Skip to main content

Cardiac Computed Tomography in Evaluation of Ventricular Function

  • Chapter
  • First Online:
Pediatric Cardiac CT in Congenital Heart Disease

Abstract

Echocardiography is the first-line imaging modality for evaluation of ventricular function in patients with congenital heart disease; however, some patients may have poor acoustic window which may limit utility of echocardiography in evaluation of ventricular function. Ventricular function imaging in congenital heart disease is commonly performed by cardiac magnetic resonance imaging (MRI), but cardiac CT is being increasingly used in those patients with metallic artifact concern on MRI or devices contraindicated for MRI. A retrospectively ECG-gated CT scan with radiation delivered throughout the cardiac cycle can be reconstructed in multiple phases to allow estimation of end-systolic and end-diastolic volumes and calculation of ejection fraction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Burchill LJ, Mertens L, Broberg CS. Imaging for the assessment of heart failure in congenital heart disease: ventricular function and beyond. Heart Fail Clin. 2014;10:9–22.

    Article  Google Scholar 

  2. Saremi F, Ho SY, Cabrera JA, Sanchez-Quintana D. Right ventricular outflow tract imaging with CT and MRI: Part 2, Function. AJR Am J Roentgenol. 2013;200:W51–61.

    Article  Google Scholar 

  3. Takx RA, Moscariello A, Schoepf UJ, et al. Quantification of left and right ventricular function and myocardial mass: comparison of low-radiation dose 2nd generation dual-source CT and cardiac MRI. Eur J Radiol. 2012;81:e598–604.

    Article  Google Scholar 

  4. Gaudet S, Branton D, Lue RA. Characterization of PDZ-binding kinase, a mitotic kinase. Proc Natl Acad Sci U S A. 2000;97:5167–72.

    Article  CAS  Google Scholar 

  5. Gaudet G, Cheng KJ. Use of glucose and cellobiose by 3 strains of Fibrobacter succinogenes. Reprod Nutr Dev. 1990;(suppl 2):201s–2s.

    Google Scholar 

  6. Rizvi A, Deano RC, Bachman DP, Xiong G, Min JK, Truong QA. Analysis of ventricular function by CT. J Cardiovasc Comput Tomogr. 2014;9:1–12.

    Article  Google Scholar 

  7. Sharma A, Einstein AJ, Vallakati A, Arbab-Zadeh A, Mukherjee D, Lichstein E. Meta-analysis of global left ventricular function comparing multidetector computed tomography with cardiac MRI. Am J Cardiol. 2014;113:731–8.

    Article  Google Scholar 

  8. Raman SV, Shah M, McCarthy B, Garcia A, Ferketich AK. Multi-detector row cardiac computed tomography accurately quantifies right and left ventricular size and function compared with cardiac magnetic resonance. Am Heart J. 2006;151:736–44.

    Article  Google Scholar 

  9. Van der Vleuten PA, de Jonge GJ, Lubbers DD, et al. Evaluation of global left ventricular function assessment by dual-source computed tomography compared with MRI. Eur Radiol. 2009;19:271–7.

    Article  Google Scholar 

  10. Brodoefel H, Kramer U, Reimann A, et al. Dual-source CT with improved temporal resolution in assessment of left ventricular function: a pilot study. AJR Am J Roentgenol. 2007;189:1064–70.

    Article  Google Scholar 

  11. Asferg C, Usinger L, Kristensen TS, Abdulla J. Accuracy of multi-slice computed tomography for measurement of left ventricular ejection fraction compared with cardiac magnetic resonance imaging and two-dimensional transthoracic echocardiography: a systematic review and meta-analysis. Eur J Radiol. 2012;81:e757–62.

    Article  Google Scholar 

  12. Raman SV, Cook SC, McCarthy B, Ferketich AK. Usefulness of multidetector row computed tomography to quantify right ventricular size and function in adults with either tetralogy of Fallot or transposition of the great arteries. Am J Cardiol. 2005;95:683–6.

    Article  Google Scholar 

  13. Alkadhi H, Desbiolles L, Husmann L, et al. Aortic regurgitation: assessment with 64-section CT. Radiology. 2007;245:111–21.

    Article  Google Scholar 

  14. Feuchtner G, Plank F, Uprimny C, Chevtchik O, Mueller S. Paravalvular prosthetic valve abscess detected with 18FDG-PET/128-slice CT image fusion. Eur Heart J Cardiovasc Imaging. 2012;13:276–7.

    Article  Google Scholar 

  15. Chan J, Marwan M, Schepis T, Ropers D, Du L, Achenbach S. Images in cardiovascular medicine. Cardiac CT assessment of prosthetic aortic valve dysfunction secondary to acute thrombosis and response to thrombolysis. Circulation. 2009;120:1933–4.

    Article  Google Scholar 

  16. Ghersin E, Lessick J, Agmon Y, Engel A, Kophit A, Adler Z. Candida prosthetic valve endocarditis: the complementary role of multidetector computed tomography and transoesophageal echocardiography in preoperative evaluation. Australas Radiol. 2007;51(suppl):B231–4.

    Article  Google Scholar 

  17. Goldstein SA, Taylor AJ, Wang Z, Weigold WG. Prosthetic mitral valve thrombosis: cardiac CT, 3-dimensional transesophageal echocardiogram, and pathology correlation. J Cardiovasc Comput Tomogr. 2010;4:221–3.

