Bruker BioSpin on 23.5 T standard-bore, persistent superconducting magnet, the world’s first 1 gigahertz NMR. http://www.bruker.com/products/mr/nmr/dnp-nmr/overview.html

  4. S.T. Wang, R. Wahrer, F. Anet et al., IEEE Trans. Magn. 30, 1994 (1994)

    Article  Google Scholar 

  5. W.D. Markiewicz, J.R. Miller, J. Schwartz et al., IEEE Trans. Appl. Supercond. 16, 1523 (2006)

    Article  ADS  Google Scholar 

  6. R.G. Sharma, Y.S. Reddy, B. Sarkar, R. Rajput, Design and winding of the magnet coils and fabrication of dewar for a 100 MHz NMR system, 1994, NPL, India (unpublished)

    Google Scholar 

  7. R.G. Sharma, Y.S. Reddy, R.B. Saxena, M.A. Ansari, A high homogeneity superconducting magnet and a long hold cryostat for NMR application, NPL, (New Delhi). Tech. Bull. 1–17 (1996)

    Google Scholar 

  8. M.D. Sauzade, S.K. Kan, Advances in Electronics and Electron Physics, vol. 34, ed. by L. Marton (Academic Press, 1973), pp. 1–93 (Chapter 1)

    Google Scholar 

  9. D. Patel, Su-Hun Kim 1,3, Wenbin Qiu1, Minoru Maeda4. Sci. Rep. 9, 14287 (2019). https://doi.org/10.1038/s41598-019-50549-7

    Article  ADS  Google Scholar 

  10. G. Brittles, Persistent current joints between NbTi superconducting wires. Ph.D. thesis. University of Oxford (2016)

    Google Scholar 

  11. J.E.C. Williums, S. Pourrranimi, Y. Iwasa et al., IEEE Trans. Magn. 25, 1767 (1989)

    Article  ADS  Google Scholar 

  12. K. Hashi, S. Ohki, S. Matsumoto, G. Nishijim, J. Mag. Reso., 256, 30 (2015). A Press Release by NIMS http://www.nims.go.jp/eng/news/press/2015/07/201507010.html

  13. Successful installation of world’s first 1.2 GHz NMR system enables novel functional structural biology research. https://www.bruker.com/news/successful-installation-of-worlds-first-12-ghz-nmr-system.html

  14. JEOL Resonance, JEOL Resonance Introduces New Zero Boil Off Magnet for NMR System. A Press Release dated 17 Apr 2013

    Google Scholar 

  15. Press Release NIMS (2011). https://www.nims.go.jp/news/press/2011/09/hdfqf1000000dzr6-att/p201109070.pdf

  16. T. Suzuki, M. Okada, T. Wakuda et al., 8th European conference on applied superconductivity (EUCAS 2007). J. Phys. Conference series 97, 012133 (2008)

    Google Scholar 

  17. K. Saitoh, H. Yamamoto, K. Kawasaki, et al., 8th European conference on applied superconductivity (EUCAS-2007). J. Phys. Conf. Ser. 97, 012141 (2008)

    Google Scholar 

  18. M. Tsuchiya, T. Wakuda, K. Maki et al., IEEE Trans. Appl. Supercond. 18, 840 (2008)

    Article  ADS  Google Scholar 

  19. Y. Iwasa, J. Bascuñán, S. Hahn, High-resolution 1.3-GHz/54-mm LTS/HTS NMR magnet. 4LOR2A-03

    Google Scholar 

  20. P.C. Michael, D. Park, Y.H. Choi et al., IEEE Trans. Appl. Supercond. 29, 4300706 (2019)

    Article  Google Scholar 

  21. D. Park, J. Bascuñán, P.C. Michael et al., IEEE Trans. Appl. Supercond. 29, 4300804 (2019)

    Google Scholar 

  22. P.C. Lauterbur, Nature (London) 242, 190 (1973)

    Article  ADS  Google Scholar 

  23. M.W. Garrett, J. Appl. Phys. 38, 2563 (1967)

    Article  ADS  Google Scholar 

  24. S. Pissanetzky, IEEE Trans. Magn. 28, 1961 (1992)

    Article  ADS  Google Scholar 

  25. R. Thompson, R.W. Brown, V.C. Srivastava, IEEE Trans. Magn. 30, 108 (1994)

    Article  ADS  Google Scholar 

  26. S. Crozier, D.M. Doddrell, J. Magn. Reson. 127, 233 (1997)

    Article  ADS  Google Scholar 

  27. H. Zhao, S. Crozier, D.M. Doddrell, Magn. Reson. Med. 45, 331 (2001)

    Article  Google Scholar 

  28. G. Sinha, R. Sundararaman, G. Singh, IEEE Trans. Magn. 44, 2351 (2008)

    Article  ADS  Google Scholar 

  29. Y. Lvovsky, E.W. Stautner, T. Zhang, Topical review. Supercond. Sci. Technol. 26, 0933001 (p 71) (2013)

    Google Scholar 

  30. D.M. Doddrell, H. Zhao, Multi-layer magnet. US Patent 7212004 (2007)

    Google Scholar 

  31. S. Mine, M. Xu, Y. Bai, S. Buresh, W. Stautner et al., Development of a 3T-10″ bore MgB2 magnet system. 2LPo2A-07

    Google Scholar 

  32. S. Mine, M. Xu, Y. Bai, S. Buresh, W. Stautner et al., IEEE Trans. Appl. Supercond. 25, 4600604 (2015)

    Article  Google Scholar 

  33. H. Mason, The next generation in positional MR imaging. Technical report. MROpen EVO, 29 June 2019. https://www.asgsuperconductors.com/news/mropen-evo-the-next-generation-in-positional-mr-imaging

  34. T. Baig, Z. Yao, D. Doll, M. Tomsic, M. Martens, Supercond. Sci. Technol. 27, 125012 (2014)

    Article  ADS  Google Scholar 

  35. Y.-C.N. Cheng, T.P. Eagan, R.W. Brown, S.M. Shvartsman, M.R. Thompson, Magn. Reson. Mater. Phys. Biol. Med. 16, 57 (2003)

    Article  Google Scholar 

  36. G.Z. Li, M.D. Sumption, J.B. Zwayer, M.A. Susner et al., Supercond. Sci. Technol. 26, 095007 (2013)

    Article  ADS  Google Scholar 

  37. J. Ling, J. Voccio, Y. Kim, S. Hahn et al., IEEE Trans. Appl. Supercond. 23, 6200304 (2013)

    Article  Google Scholar 

  38. Y.H. Choi, Y. Li, D. Park, J. Lee et al., IEEE Trans. Appl. Supercond. 29, 4400405 (2019)

    Google Scholar 

  39. Y. Iwasa, Supercond. Sci. Technol. 30, 053001 (2017)

    Article  ADS  Google Scholar 

  40. Y. Iwasa, J. Bascuñán, S. Hahn, D.K. Park, Phys. Proc. 36, 1348 (2012)

    Article  ADS  Google Scholar 

  41. https://www.wgtn.ac.nz/wfadi/about/news/university-researchers-create-innovative-mri-technology

  42. R. Aarnink, J. Overweg, Europhys. News 43, 26 (2012). https://doi.org/10.1051/epn/2012404

    Article  Google Scholar 

  43. MAGNETOM Terra—Translate 7T research power into clinical care. Siemens Brochure. https://www.siemens-healthineers.com/en-in/magnetic-resonance-imaging/7t-mri-scanner/magnetom-terra

  44. Siemens’ website. https://www.siemens-healthineers.com/en-in/magnetic-resonance-imaging/7t-mri-scanner/magnetom-terra#CLINICAL_USE

  45. L. Quettier, G. Aubert, J. Belorgey, C. Berriaud, G. Billotte et al., IEEE Trans. Appl. Supercond. 28, 4400604 (2018)

    Article  Google Scholar 

  46. How the CEA/Irfu developed Iseult; the gigantic 11.7 T MRI magnet! A discussion with Lionel Quettier 24.02.2020 | Metronews, MFC2046, MRI. https://www.metrolab.com/gigantic-11-7-t-mri-magnet-iseult-a-discussion-with-lionel-quettier/

  47. T.K.F. Foo, E. Laskaris, M. Verilyea, M. Xu et al., Magn. Reson. Med. 80, 22232 (2018)

    Article  Google Scholar 

  48. H.H. Kolm, IEEE Trans. Magn. 11, 1567 (1975)

    Article  ADS  Google Scholar 

  49. Z.J.J. Steckly, IEEE Trans. Magn. 11, 1594 (1975)

    Article  ADS  Google Scholar 

  50. S. Nishijima, K. Takahata, K. Saito et al., IEEE Trans. Magn. 23, 573 (1987)

    Article  ADS  Google Scholar 

  51. H. Yamashita, K. Fujita, F. Nakajima et al., Sep. Sci. Technol. 16, 987 (1981)

    Article  Google Scholar 

  52. K. Takahata, S. Nishijima, T. Okada et al., IEEE Trans. Magn. 24, 878 (1988)

    Article  ADS  Google Scholar 

  53. R.G. Sharma, Y.S. Reddy, Development of a superconducting high gradient magnetic separator NPL (India). Tech. Bull. 1–8 (1992)

    Google Scholar 

  54. Y. Kakihara, T. Fukunishi, S. Takeda et al., IEEE Trans. Appl. Supercond. 14, 1565 (2004)

    Article  ADS  Google Scholar 

  55. S. Nishijima, S. Takeda, IEEE Trans. Appl. Supercond. 17, 2311 (2007)

    Article  ADS  Google Scholar 

  56. F. Ning, M. Wang, H. Yang et al., IEEE Trans. Appl. Supercond. 22, 3700104 (2012)

    Article  Google Scholar 

  57. D.D. Jackson, P. Beharrel, J. Sloan, Industrial-Scale Purification of Kaolin Using a Conduction-Cooled Superconducting High-Gradient Magnetic Separator (Quantum Design Inc., USA). www.qdusa.com/sitedocs/productBrochures/SHGMS_poster_forEUCAS_2013pdf

