Skip to main content

Frontline Ethico-Legal Issues in Childhood Cancer Genetics Research

  • Chapter
  • First Online:
The Hereditary Basis of Childhood Cancer

Abstract

Clinical research involving child participants frequently raises both legal and ethical concerns that researchers, clinicians, and parents must navigate to pursue relevant pediatric-centered investigation in health and particularly in cancer care. The foundational ethico-legal principles governing research participation provide the necessary frameworks with which to evaluate how emerging genetic technologies can serve current and future childhood cancer research. Taking the best interests of the child as the primary consideration in all decisions affecting a child, this chapter explores issues regarding consent/assent and return of results in pediatric oncology research. With a primary focus on Canada, the USA, and Europe, we examine the issues presented by the use of next-generation sequencing, pharmacogenomics, and biobanking and data sharing in international consortia.

The 1989 United Nations Convention on the Rights of the Child states that the “best interests of the child shall be a primary consideration” in all actions concerning children and recognizes the “right of the child to the enjoyment of the highest attainable standard of health and to facilities for the treatment of illness and rehabilitation of health” [1].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Analytic and conceptual validity are related but distinct concepts. The former indicates how well a test detects the presence (or absence) of a gene, while the latter is whether the test has any clinical significance for disease diagnosis, treatment, or management. For more, see Chapter 4 in National Academies of Sciences, Engineering, and Medicine, Health and Medicine Division, Board on Health Care Services, Board on the Health of Select Populations, Committee on the Evidence Base for Genetic Testing. An Evidence Framework for Genetic Testing. Washington (DC): National Academies Press (US); 2017. Available from: http://www.ncbi.nlm.nih.gov/books/NBK425808/.

References

  1. United Nations General Assembly. Convention on the Rights of the Child. GA Res 4425 UN GAOR 44th Sess UN Doc ARES4425 Nov 20, 1989.

    Google Scholar 

  2. Diekema, D. S. (2006). Conducting ethical research in pediatrics: A brief historical overview and review of pediatric regulations. The Journal of Pediatrics, 149, S3–S11.

    Article  PubMed  Google Scholar 

  3. Kodish, E. (2005). Ethics and research with children: A case-based approach. Oxford University Press.

    Google Scholar 

  4. Ad hoc group for the development of implementing guidelines for Directive 2001/20/EC relating to good clinical practice in the conduct of clinical trials on medicinal products for human use. Ethical considerations for clinical trials on medicinal products with the paediatric population. (2008).

    Google Scholar 

  5. World Medical Association. (2013). Declaration of Helsinki: Ethical principles for medical research involving human subjects. Journal of the American Medical Association, 310, 2191–2194.

    Article  CAS  Google Scholar 

  6. Gröbner, S. N., Worst, B. C., Weischenfeldt, J., Buchhalter, I., Kleinheinz, K., Rudneva, V. A., et al. (2018). The landscape of genomic alterations across childhood cancers. Nature, 555, 321–327.

    Article  PubMed  CAS  Google Scholar 

  7. Ma, X., Liu, Y., Liu, Y., Alexandrov, L. B., Edmonson, M. N., Gawad, C., et al. (2018). Pan-cancer genome and transcriptome analyses of 1,699 paediatric leukaemias and solid tumours. Nature, 555, 371–376.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Jones, D. T. W., Banito, A., Grünewald, T. G. P., Haber, M., Jäger, N., Kool, M., et al. (2019). Molecular characteristics and therapeutic vulnerabilities across paediatric solid tumours. Nature Reviews. Cancer, 19, 420–438.

    Article  CAS  PubMed  Google Scholar 

  9. Hepburn, C. M., Gilpin, A., Autmizguine, J., Denburg, A., Dupuis, L. L., Finkelstein, Y., et al. (2019). Improving paediatric medications: A prescription for Canadian children and youth. Paediatrics & Child Health, 24, 333–335.

    Article  Google Scholar 

  10. de Vries, M. C., Houtlosser, M., Wit, J. M., Engberts, D. P., Bresters, D., Kaspers, G. J., et al. (2011). Ethical issues at the interface of clinical care and research practice in pediatric oncology: A narrative review of parents’ and physicians’ experiences. BMC Medical Ethics, 12, 18. https://doi.org/10.1186/1472-6939-12-18

    Article  PubMed  PubMed Central  Google Scholar 

  11. McGuire, A. L., Pereira, S., Gutierrez, A. M., & Majumder, M. A. . (2020, [cited 2020 Feb 9]). Ethics in genetic and genomic research. In: K. A. Mazur, & S. L. Berg (Eds.), Ethical Issues Pediatr Hematol [Internet] (pp. 91–110). Cham: Springer International Publishing. https://doi.org/10.1007/978-3-030-22684-8_6

  12. Bredenoord, A. L., de Vries, M. C., & van Delden, J. J. M. (2013). Next-generation sequencing: Does the next generation still have a right to an open future? Nature Reviews. Genetics, 14, 306–306.