    Article  Google Scholar 

  18. Habets J, Symersky P, van Herwerden LA, et al. Prosthetic heart valve assessment with multidetector-row CT: imaging characteristics of 91 valves in 83 patients. Eur Radiol. 2011;21:1390–6.

    Article  Google Scholar 

  19. Li X, Tang L, Zhou L, et al. Aortic valves stenosis and regurgitation: assessment with dual source computed tomography. Int J Cardiovasc Imaging. 2009;25:591e600.

    Article  Google Scholar 

  20. Symersky P, Habets J, Westers P, de Mol BA, Prokop M, Budde RP. Prospective ECG triggering reduces prosthetic heart valve-induced artefacts compared with retrospective ECG gating on 256-slice CT. Eur Radiol. 2012;22:1271–7.

    Article  Google Scholar 

  21. Yamasaki Y, Nagao M, Yamamura K, et al. Quantitative assessment of right ventricular function and pulmonary regurgitation in surgically repaired tetralogy of Fallot using 256-slice CT: comparison with 3-Tesla MRI. Eur Radiol. 2014;24:3289–99.

    Article  Google Scholar 

  22. Osawa KMT, Morimitsu Y, Akagi T, et al. Comprehensive assessment of morphology and severity of atrial septal defects in adults by computed tomography. J Cardiovasc Comput Tomogr. 2015;9(4):354e612.

    Article  Google Scholar 

  23. Caudron J, Fares J, Vivier PH, Lefebvre V, Petitjean C, Dacher JN. Diagnostic accuracy and variability of three semi-quantitative methods for assessing right ventricular systolic function from cardiac MRI in patients with acquired heart disease. Eur Radiol. 2011;21:2111–20.

    Article  Google Scholar 

  24. Niazi I, Dhala A, Choudhuri I, Sra J, Akhtar M, Tajik AJ. Cardiac resynchronization therapy in patients with challenging anatomy due to venous anomalies or adult congenital heart disease. Pacing Clin Electrophysiol. 2014;37:1181–8.

    Article  Google Scholar 

  25. Han BK, Rigsby CK, Hlavacek A, et al.; Society of Cardiovascular Computed Tomography; Society of Pediatric Radiology; North American Society of Cardiac Imaging. Computed tomography imaging in patients with congenital heart disease. Part I. Rationale and utility: an expert consensus document of the Society of Cardiovascular Computed Tomography (SCCT)—endorsed by the Society of Pediatric Radiology (SPR) and the North American Society of Cardiac Imaging (NASCI). J Cardiovasc Comput Tomogr. 2015;9:475–92.

    Google Scholar 

  26. Lell MM, May M, Deak P, et al. High-pitch spiral computed tomography: effect on image quality and radiation dose in pediatric chest computed tomography. Investig Radiol. 2011;46:116–23.

    Article  Google Scholar 

  27. Abbara S, Blanke P, Maroules CD, et al. SCCT guidelines for the performance and acquisition of coronary computed tomographic angiography: a report of the Society of Cardiovascular Computed Tomography Guidelines Committee—endorsed by the North American Society for Cardiovascular Imaging (NASCI). J Cardiovasc Comput Tomogr. 2016;10:435–49.

    Article  Google Scholar 

  28. Sharma A, Einstein AJ, Vallakati A, Arbab-Zadeh A, Mukherjee D, Lichstein E. Meta-analysis of global left ventricular function comparing multidetector computed tomography with cardiac magnetic resonance imaging. Am J Cardiol. 2014;113:731–8.

    Article  Google Scholar 

  29. Leipsic J, LaBounty TM, Ajlan AM, et al. A prospective randomized trial comparing image quality, study interpretability, and radiation dose of narrow acquisition window with widened acquisition window protocols in prospectively ECG-triggered coronary computed tomography angiography. J Cardiovasc Comput Tomogr. 2013;7:18–24.

    Article  Google Scholar 

  30. Rizvi A, Deaño RC, Bachman DP, Xiong G, Min JK, Truong QA. Analysis of ventricular function by CT. J Cardiovasc Comput Tomogr. 2015;9:1–12.

    Article  Google Scholar 

  31. Kalisz K, Buethe J, Saboo SS, Abbara S, Halliburton S, Rajiah P. Artifacts at cardiac CT: physics and solutions. Radiographics. 2016;36:2064–83.

    Article  Google Scholar 

  32. Scholtz JE, Ghoshhajra B. Advances in cardiac CT contrast injection and acquisition protocols. Cardiovasc Diagn Ther. 2017;7:439–51.

    Article  Google Scholar 

  33. Bae KT. Optimization of contrast enhancement in thoracic MDCT. Radiol Clin N Am. 2010;48:9–29.

    Article  Google Scholar 

  34. Rigsby CK, McKenney SE, Hill KD, et al. Radiation dose management for pediatric cardiac computed tomography: a report from the Image Gently “Have-A-Heart” campaign. Pediatr Radiol. 2018;48:5–20.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Rami Kharouf or Dilachew A. Adebo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kharouf, R., Adebo, D.A. (2021). Cardiac Computed Tomography in Evaluation of Ventricular Function . In: Adebo, D.A. (eds) Pediatric Cardiac CT in Congenital Heart Disease. Springer, Cham. https://doi.org/10.1007/978-3-030-74822-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-74822-7_29

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-74821-0

  • Online ISBN: 978-3-030-74822-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics