Skip to main content

Natural Mediterranean Plants Products: A Sustainable Approach for Integrated Insect Pests Management

  • Chapter
  • First Online:
Agriculture Productivity in Tunisia Under Stressed Environment

Part of the book series: Springer Water ((SPWA))

  • 209 Accesses

Abstract

Plants produce two kinds of natural products commonly termed “primary metabolites”, which are indispensable for plant growth and “secondary metabolites” that were previously considered as “waste products” without any physiological function for the plant. However, recent studies highlight their usefulness in plant defense against pathogens and insects herbivores and their role in beneficial insects attraction such us pollinators and auxiliaries. The secondary metabolites are classified into three different groups according to their biosynthetic origin: terpenoids, alkaloids and phenylpropanoids which each one was characterized with a specific mode of action against specific pest insects. Moreover, the natural products concentration depends largely in plant species. Recently, plant products are exploited for their benefit potential in crop protection thanks to their low toxicity to non-target organisms such as humans and auxiliaries, their effectiveness and environmental respect. The integration of plant products in pest management strategies would enhance sustainable agriculture and prevent loss in terms of both quality and quantity. This chapter provides an overview about the diversity of secondary metabolites in Mediterranean plants and their multifarious biological functions in crops protection against pests.

D. Haouas—Support for the Sustainability of Agricultural Production Systems in the North West Region.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Fürstenberg-Hägg J, Zagrobelny M, Bak S (2013) Plant defense against insect herbivores. Int J Mol Sci 14:10242–10297

    Article  CAS  Google Scholar 

  2. War AR, Paulraj MG, War MY, Ignacimuthu S (2011) Jasmonic acid- mediated induced resistance in groundnut (Arachis hypogaea L.) against Helicoverpa armigera (Hubner) (Lepidoptera: Noctuidae). J Plant Growth Regul 30:512–523

    Article  CAS  Google Scholar 

  3. War AR, Paulraj MG, Ahmad T, Buhroo AA, Hussain B, Ignacimuthu S, Sharma HC (2012) Mechanisms of plant defense against insect herbivores. Plant Signal Behav 7:1306–1320

    Article  Google Scholar 

  4. Arimura GI, Matsui K, Takabayashi J (2009) Chemical and molecular ecology of herbivore-induced plant volatiles: proximate factors and their ultimate functions. Plant Cell Physiol 50:911–923

    Article  CAS  Google Scholar 

  5. Howe GA, Jander G (2008) Plant immunity to insect herbivores. Ann Rev Plant Biol 59:41–66

    Article  CAS  Google Scholar 

  6. Pagare S, Bhatia M, Tripathi N, Pagare S, Bansal YK (2015) Secondary metabolites of plants and their role: overview. Curr Trends Biotechnol Pharm 9(3):293–304

    Google Scholar 

  7. Kalske A, Shiojiri K, Uesugi A, Sakata Y, Morrell K, Kessler A (2019) Current biology report insect herbivory selects for volatile-mediated plant-plant communication. Curr Biol 29:3128–3133

    Article  CAS  Google Scholar 

  8. Dicke M, Baldwin IT (2010) The evolutionary context for herbivore-induced plant volatiles: beyond the ‘cry for help.’ Trends Plant Sci 15(3):167–175

    Article  CAS  Google Scholar 

  9. Jaber R, Planchon A, Mathieu-Rivet E, Kiefer-Meyer MC, Zahid A, Plasson C, Pamlard O, Beaupierre S, Trouvé JP, Guillou C, Driouich A, Follet-Gueye ML, Mollet JC (2020) Identification of two compounds able to improve flax resistance towards Fusarium oxysporum infection. Plant Sci 301. https://doi.org/10.1016/j.plantsci.2020.110690

  10. Siemens DH, Garner SH, Mitchell-Olds T, Callaway RM (2002) Cost of defense in the context of plant competition: Brassica rapa may grow and defend. Ecology 83(2):505–517

    Article  Google Scholar 

  11. Malinovsky FG, Thomsen M-LF, Nintemann SJ, Jagd LM, Bourgine B, Burow M, Kliebenstein DJ (2017) An evolutionarily young defense metabolite influences the root growth of plants via the ancient TOR signaling pathway. eLife 6. https://doi.org/10.7554/eLife.29353