    Article  CAS  PubMed  Google Scholar 

  13. Cooper, R., & Paneth, N. (2020). Will precision medicine lead to a healthier population? Issues in Science and Technology, 36, 64–71.

    Google Scholar 

  14. Elliott, A. M., du Souich, C., Lehman, A., Guella, I., Evans, D. M., Candido, T., et al. (2019). RAPIDOMICS: Rapid genome-wide sequencing in a neonatal intensive care unit—Successes and challenges. European Journal of Pediatrics, 178, 1207–1218.

    Article  CAS  PubMed  Google Scholar 

  15. Bombard, Y., Robson, M., & Offit, K. (2013). Revealing the incidentalome when targeting the tumor genome. Journal of the American Medical Association, 310, 795–796.

    Article  CAS  PubMed  Google Scholar 

  16. Samuel, N., Villani, A., Fernandez, C. V., & Malkin, D. (2014). Management of familial cancer: Sequencing, surveillance and society. Nature Reviews. Clinical Oncology, 11, 723–731.

    Article  PubMed  Google Scholar 

  17. Khater, F., Vairy, S., Langlois, S., Dumoucel, S., Sontag, T., St-Onge, P., et al. (2019). Molecular profiling of hard-to-treat childhood and adolescent cancers. JAMA Network Open, 2(4), e192906. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6487576/

    Article  PubMed  PubMed Central  Google Scholar 

  18. Brozou, T., Taeubner, J., Velleuer, E., Dugas, M., Wieczorek, D., Borkhardt, A., et al. (2018). Genetic predisposition in children with cancer—Affected families’ acceptance of Trio-WES. European Journal of Pediatrics, 177, 53–60.

    Article  PubMed  Google Scholar 

  19. Schwarz, U. I., Gulilat, M., & Kim, R. B. (2019). The role of next-generation sequencing in pharmacogenetics and pharmacogenomics. Cold Spring Harbor Perspectives in Medicine, 9, a033027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Chaudhari, B. P., Manickam, K., & McBride, K. L. (2020). A pediatric perspective on genomics and prevention in the twenty-first century. Pediatric Research, 87, 338–344.

    Article  PubMed  Google Scholar 

  21. Barone, A., Casey, D., McKee, A. E., & Reaman, G. (2019). Cancer drugs approved for use in children: Impact of legislative initiatives and future opportunities. Pediatric Blood & Cancer, 66, e27809.

    Article  Google Scholar 

  22. Joly Y, Avard D. (2014 [cited 2020 Feb 28]). Pharmacogenomics: Ethical, legal, and social issues. In: I. S. Vizirianakis (Ed.), Handbook of personalized medicine: Advances in nanotechnology, drug delivery, and therapy [Internet] (pp. 813–844). Singapore: Jenny Stanford Publishing. Retrieved from https://www.taylorfrancis.com/books/e/9780429071348

  23. Russo, R., Capasso, M., Paolucci, P., & Iolascon, A. (2010). Pediatric pharmacogenetic and pharmacogenomic studies: The current state and future perspectives. European Journal of Clinical Pharmacology, 67, 17–27.

    Article  PubMed  CAS  Google Scholar 

  24. Yancey, A., Harris, M. S., Egbelakin, A., Gilbert, J., Pisoni, D. B., & Renbarger, J. (2012). Risk factors for cisplatin-associated ototoxicity in pediatric oncology patients. Pediatric Blood & Cancer, 59, 144–148.

    Article  Google Scholar 

  25. Cushing, B., Giller, R., Cullen, J. W., Marina, N. M., Lauer, S. J., Olson, T. A., et al. (2004). Randomized comparison of combination chemotherapy with etoposide, bleomycin, and either high-dose or standard-dose cisplatin in children and adolescents with high-risk malignant germ cell tumors: A Pediatric Intergroup Study—Pediatric Oncology Group 9049 and Children’s Cancer Group 8882. Journal of Clinical Oncology, 22, 2691–2700.

    Article  CAS  PubMed  Google Scholar 

  26. Ross, C. J. D., Katzov-Eckert, H., Dubé, M.-P., Brooks, B., Rassekh, S. R., Barhdadi, A., et al. (2009). Genetic variants in TPMT and COMT are associated with hearing loss in children receiving cisplatin chemotherapy. Nature Genetics, 41, 1345–1349.

    Article  CAS  PubMed  Google Scholar 

  27. Tserga, E., Nandwani, T., Edvall, N. K., Bulla, J., Patel, P., Canlon, B., et al. (2019). The genetic vulnerability to cisplatin ototoxicity: A systematic review. Scientific Reports, 9, 3455. https://doi.org/10.1038/s41598-019-40138-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Maagdenberg, H., Vijverberg, S. J. H., Bierings, M. B., Carleton, B. C., Arets, H. G. M., de Boer, A., et al. (2016). Pharmacogenomics in Pediatric Patients: Towards Personalized Medicine. Pediatric Drugs, 18, 251–260.

    Article  PubMed  Google Scholar 

  29. Council for International Organizations of Medical Sciences, World Health Organization. (2002). International ethical guidelines for biomedical research involving human subjects [Internet]. Geneva: CIOMS. Retrieved from http://swbplus.bsz-bw.de/bsz105651192inh.htm

  30. Council for International Organizations of Medical Sciences, World Health Organization. (2009). International ethical guidelines for epidemiological studies. Geneva: CIOMS.

    Google Scholar 

  31. Ouellette, S., & Tassé, A. M. (2014). P3G—10 years of toolbuilding: From the population biobank to the clinic. Applied & Translational Genomics, 3, 36–40.

    Article  Google Scholar 

  32. Rothstein, M. A., Harrell, H. L., Saulnier, K. M., Dove, E. S., Fan, C. T., Hung, T.-H., et al. (2018). Broad consent for future research: International perspectives. IRB, 40, 7–12.

    Article  Google Scholar 

  33. Knoppers, B. M., & Hudson, T. J. (2011). The art and science of biobanking. Human Genetics, 130, 329–332.

    Article  PubMed  Google Scholar 

  34. Langhof, H., Schwietering, J., & Strech, D. (2018). Practice evaluation of biobank ethics and governance: Current needs and future perspectives. Journal of Medical Genetics, 56, 176–185.

    Article  PubMed  Google Scholar 

  35. The International Cancer Genome Consortium. (2010). International network of cancer genome projects. Nature, 464, 993–998.

    Article  PubMed Central  CAS  Google Scholar 

  36. The ICGC/TCGA Pan-Cancer Analysis of Whole Genomes Consortium. (2020). Pan-cancer analysis of whole genomes. Nature, 578, 82–93.

    Article  CAS  Google Scholar 

  37. Phillips, M., Molnár-Gábor, F., Korbel, J. O., Thorogood, A., Joly, Y., Chalmers, D., et al. (2020). Genomics: Data sharing needs an international code of conduct. Nature, 578, 31–33.

    Article  CAS  PubMed  Google Scholar 

  38. Knoppers, B. M., Sénécal, K., Boisjoli, J., Borry, P., Cornel, M. C., Fernandez, C. V., et al. (2016). Recontacting pediatric research participants for consent when they reach the age of majority. IRB, 38, 1–9.

    PubMed  Google Scholar 

  39. McGregor, K. A., & Ott, M. A. (2019). Banking the future: Adolescent capacity to consent to biobank research. Ethics & Human Research, 41, 15–22.

    Article  Google Scholar 

  40. Zawati, M. H., Parry, D., & Knoppers, B. M. (2014). The best interests of the child and the return of results in genetic research: International comparative perspectives. BMC Medical Ethics, 15, 72.

    Article  PubMed  PubMed Central  Google Scholar 

  41. OHCHR | Committee on the Rights of the Child [Internet]. [cited 2020 Feb 22]. Retrieved from https://www.ohchr.org/EN/HRBodies/CRC/Pages/CRCIndex.aspx

  42. Knoppers, B. M. (1992). Canadian child health law: Health rights and risks of children. Thompson Educational Pub.

    Google Scholar 

  43. Lansdown, G. (2005). The evolving capacities of the child. UNICEF Office of Research - Innocenti.

    Google Scholar 

  44. UN Educational, Scientific and Cultural Organisation (UNESCO). (2005, Oct 19). Universal declaration on bioethics and human rights.

    Google Scholar 

  45. Council of Europe. (1997, Apr 4). Convention for the protection of Human Rights and Dignity of the Human Being with regard to the Application of Biology and Medicine: Convention on Human Rights and Biomedicine (Oviedo Convention) (ETS No 164).

    Google Scholar 

  46. Gennet, É., & Altavilla, A. (2016). Paediatric research under the New EU Regulation on Clinical Trials: Old issues new challenges. European Journal of Health Law, 23, 325–349.

    Article  Google Scholar 

  47. Donnelly, M., & Kilkelly, U. (2011). Participation in healthcare: The views and experiences of children and young people. International Journal of Children's Rights, 19, 107–125.

    Article  Google Scholar 

  48. United Nations. (2009 July). The right of the child to be heard (General Comment No 12). Report No.: CRC/C/GC/12. United Nations.

    Google Scholar 

  49. A.C. v. Manitoba (Director of Child and Family Services), 2009 SCC 30 (CanLII). SCR. p. 181.

    Google Scholar 

  50. Tri-Council Policy Statement: Ethical Conduct for Research Involving Humans. Ottawa: Canadian Institutes of Health Research, Natural Sciences and Engineering Research Council of Canada, and Social Sciences and Humanities Research Council of Canada. (2018, Dec).

    Google Scholar 

  51. Dalpé, G., Thorogood, A., & Knoppers, B. M. (2019). A tale of two capacities: Including children and decisionally vulnerable adults in biomedical research. Frontiers in Genetics, 10, 289.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Campbell, A., & Glass, K. C. (2000). The legal status of clinical and ethics policies, codes, and guidelines in medical practice and research. McGill Law Journal, 46, 473.

    Google Scholar 

  53. Civil Code of Québec CQLR c CCQ-1991. (1991).

    Google Scholar 

  54. Centre of Genomics and Policy (CGP), Maternal Infant Child and Youth Research Network (MICYRN). (2012). Best practices for health research involving children and adolescents [Internet] (pp. 1–167). Montreal, QC. Retrieved from: http://www.genomicsandpolicy.org/en/best-practices-2012

  55. Warner, A. W., Bhathena, A., Gilardi, S., Mohr, D., Leong, D., Bienfait, K. L., et al. (2011). Challenges in obtaining adequate genetic sample sets in clinical trials: The perspective of the Industry Pharmacogenomics Working Group. Clinical Pharmacology & Therapeutics, 89, 529–536.

    Article  CAS  Google Scholar 

  56. Vanakker, O. M., & De Paepe, A. (2013). Pharmacogenomics in children: Advantages and challenges of next generation sequencing applications. International Journal of Pediatrics, 2013, 1–8.

    Article  Google Scholar 

  57. Howard, H. C., Joly, Y., Avard, D., Laplante, N., Phillips, M., & Tardif, J. C. (2011). Informed consent in the context of pharmacogenomic research: Ethical considerations. The Pharmacogenomics Journal, 11, 155–161.

    Article  CAS  PubMed  Google Scholar 

  58. Moran, C., Thornburg, C. D., & Barfield, R. C. (2011). Ethical considerations for pharmacogenomic testing in pediatric clinical care and research. Pharmacogenomics, 12, 889–895.

    Article  PubMed  Google Scholar 

  59. Gurwitz, D., Fortier, I., Lunshof, J. E., & Knoppers, B. M. (2009). Children and population biobanks. Science, 325, 818–819.

    Article  PubMed  Google Scholar 

  60. van der Wouden, C., Cambon-Thomsen, A., Cecchin, E., Cheung, K. C., Dávila-Fajardo, C. L., Deneer, V. H., et al. (2017). Implementing pharmacogenomics in Europe: Design and implementation strategy of the ubiquitous pharmacogenomics consortium. Clinical Pharmacology and Therapeutics, 101, 341–358.

    Article  PubMed  Google Scholar 

  61. Serretti, A., & Artioli, P. (2006). Ethical problems in pharmacogenetic studies of psychiatric disorders. The Pharmacogenomics Journal, 6, 289–295.

    Article  CAS  PubMed  Google Scholar 

  62. Guidance document: Submission of Pharmacogenomic Information [Internet]. (2008, Aug). Ottawa, ON: Health Canada; pp. 1–21. Retrieved from https://www.canada.ca/en/health-canada/services/drugs-health-products/biologics-radiopharmaceuticals-genetic-therapies/applications-submissions/guidance-documents/submission-pharmacogenomic-information.html

  63. Thorogood, A., Dalpé, G., & Knoppers, B. M. (2019). Return of individual genomic research results: Are laws and policies keeping step? European Journal of Human Genetics, 27, 535–546.

    Article  PubMed  PubMed Central  Google Scholar 

  64. Black, L., & McClellan, K. A. (2011). Familial communication of research results: A need to know? The Journal of Law, Medicine & Ethics, 39, 605–613.

    Article  Google Scholar 

  65. Spriggs, M., & Fry, C. L. (2016). Clarifying ethical responsibilities in pediatric biobanking. AJOB Empirical Bioethics, 7, 167–174.

    Article  Google Scholar 

  66. Murphy, J., Scott, J., Kaufman, D., Geller, G., LeRoy, L., & Hudson, K. (2009). Public perspectives on informed consent for biobanking. American Journal of Public Health, 99, 2128–2134.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Brothers, K. B., & Clayton, E. W. (2009). Biobanks: Too long to wait for consent. Science, 326, 798–798.

    Article  CAS  PubMed  Google Scholar 

  68. Kremer, L. C. M., Mulder, R. L., Oeffinger, K. C., Bhatia, S., Landier, W., Levitt, G., et al. (2012). A worldwide collaboration to harmonize guidelines for the long-term follow-up of childhood and young adult cancer survivors: A report from the international late effects of Childhood Cancer Guideline Harmonization Group. Pediatric Blood & Cancer, 60, 543–549.

    Article  Google Scholar 

  69. Hansson, M. G., & Maschke, K. J. (2009). Biobanks: Questioning distinctions. Science, 326, 797–797.

    Article  CAS  PubMed  Google Scholar 

  70. Lag om genetisk integritet m.m. [Internet]. 2006:351 May 18, 2006. Retrieved from https://www.riksdagen.se/sv/http://www.notisum.se/rnp/sls/LAG/20060351.htm

  71. Wang, S., Jiang, X., Singh, S., Marmor, R., Bonomi, L., Fox, D., et al. (2016). Genome privacy: Challenges, technical approaches to mitigate risk, and ethical considerations in the United States. Annals of the New York Academy of Sciences, 1387, 73–83.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Lag om vissa register för forskning om vad arv och miljö betyder för människors hälsa [Internet]. 2013:794 Oct 24, 2013. Retrieved from https://www.riksdagen.se/sv/dokument-lagar/dokument/svensk-forfattningssamling/lag-2013794-om-vissa-register-for-forskning-om_sfs-2013-794

  73. Data Protection Act 2018 (UK). C 12.

    Google Scholar 

  74. Government of Canada SC. Canadian Health Measures Survey (CHMS) [Internet]. 2015 [cited 2020 Feb 28]. Retrieved from https://www23.statcan.gc.ca/imdb/p2SV.pl?Function=getSurvey&SDDS=5071

  75. Caulfield, T., & Murdoch, B. (2017). Genes, cells, and biobanks: Yes, there’s still a consent problem. PLoS Biology, 15, e2002654.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. About UK Biobank | UK Biobank [Internet]. [cited 2020 Feb 28]. Retrieved from https://www.ukbiobank.ac.uk/about-biobank-uk/

  77. Researchers | CARTaGENE [Internet]. [cited 2020 Feb 28]. Retrieved from https://www.cartagene.qc.ca/en/researchers

  78. Rahimzadeh, V., Knoppers, B. M., & Bartlett, G. (2020). Ethical, legal and social implications (ELSI) of responsible data sharing involving children in genomics: A modified systematic literature review of reasons. AJOB Empirical Bioethics, 11(4), 233–245.

    Article  PubMed  Google Scholar 

  79. Hens, K., Cassiman, J.-J., Nys, H., & Dierickx, K. (2011). Children, biobanks and the scope of parental consent. European Journal of Human Genetics, 19, 735–739.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Berkman, B. E., Howard, D., & Wendler, D.. (2018 [cited 2020 Feb 28]). Reconsidering the Need for Reconsent at 18. Pediatrics. 142. Retrieved from https://pediatrics.aappublications.org/content/142/2/e20171202

  81. Brothers, K. B., & Wilfond, B. S. (2018). Research consent at the age of majority: Preferable but not obligatory. Pediatrics, 142, e20173038.

    Article  PubMed  Google Scholar 

  82. Goldenberg, A. J., Hull, S. C., Botkin, J. R., & Wilfond, B. S. (2009). Pediatric biobanks: Approaching informed consent for continuing research after children grow up. The Journal of Pediatrics, 155, 578–583.e13.

    Article  PubMed  PubMed Central  Google Scholar 

  83. Murad, A. M., Myers, M. F., Thompson, S. D., Fisher, R., & Antommaria, A. H. M. (2017). A qualitative study of adolescents’ understanding of biobanks and their attitudes toward participation, re-contact, and data sharing. American Journal of Medical Genetics. Part A, 173, 930–937.

    Article  PubMed  Google Scholar 

  84. Kong, C. C., Tarling, T. E., Strahlendorf, C., Dittrick, M., & Vercauteren, S. M. (2016). Opinions of adolescents and parents about pediatric biobanking. The Journal of Adolescent Health, 58, 474–480.

    Article  PubMed  Google Scholar 

  85. Hens, K., Van El Carla, E., Borry, P., Cambon-Thomsen, A., Cornel, M. C., Forzano, F., et al. (2012). Developing a policy for paediatric biobanks: Principles for good practice. European Journal of Human Genetics, 21, 2–7.

    Article  PubMed  PubMed Central  Google Scholar 

  86. Mayer, A. N., Dimmock, D. P., Arca, M. J., Bick, D. P., Verbsky, J. W., Worthey, E. A., et al. (2011). A timely arrival for genomic medicine. Genetics in Medicine, 13, 195–196.

    Article  PubMed  Google Scholar 

  87. Bush, L. W., Bartoshesky, L. E., David, K. L., Wilfond, B., Williams, J. L., & Holm, I. A. (2018). Pediatric clinical exome/genome sequencing and the engagement process: Encouraging active conversation with the older child and adolescent: Points to consider—A statement of the American College of Medical Genetics and Genomics (ACMG). Genetics in Medicine, 20, 692–694.

    Article  PubMed  Google Scholar 

  88. Joffe, S., Fernandez, C. V., Pentz, R. D., Ungar, D. R., Mathew, N. A., Turner, C. W., et al. (2006). Involving children with cancer in decision-making about research participation. The Journal of Pediatrics, 149, 862–868.e1.

    Article  PubMed  Google Scholar 

  89. Wilfond, B. S., & Diekema, D. S. (2012). Engaging children in genomics research: Decoding the meaning of assent in research. Genetics in Medicine, 14, 437–443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Anderson, B. D., Adamson, P. C., Weiner, S. L., McCabe, M. S., & Smith, M. A. (2004). Tissue collection for correlative studies in childhood cancer clinical trials: Ethical considerations and special imperatives. Journal of Clinical Oncology, 22, 4846–4850.

    Article  PubMed  Google Scholar 

  91. McMurter, B., Parker, L., Fraser, R. B., Magee, J. F., Kozancyzn, C., & Fernandez, C. V. (2011). Parental views on tissue banking in pediatric oncology patients. Pediatric Blood & Cancer, 57, 1217–1221.

    Article  Google Scholar 

  92. Sénécal, K., Rahimzadeh, V., Knoppers, B. M., Fernandez, C. V., Avard, D., & Sinnett, D. (2015). Statement of principles on the return of research results and incidental findings in paediatric research: A multi-site consultative process. Genome, 58, 541–548.

    Article  PubMed  Google Scholar 

  93. Fernandez, C. V., Gao, J., Strahlendorf, C., Moghrabi, A., Pentz, R. D., Barfield, R. C., et al. (2009). Providing research results to participants: Attitudes and needs of adolescents and parents of children with cancer. Journal of Clinical Oncology, 27, 878–883.

    Article  PubMed  PubMed Central  Google Scholar 

  94. Hufnagel, S. B., Martin, L. J., Cassedy, A., Hopkin, R. J., & Antommaria, A. H. M. (2016). Adolescents’ preferences regarding disclosure of incidental findings in genomic sequencing that are not medically actionable in childhood. American Journal of Medical Genetics. Part A, 170, 2083–2088.

    Article  CAS  PubMed  Google Scholar 

  95. Sabatello, M., & Appelbaum, P. S. (2016). Raising genomic citizens: Adolescents and the return of secondary genomic findings. Journal of Law, Medicine & Ethics, 44, 292–308.

    Article  Google Scholar 

  96. Dimmock, D. (2012). A personal perspective on returning secondary results of clinical genome sequencing. Genome Medicine, 4, 54.