  58. W. Ge, A. Encinas, E. Araujo, S. Song, Results Phys. 7, 4278 (2017)

    Article  ADS  Google Scholar 

  59. D. Xiong, S. Liu, J. Chen, Int. J. Miner. Process. 54, 111 (1998)

    Article  Google Scholar 

  60. J. Xu, D. Xiong, S. Song, L. Chenc, Results Phys. 10, 837 (2018)

    Article  ADS  Google Scholar 

  61. W. Hassenzhal, IEEE Trans. Magn. 25, 750 (1989)

    Article  ADS  Google Scholar 

  62. S. Nagaya, N. Hirano, T. Tanaka et al., IEEE Trans. Appl. Supercond. 14, 699 (2004)

    Article  ADS  Google Scholar 

  63. S. Nagaya, N. Hirano, T. Katagiri et al., Cryogenics 52, 708 (2012)

    Article  ADS  Google Scholar 

  64. R.J. Loyd, T.E. Walsh, E.R. Kimmy, IEEE Trans. Magn. 27, 1712 (1991)

    Article  ADS  Google Scholar 

  65. P. Tixador, Superconducting magnetic energy storage: status and perspective, in IEEE/CSC and ESAS European Superconductivity News Forum, vol. 3, Jan 2008. www.ewh.ieee.org/europe/newforum/pdf/CR5_final3_012008.pdf

  66. M. Ferrier, Stockage d’ energie dans un enroulement supraconducteur, in Low Temperature and Electric Power (Pargamon Press, 1970), pp. 425–432

    Google Scholar 

  67. G.W. Ullrich, IEEE Trans. Appl. Supercond. 5, 416 (1995)

    Article  ADS  Google Scholar 

  68. J.L. Wu, J.F. Roach, D.C. Johnson et al., Adv. Cryog. Eng. 39, 813 (1994)

    Article  Google Scholar 

  69. C.J. Hawley, S.A. Gower, IEEE Trans. Appl. Supercond. 15, 1899 (2005)

    Article  ADS  Google Scholar 

  70. C.J. Hawley, D. Cuiuri, C.D. Cook et al., J. Phys. Conf. Ser. 43, 809 (2006). http://ro.uow.edu.au/cgi/viewcontent.cgi?article=7297&context=engpapers

  71. S.S. Kalsi, D. Aized, B. Konnor et al., IEEE Trans. Appl. Supercond. 7, 971 (1991)

    Article  ADS  Google Scholar 

  72. G. Wojtasiewicz, T. Janowski, S. Kozak et al., J. Phys. Conf. Ser. 43, 821 (2006)

    Google Scholar 

  73. J.H. Kim, S.Y. Hahn, C. Hwan et al., IEEE Trans. Appl. Supercond. 12, 774 (2002)

    Article  ADS  Google Scholar 

  74. P.Tixador, M. Deleglise, A. Badel et al, First tests of 800 kJ HTS SMES. http://arxiv.org/ftp/arxiv/papers/0812/0812.3639.pdf

  75. W. Yuan, W. Xian, M. Ainslie et al., IEEE Trans. Appl. Supercond. 20, 1379 (2010)

    Article  ADS  Google Scholar 

  76. F. Trillaud, L.S. Cruz, IEEE Trans. Appl. Supercond. 24, 5700205 (2014)

    Google Scholar 

  77. B. Vincent, P. Tixador, T. Lecrevisse et al., IEEE Trans. Appl. Supercond. 23, 5700805 (2013)

    Article  ADS  Google Scholar 

  78. W. Yuan, M. Zhang, Superconducting magnet energy storage (SMES) system, in Handbook of Energy System, vol. 5, part 4, ed. by J. Yan (Wiley, 2015), p. 2768

    Google Scholar 

  79. L. Ottonello, G. Canepa, P. Albertelli, E. Picco et al., IEEE Trans. Appl. Supercond. 16, 602 (2006)

    Article  ADS  Google Scholar 

  80. N. Atomura, T. Takahashi, H. Amata, T. Iwasaki et al., Phys. Proc. 27, 400 (2012)

    Article  ADS  Google Scholar 

  81. S.S. Kalsi, K. Weeber, H. Takesue et al., Proc. IEEE 92, 1688 (2004)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. G. Sharma .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sharma, R.G. (2021). Other Applications of Superconducting Magnets. In: Superconductivity. Springer Series in Materials Science, vol 214. Springer, Cham. https://doi.org/10.1007/978-3-030-75672-7_12

Download citation

Publish with us

Policies and ethics