  12. Mazid M, Khan TA, Mohammad, (2011) Role of secondary metabolites in defense mechanisms of plants. BLM 3(2):232–249

    CAS  Google Scholar 

  13. Klocke JA (1989) Plant compounds as source and models of insect-control agents. In: Hostettmann K (ed) Economic and medicinal plants research. Academic Press, London, pp 103–144

    Chapter  Google Scholar 

  14. Wheeler DA, Isman MB (2001) Antifeedant and toxic activity of Trichilia americana extract against the larvae of Spodoptera litura. Entomol Exp Appl 98:9–16

    Article  Google Scholar 

  15. Park CG, Jang M, Yoon KA, Kim J (2016) Insecticidal and acetylcholinesterase inhibitory activities of Lamiaceae plant essential oils and their major components against Drosophila suzukii (Diptera: Drosophilidae). Ind Crops Prod 89(2016):507–513

    Article  CAS  Google Scholar 

  16. Christofoli M, Cristina Costaa EC, Bicalhoc KU, Domingues VC, Peixoto MF, Fernandes Alves CC, Araújo WL, Cazal CM (2015) Insecticidal effect of nanoencapsulated essential oils from Zanthoxylum rhoifolium (Rutaceae) in Bemisia tabaci populations. Ind Crops Prod 70:301–308

    Article  CAS  Google Scholar 

  17. Ahmad F, Iqbal N, Zaka SM, Qureshi MK, Saeed Q, Khan KA, Ghramh HA, Ansari MJ, Jaleel W, Aasim M, Awar MB (2019) Comparative insecticidal activity of different plant materials from sixcommon plant species against Tribolium castaneum (Herbst) (Coleoptera:Tenebrionidae). Saudi J Biol Sci 26:1804–1808

    Article  Google Scholar 

  18. Moreira de Souza C, Lopes Baldin EL, Ribeiro LP, Braga dos Santos TL, Fernandes da Silva I, Morando R, Vendramim JD (2019) Antifeedant and growth inhibitory effects of annonaceae derivatives on Helicoverpa armigera (Hübner). Crop prot 121:45–50

    Article  Google Scholar 

  19. Turner A (1970) Terpenoids and steroids. Ann Rep Prog Chem Sect B: Org Chem 66:389–411

    Article  Google Scholar 

  20. Xie Y, Sen B, Wang G (2017) Mining terpenoids production and biosynthetic pathwayin thraustochytrids. Bioresour Technol 244:1269–1280

    Article  CAS  Google Scholar 

  21. Engelberth J (2006) Secondary metabolites and plant defense. In: Taiz L, Zeiger E (eds) Plant Physiology, vol 4. Sinauer Associates, Sunderland, pp 315–344

    Google Scholar 

  22. Brielmann HL, Setzer WN, Kaufman PB, Kirakosyan A, Cseke LJ (2006) Phytochemicals: the chemical components of plants. In: Cseke LJ, Kirakosyan A, Kaufman PB, Warber SL, Duke JA, Brielmann HL (eds) Natural products from plants. 2nd edn. Taylor & Francis

    Google Scholar 

  23. Tian B, Dale Poulte C, Jacobson1 MP (2016) Defining the Product Chemical Space of Monoterpenoid Synthases. PLOS Comput Biol. https://doi.org/10.1371/journal.pcbi.1005053

  24. Kang D, Aneja VP, Mathur R, Ray JD (2001) Nonmethane hydrocarbons and ozone in three rural southeast United States States national parks: a model sensitivity analysis and comparison to measurements. J Geophys Res 108:4604

    Article  CAS  Google Scholar 

  25. Hanson JR (2004) Diterpenoids. Nat Prod Rep 21:785–793

    Article  CAS  Google Scholar 

  26. Carpinella MC, Defago MT, Valladares G, Palacios SM (2006) Role of Melia azedarach L. (Meliaceae) for the control of insects and acari: present status and future prospects. Nat Occurr Bioact Compound 3:81–123

    Article  CAS  Google Scholar 

  27. Sahebi M, Hanafi MM, van Wijnen AJ, Nor Akmar AS, Azizi P, Idris AS, Taheri S, Foroughi M (2017) Profiling secondary metabolites of plant defence mechanisms and oil palm in response to Ganoderma boninense attack. Int Biodeterior Biodegr 122:151–164

    Article  CAS  Google Scholar 

  28. Haichar FZ, Santaella C, Heulin T, Achoua W (2014) Root exudates mediated interactions belowground. Soil Biol Biochem 77:69–80

    Article  CAS  Google Scholar 

  29. Ayil-Gutiérreza BA, Sánchez-Teyerb LF, Vazquez-FlotacF M-G, Tamayo-Ordóñezb Y, Tamayo-Ordóñezb MC, Rivera G (2018) Biological effects of natural products against Spodoptera spp. Crop Prot 114:195–207

    Article  CAS  Google Scholar 

  30. Trapp S, Croteau R (2001) Defensive resin biosynthesis in conifers. Ann Rev Plant Physiol Plant Mol Biol 52:689–724

    Article  CAS  Google Scholar 

  31. Canals D, Irurre-Santilari J, Casas J (2005) The first cytochrome P450 in ferns. FEBS J 272:4817–4825

    Article  CAS  Google Scholar 

  32. Bede JC, Tobe SS (2000) Insect juvenh e hormones in plants. Stud Nat Prod Chem. 22:369–418

    Article  CAS  Google Scholar 

  33. Kim SI, Ahn YJ, Kwon HW (2012) Toxicity of aromatic plants and their constituents against coleopteran stored products insect pests. In: Bandani AR (ed) New perspectives in plant protection. ISBN 978-953-51-0490-2, April 11, under CC BY 3.0 license

    Google Scholar 

  34. Ziegler J, Facchini PJ (2008) Alkaloid biosynthesis: metabolism and trafficking. Ann Rev Plant Biol 59:736–769

    Article  CAS  Google Scholar 

  35. Lattanzio V, Lattanzio VMT, Cardinali A (2006) Role of phenolics in the resistance mechanisms of plants against fungal pathogens and insects. Phytochem Adv Res 661:23–67

    Google Scholar 

  36. Lattanzio V, Ruggiero P (2003) Biochimica Agraria. In: Scarponi L (ed) Patron Editore, Bologna, p 631

    Google Scholar 

  37. Simmonds MSJ (2001) Importance of flavonoids in insect–plant interactions: feeding and oviposition. Phytochemistry 56:245–252

    Article  CAS  Google Scholar 

  38. Simmonds MSJ, Stevenson PC (2001) Effects of isoflavonoids from Cicer on larvae of Helicoverpa armigera. J Chem Ecol 27:965–977

    Article  CAS  Google Scholar 

  39. Hedin PA, Jenkins JN, Thompson AC, McCarty JC, Smith DH, Parrot WL, Shepherd RL (1988) Effect of bio-regulators on flavonoids, insect resistance, and yield of seed cotton. J Agric Food Chem 36:1055–1061

    Article  CAS  Google Scholar 

  40. Nishida R, Ohsugi T, Kokubo S, Fukami H (1987) Oviposition stimulants of citrus feeding swallowtail butterfly, Papilio xuthus L. Experientia 43:342–344

    Article  CAS  Google Scholar 

  41. Golob P, Webley DJ (1980) The use of plants and minerals as traditional protectants of stored products. Trop Prod Inst G 138:1–32

    Google Scholar 

  42. Kumar R, Mehta S, Pathak SR (2018) Chapter 4: Bioactive constituents of neem. In: Synthesis of medicinal agents from plants. Elsevier, pp 75–103

    Google Scholar 

  43. Haouas D, Flamini G, Ben Halima-Kamel M, Ben Hamouda MH (2011) Identification of an insecticidal polyacetylene derivative from Chrysanthemum macrotum leaves. Ind Crops Prod 34:1128–1134

    Article  CAS  Google Scholar 

  44. Haouas D, Cioni PL, Ben Halima-Kamel M, Flamini G, Ben Hamouda MH (2012) Chemical composition and bioactivity of three Chrysanthemum essential oils against Tribolium confusum (du Val) (Coleoptera: Tenebrionidae). J pest Sci 85:367–379

    Article  Google Scholar 

  45. Chaieb I, Ben Halima-Kamel M, Ben Hamouda MH (2007) Toxicity Experiments of the Saponic extract of cestrum parqui (Solanaceae). J Entomol 4(2):113–120

    Article  Google Scholar 

  46. Perez MP, Pascual-Villalobos MJ (1999) Effectos del aceit esencial de inflorescencias de C. coronarium L. en mosca blanca y plagas de almacen. In: Investigación agrícola: Producción y protección de la vegetación, vol 14, no 1–2, pp 249–258

    Google Scholar 

  47. Dayan FE, Cantrell CL, Duke SO (2009) Natural products in crop protection. Bioorg Med Chem 17:4022–4034

    Article  CAS  Google Scholar 

  48. Nia B, Frah N, Azoui I (2015) Insecticidal activity of three plants extracts against Myzus persicae (Sulzer, 1776) and their phytochemical screening. Acta Agric Slov 105(2):261–267

    Article  CAS  Google Scholar 

  49. Mikhaiel AA (2011) Potential of some volatile oils in protecting packages of irradiated wheat flour against Ephestia kuehniella and Tribolium castaneum. J Stored Prod Res 47:357–364

    Article  CAS  Google Scholar 

  50. Bachrouch O, Ferjani N, Haouel S, Mediouni Ben Jemâa J (2015) Major compounds and insecticidal activities of two Tunisian Artemisia essential oils toward two major coleopteran pests. Ind Crops Prod 65:127–133

    Article  CAS  Google Scholar 

  51. Pascual-Villalobos MJ, Robledo A (1998) Screening for anti-insect activity in Mediterranean plants. Ind Crops Prod 8:183–194

    Article  CAS  Google Scholar 

  52. Abdelli M, Moghrani H, Aboun A, Maachi R (2016) Algerian Mentha pulegium L. leaves essential oil: chemical composition, antimicrobial, insecticidal and antioxidant activities. Ind Crops Prod 94:197–205

    Article  CAS  Google Scholar 

  53. Brahmi F, Abdenour A, Bruno M, Silvia P, Alessandra P, Danilo F, Drifaa YG, Fahmie EM, Khodira M, Mohamed C (2016) Chemical composition and in vitro antimicrobial, insecticidal and antioxidant activities of the essential oils of Mentha pulegium L. and Mentha rotundifolia (L.) Huds growing in Algeria. Ind Crops Prod 88:96–105

    Article  CAS  Google Scholar 

  54. Lamiri A, Lhaloui S, Benjilali B, Berrada M (2001) Insecticidal effects of essential oils against Hessian fly, Mayetiola destructor (Say). Field Crops Res 71:9–15

    Article  Google Scholar 

  55. Pavela R (2005) Insecticidal activity of some essential oils against larvae of Spodoptera littoralis. Fitoterapia 76:691–696

    Article  CAS  Google Scholar 

  56. Chebli B, Achouri M, Idrissi Hassani LM, Hmamouchi M (2003) Chemical composition and antifungal activity of essential oils of seven Moroccan Labiatae against Botrytis cinerea Pers: Fr. J Ethnopharmacol 89:165–169

    Article  CAS  Google Scholar 

  57. El idrissi M, Harmouch G, Amechrouq A, (2014) Chemical composition and biological activity of essential oils of origanum majorana L. (Lamiaceae) and salvia officinalis (L.) (Lamiaceae) under bruchus lentis (Coleoptera, Chrysomelidae). GJPACR 2(2):15–25

    Google Scholar 

  58. Khiyari MEA, Kasrati A, Jamali CA, Zeroual S, Markouk M, Bekkouche K, Wohlmuth H, Leach D, Abbad A (2014) Chemical composition, antioxidant and insecticidal properties of essential oils from wild and cultivated Salvia aucheri subsp. Blancoana (Webb. & Helder)), an endemic, threatened medicinal plant in Morocco. Ind Crops Prod 57:106–109

    Article  CAS  Google Scholar 

  59. Haouas D, Hajri M, Glida-Gnidez H, Kamel-Ben Halima M, Flamini G (2017) Investigation of bio-insecticidal activity of two aromatic essential oils against Tribolium castaneum (Herbst) (Coleoptera, Tenebrionidae). In: 1st international congress on edible, medicinal and aromatic plants

    Google Scholar 

  60. Jouda MBJ, Tersim N, Taleb Toudert K, Khouja ML (2012) Insecticidal activities of essential oils from leaves of Laurus nobilis L. from Tunisia, Algeria and Morocco, and comparative chemical composition. J Stored Prod Res 48:97–104

    Article  CAS  Google Scholar 

  61. Hamdi SH, Hedjal-Chebheb M, Kellouche A, Larbi Khouja M, Boudabous A, Mediouni Ben Jemâa J (2015) Management of three pests’ population strains from Tunisia and Algeria using Eucalyptus essential oils. Ind Crops Prod 74:551–556

    Article  CAS  Google Scholar 

  62. Ulukanli Z, Karabörklü S, Bozok F, Ates B, Erdogan S, Cenet M, Karaaslan MG (2014) Chemical composition, antimicrobial, insecticidal, phytotoxic and antioxidant activities of Mediterranean Pinus brutia and Pinus pinea resin essential oils. CJNM 12(12):901–910

    Google Scholar 

  63. Zarrad K, Chaieb I, Ben Hamouda A, Bouslama T, Laarif A (2017) Chemical composition and insecticidal effects of Citrus aurantium essential oil and its powdery formulation against Tuta absoluta. TJPP 12:83–94

    Google Scholar 

  64. Zarrada K, Ben Hamouda A, Chaieb I, Laarif A, Mediouni-Ben Jemâa J (2015) Chemical omposition, fumigant and anti-acetylcholinesteraseactivity of the Tunisian Citrus aurantium L. essential oils. Ind Crops Prod 76:121–127

    Article  CAS  Google Scholar 

  65. Majdoub O, Dhen N, Souguir S, Haouas D, Baouandi M, Laarif A, Chaieb I (2014) Chemical composition of Ruta chalepensis essential oils and their insecticidal activity against Tribolium castaneum. TJPP 9:83–90

    Google Scholar 

  66. Singh RN, Saratchandra B (2005) The development of botanical products with special reference to seri-ecosystem. CJES 3(1):1–8

    CAS  Google Scholar 

  67. Isman MB (1997) Leads and prospects for the development of new botanical insecticides. Rev Pestic Toxicol 3:1–20

    Google Scholar 

  68. Isman MB (2000) Plant essential oils for pest and disease management. Crop Prot 19:603–608

    Article  CAS  Google Scholar 

  69. Isman MB (2006) Botanical insecticides, deterrents, and repellents in modern agriculture and an increasingly regulated world. Ann Rev Entomol 51:45–66

    Article  CAS  Google Scholar 

  70. Isman MB, Koul O, Luczynski A, Kaminski J (1990) Insecticidal and antifeedant bioactivities of neem oils and their relationship to azadiractin content. J Agric Food Chem 38:1406–1411

    Article  CAS  Google Scholar 

  71. Traboulsi AF, El-Haj S, Tueni M, Taoubi K, Nader NA, Mrad A (2005) Repellency and toxicity of aromatic plant extracts against the mosquito Culex pipiens molestus (Diptera: Culicidae). Pest Manag Sci 61:597–660

    Article  CAS  Google Scholar 

  72. Philogène BJR, Regnault-Roger C, Vincent C (2002) Produit phytosanitaires insecticides d’origine végétale: promesses d’hier et d’aujourd’hui. Biopesticide d’origine végétale. Edition TEC & DOC, pp 2–17

    Google Scholar 

  73. Narahashi T (2000) Neuroreceptors and ion channel as the basis for drug action: past, present, and future. J Pharmacol Exp Ther 294(1):1–26

    CAS  Google Scholar 

  74. Bloomquist JR (1996) Ion channels as targets for insectides. Ann Rev Entomol 41:163–190

    Article  CAS  Google Scholar 

  75. Delorme R, Mauchamp B (1996) Mode d’action des insecticides. ACTA. Service Lutte antiparasitaire, pp 2–15

    Google Scholar 

  76. Copping LG, Hewitt HG (1998) Chemistry and mode of action of crop protection agents. RSC 46–70

    Google Scholar 

  77. Delorme R, Leroux P, Gaillrdon P (2002) Evolution des produits phytosanitaires à usages agricoles: III Les insecticides-acaricides. PHYTOMA défense Végétaux 548:7–13

    CAS  Google Scholar 

  78. Ware GW (2001) An introduction to insecticides. 3rd edn, pp 7–9. https://ipmworld.umn.edu/

  79. Descoins C (2002) Produits naturels en protection des cultures: variété des origines, des modes d’action et des usages. PHYTOMA. défense végétaux 549:26–30

    Google Scholar 

  80. Copping LG, Menn JJ (2000) Biopesticides: a review of their action, applications and efficacy. Pest Manag Sci 56:651–676

    Article  CAS  Google Scholar 

  81. Smirle M (2001) Potential uses of phytochemical pesticides in deciduous temperate fruit crops. In: Koul O, Dhaliwal GS (eds) Phytochemical biopesticides, vol 8. Edition harwood. Academic publishers, pp 1–11

    Google Scholar 

  82. Scudeler EL, Gimenes Garcia AS, Padovani CR, Santos DC (2013) Action of neem oil (Azadirachta indica A. Juss) on cocoon spinning in Ceraeochrysa claveri (Neuroptera: Chrysopidae). Ecotox Environ Safe 97:176–182

    Article  CAS  Google Scholar 

  83. Mordue AJ, Simmonds MSJ, Ley SV, Blaney WM, Mordue W, Nasiruddin M, Nisbet AJ (1998) Actions of azadirachtin, a plant allelochemical, against insects. Pest Sci 54(3):277–284

    Article  CAS  Google Scholar 

  84. Barbouche N, Ben Hamouda MH (1996) Action des gibbérellines hormones de croissance végétales, sur la physiologie de la reproduction de Ceratitis capitata (Diptera, Trypetidae). In: 11th international symposium of fruit flies, Crete, pp 103–113

    Google Scholar 

  85. Abdellaoui K, Ben Halima-Kamel M, Ben Hamouda MH (2009) The antifeeding and repellent properties of gibberellic acid against Asiatic migratory locust Locusta migratoria migratoria. TJPP 4:57–66

    Google Scholar 

  86. Abdellaoui K, Ben Halima-Kamel M, Ben Hamouda MH (2009) Physiological effects of gibberellic acid on the reproductive potential of Locusta migratoria migratoria. TJPP 4:67–75

    Google Scholar 

  87. Agelopoulos N, Birkett MA, Hik AJ, Hoper AM, Pickett JA, Pow EM, Smart LE, Smiley DWM, Wadhams LJ, Woodcock CM (1999) Exploiting semiochemicals in insect control. Pestic Sci 55:225–235

    Article  CAS  Google Scholar 

  88. Tarkowska D, Strnad M (2016) Plant ecdysteroids: plant sterols with intriguing distributions, biological effects and relations to plant hormones. Planta 244:545–555

    Article  CAS  Google Scholar 

  89. Bajguz A, Bąkała I, Talarek M (2015) Chapter 5: Ecdysteroids in plants and their pharmacological effects in vertebrates and humans. In: Studies in natural products chemistry. Edition Atta-ur-Rahman, vol 45, pp 121–145

    Google Scholar 

  90. Xiao-fan Z (2020) Progress in understanding hormonal regulation during the post-embryonic development of Helicoverpa armigera. J Integr Agric 19(6):1417–1428

    Article  Google Scholar 

  91. Palli SR, Laad TR, Tomkins W, Primavera M, Sundaram MS, Perera SC, Sohi SS, Retnakaran A (1999) Biochemical and biological mode of action of ecdysone agonists on the spruce budworm. IUPAC Congr Pest Sci 55:656–657

    Article  CAS  Google Scholar 

  92. Kubo I, James A, Klocke JA, Asano S (1983) Effects of ingested phytoecdysterois on the growth and development of two lepidopterous larvae. J Insect Physiol 29(4):307–316

    Article  CAS  Google Scholar 

  93. Dhadialla TS, Jansson RK (1999) Non steroidal ecdysone agonist: new tools for IPM and insect resistance management. IUPAC Congr Pestic Sci 55:357–359

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Haouas, D. (2021). Natural Mediterranean Plants Products: A Sustainable Approach for Integrated Insect Pests Management. In: Khebour Allouche, F., Abu-hashim, M., Negm, A.M. (eds) Agriculture Productivity in Tunisia Under Stressed Environment. Springer Water. Springer, Cham. https://doi.org/10.1007/978-3-030-74660-5_6

Download citation

Publish with us

Policies and ethics