    Article  PubMed  PubMed Central  Google Scholar 

  97. Green, R. C., Berg, J. S., Grody, W. W., Kalia, S. S., Korf, B. R., Martin, C. L., et al. (2013). ACMG recommendations for reporting of incidental findings in clinical exome and genome sequencing. Genetics in Medicine, 15, 565–574.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Brothers, K. B., Vassy, J. L., & Green, R. C. (2019). Reconciling opportunistic and population screening in clinical genomics. Mayo Clinic Proceedings, 94, 103–109.

    Article  PubMed  Google Scholar 

  99. Wilfond, B., & Ross, L. F. (2009). From genetics to genomics: Ethics, policy, and parental decision-making. Journal of Pediatric Psychology, 34, 639–647.

    Article  PubMed  Google Scholar 

  100. Wilfond, B. S., Fernandez, C. V., & Green, R. C. (2015). Disclosing secondary findings from pediatric sequencing to families: Considering the “benefit to families”. The Journal of Law, Medicine & Ethics, 43, 552–558.

    Article  Google Scholar 

  101. Burke, W., Matheny Antommaria, A. H., Bennett, R., Botkin, J., Clayton, E. W., Henderson, G. E., et al. (2013). Recommendations for returning genomic incidental findings? We need to talk! Genetics in Medicine, 15, 854–859.

    Article  CAS  PubMed  Google Scholar 

  102. ACMG Board of Directors. (2015). ACMG policy statement: Updated recommendations regarding analysis and reporting of secondary findings in clinical genome-scale sequencing. Genetics in Medicine, 17, 68–69.

    Article  Google Scholar 

  103. Kalia, S. S., Adelman, K., Bale, S. J., Chung, W. K., Eng, C., Evans, J. P., et al. (2017). Recommendations for reporting of secondary findings in clinical exome and genome sequencing, 2016 update (ACMG SF v2.0): A policy statement of the American College of Medical Genetics and Genomics. Genetics in Medicine, 19, 249–255.

    Article  PubMed  Google Scholar 

  104. Knoppers, B. M., Avard, D., Sénécal, K., & Zawati, M. H. (2014). Return of whole-genome sequencing results in paediatric research: A statement of the P3G international paediatrics platform. European Journal of Human Genetics, 22, 3–5.

    Article  CAS  PubMed  Google Scholar 

  105. Boycott, K., Hartley, T., Adam, S., Bernier, F., Chong, K., Fernandez, B. A., et al. (2015). The clinical application of genome-wide sequencing for monogenic diseases in Canada: Position Statement of the Canadian College of Medical Geneticists. Journal of Medical Genetics, 52, 431–437.

    Article  CAS  PubMed  Google Scholar 

  106. van El, C. G., Cornel, M. C., Borry, P., Hastings, R. J., Fellmann, F., Hodgson, S. V., et al. (2013). Whole-genome sequencing in health care. European Journal of Human Genetics, 21, 580–584.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  107. Manzi, S. F., Fusaro, V. A., Chadwick, L., Brownstein, C., Clinton, C., Mandl, K. D., et al. (2017). Creating a scalable clinical pharmacogenomics service with automated interpretation and medical record result integration—Experience from a pediatric tertiary care facility. Journal of the American Medical Informatics Association, 24, 74–80.

    Article  PubMed  Google Scholar 

  108. Beauvais, M. J. S., Thorogood, A. M., Szego, M. J., Sénécal, K., Zawati, M. H., & Knoppers, B. M. (2021). Parental Access to Children’s Raw Genomic Data in Canada: Legal Rights and Professional Responsibility. Frontiers in Genetics, 12, 535340.

    Google Scholar 

  109. Ries, N. M. (2010). Research participants’ rights to access information about themselves held by Public Research Institutions. Medical Law Review, 18, 5–14.

    Google Scholar 

  110. Schickhardt, C., Fleischer, H., & Winkler, E. C. (2020). Do patients and research subjects have a right to receive their genomic raw data? An ethical and legal analysis. BMC Medical Ethics, 21, 7.

    Article  PubMed  PubMed Central  Google Scholar 

  111. Hens, K., Nys, H., Cassiman, J.-J., & Dierickx, K. (2010). The return of individual research findings in paediatric genetic research. Journal of Medical Ethics, 37, 179–183.

    Article  PubMed  Google Scholar 

  112. Ross, L. F., & Clayton, E. W. (2019 [cited 2019 Nov 26]). Ethical issues in newborn sequencing research: The case study of BabySeq. Pediatrics [Internet]. Retrieved from https://pediatrics.aappublications.org/content/early/2019/11/10/peds.2019-1031

  113. Garrett, J. R., Lantos, J. D., Biesecker, L. G., Childerhose, J. E., Chung, W. K., Holm, I. A., et al. (2019). Rethinking the “open future” argument against predictive genetic testing of children. Genetics in Medicine, 21, 2190–2198.

    Article  PubMed  PubMed Central  Google Scholar 

  114. Ross, L. F. (2006). Screening for conditions that do not meet the Wilson and Jungner criteria: The case of Duchenne muscular dystrophy. American Journal of Medical Genetics. Part A, 140A, 914–922.

    Article  Google Scholar 

  115. Dove, E. S., Chico, V., Fay, M., Laurie, G., Lucassen, A. M., & Postan, E. (2019). Familial genetic risks: How can we better navigate patient confidentiality and appropriate risk disclosure to relatives? Journal of Medical Ethics, 45, 504–507.

    Article  PubMed  Google Scholar 

  116. ABC v St George’s Healthcare NHS Trust & Ors [Internet]. EWHC. 2020 [cited 2020 Feb 28]. p. 455. Retrieved from https://www.bailii.org/ew/cases/EWHC/QB/2020/455.html

  117. Ross, L. F. (2008). Ethical and policy issues in pediatric genetics. American Journal of Medical Genetics. Part C, Seminars in Medical Genetics, 148C, 1–7.

    Article  PubMed  Google Scholar 

  118. Werner-Lin, A., Mccoyd, J. L. M., & Bernhardt, B. A. (2019). Actions and uncertainty: How prenatally diagnosed variants of uncertain significance become actionable. The Hastings Center Report, 49, S61–S71.

    Article  PubMed  Google Scholar 

  119. Walser, S. A., Werner-Lin, A., Russell, A., Wapner, R. J., & Bernhardt, B. A. (2016). “Something extra on chromosome 5”: Parents’ understanding of positive prenatal Chromosomal Microarray Analysis (CMA) results. Journal of Genetic Counseling, 25, 1116–1126.

    Article  PubMed  PubMed Central  Google Scholar 

  120. Frankel, L. A., Pereira, S., & McGuire, A. L. (2016). Potential psychosocial risks of sequencing newborns. Pediatrics, 137, S24–S29.

    Article  PubMed  Google Scholar 

  121. Presidential Commission for the Study of Bioethical Issues. Safeguarding children: Pediatric medical countermeasure research [Internet]. (2013 [cited 2020 Feb 28]). Washington, DC. Retrieved from https://bioethicsarchive.georgetown.edu/pcsbi/sites/default/files/PCSBI_Pediatric-MCM508.pdf

  122. van der Graaf, R., Dekking, S. A., de Vries, M. C., Zwaan, C. M., & van Delden, J. J. M. (2018). Pediatric oncology as a Learning Health System: Ethical implications for best available treatment protocols. Learning Health Systems, 2, e10052.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Johnson, S. B., Slade, I., Giubilini, A., & Graham, M. (2020). Rethinking the ethical principles of genomic medicine services. European Journal of Human Genetics, 28, 147–154.

    Article  PubMed  Google Scholar 

  124. Beauvais, M.J.S. & Knoppers, B.M. (2021). Coming Out to Play: Privacy, Data Protection, Children’s Health, and COVID-19 Research. Frontiers in Genetics, 12, 659027.

    Google Scholar 

Download references

Acknowledgments

The authors wish to thank the Canadian Institutes of Health Research and the Terry Fox Foundation (TFF-105266), the Canadian Institutes of Health Research and Genome Canada (Care4Rare-SOLVE (C4R-SOLVE)), Genome Canada through IGNITE (Orphan Diseases: Identifying Genes and Novel Therapeutics to Enhance Treatment), the Canadian Pediatric Cancer Genome Consortium (CPCGC), Genome Atlantic, and the Terry Fox PRecision Oncology For Young peopLE (PROFYLE) program for the financial support. VR also thanks Vanier Canada Graduate Scholarships (CIHR #359258).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bartha Maria Knoppers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s) under exclusive license to Springer Nature Switzerland AG

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Beauvais, M.J.S., Sénécal, K., Fernandez, C.V., Sinnett, D., Rahimzadeh, V., Knoppers, B.M. (2021). Frontline Ethico-Legal Issues in Childhood Cancer Genetics Research. In: Malkin, D. (eds) The Hereditary Basis of Childhood Cancer. Springer, Cham. https://doi.org/10.1007/978-3-030-74448-9_13

Download citation

Publish with us

Policies and ethics